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Abstract
The dynamics of gene expression in crop grains has typically been investigated at the transcriptional level. However, this ap
proach neglects translational regulation, a widespread mechanism that rapidly modulates gene expression to increase the plas
ticity of organisms. Here, we performed ribosome profiling and polysome profiling to obtain a comprehensive translatome data 
set of developing bread wheat (Triticum aestivum) grains. We further investigated the genome-wide translational dynamics 
during grain development, revealing that the translation of many functional genes is modulated in a stage-specific manner. 
The unbalanced translation between subgenomes is pervasive, which increases the expression flexibility of allohexaploid wheat. 
In addition, we uncovered widespread previously unannotated translation events, including upstream open reading frames 
(uORFs), downstream open reading frames (dORFs), and open reading frames (ORFs) in long noncoding RNAs, and character
ized the temporal expression dynamics of small ORFs. We demonstrated that uORFs act as cis-regulatory elements that can 
repress or even enhance the translation of mRNAs. Gene translation may be combinatorially modulated by uORFs, dORFs, 
and microRNAs. In summary, our study presents a translatomic resource that provides a comprehensive and detailed overview 
of the translational regulation in developing bread wheat grains. This resource will facilitate future crop improvements for op
timal yield and quality.
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Introduction
Cereals are the most widely cultivated crops worldwide 
(Hickey et al. 2019). Their grains or seeds are used as food 
sources, accounting for most of the calories consumed by hu
mans worldwide. The importance of cereals has driven re
search interest in genetic improvement strategies to 
maximize the yield and quality of the grains, which requires 
a comprehensive understanding of the gene expression dy
namics affecting traits such as grain shape and quality 
(Borrill et al. 2019; Hickey et al. 2019). Due to the reduced 
cost and advanced technologies of high-throughput sequen
cing (Stark et al. 2019), many researchers have studied the 

regulation of gene expression in bread wheat at the transcrip
tional level (Ramirez-Gonzalez et al. 2018; Chen et al. 2023). A 
series of functional genes involved in grain development and 
their transcriptional regulatory networks in crops were iden
tified (Wang et al. 2010; Zhan et al. 2015; Li and Li 2016; Xiang 
et al. 2019; Yi et al. 2019). In one such study, for example, 
transcriptome profiling was performed at 7 stages of embryo 
development, 2 endosperm stages, and one pericarp stage 
using polyploid wheats (Triticum spp.) and their diploid an
cestors (Xiang et al. 2019). A temporal transcriptome of early 
maize (Zea mays) seed development was utilized to con
struct transcriptional regulatory networks (Yi et al. 2019). 
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IN A NUTSHELL
Background: Bread wheat (Triticum aestivum) is one of the most widely cultivated cereal crops worldwide. The gen
etic code of DNA is first transcribed to produce mRNAs, which are then translated to produce proteins. This process is 
regulated at each step. Translational regulation is a widespread mechanism that rapidly modulates gene expression to 
maintain growth and development. Our current understanding of gene regulation in wheat grains focuses on the tran
scriptional level, neglecting the translational level.

Question: How is gene expression regulated at the translational level in developing wheat grains? What functional 
proteins are involved in grain development?

Findings: We used 2 approaches, namely, ribosome profiling and polysome profiling, to obtain a unique translatome 
data set of developing bread wheat grains. The translation of many functional genes is modulated in a stage-specific 
manner. The divergence of the translational regulation between the wheat subgenomes is pervasive, which increases 
the expression flexibility of allohexaploid wheat. Widespread open reading frames (ORFs) are actively expressed in 
wheat grains. Upstream open reading frames (uORFs) that function as translational regulatory elements can repress 
or even activate the translation of mRNAs. Gene translation may be combinatorially modulated by uORFs, down
stream ORFs, and microRNAs.

Next steps: Our work presents valuable translatomic resources for understanding the translational control of gene 
expression during wheat grain development. Further studies will explore functional translational regulatory elements 
to improve wheat yield and quality.

The most recent investigations into the regulation of gene 
expression are focused on the transcriptional level, whereas 
our understanding of translational regulation in crop grains 
is sparse.

Gene expression in organisms is modulated at multiple le
vels, from transcription to protein production, in which 
translation is the biological process that decodes genetic in
formation into functional proteins (Reddy et al. 2013; Brar 
and Weissman 2015; Ingolia 2016). Multiple approaches 
have been developed for translatome exploration (Brar and 
Weissman 2015; Zhao et al. 2019). Translating ribosome affin
ity purification incorporating FLAG-tagged RIBOSOMAL 
PROTEIN L18 (RPL18) into ribosomes was developed for 
the quantification of mRNA translation in a specific tissue 
or organ (Zanetti et al. 2005; Juntawong et al. 2014; 
Reynoso et al. 2019; Traubenik et al. 2020; Yoo et al. 2020). 
Polysome profiling (Poly-seq) has been used to perform 
genome-wide profiling of translation. In this technique, 
polysome-associated mRNA is isolated through differential 
centrifugation and fractionation and is further quantified 
using high-throughput sequencing (Bunnik et al. 2013; 
Juntawong et al. 2014; Bai et al. 2017; Zhang et al. 2017). In 
addition, ribosome profiling (Ribo-seq) has been utilized to 
obtain ribosome-protected mRNA fragments (Juntawong 
et al. 2014; Lei et al. 2015; Hsu et al. 2016; Bazin et al. 2017; 
Chotewutmontri and Barkan 2021; Zhu et al. 2021a), which 
enables the quantification of translation control and the po
sitions of the translating ribosomes on a genome-wide scale. 
The ribosome reads the information, one codon (3 nucleo
tides) at a time. Ribosome profiling has been utilized to un
cover unannotated translation events, such as upstream 
open reading frames (uORFs) and small ORFs (sORFs) encod
ing small peptides (Juntawong et al. 2014; Lei et al. 2015; Hsu 

et al. 2016; Bazin et al. 2017; Zhang et al. 2018a, 2021; van 
Heesch et al. 2019; Wu et al. 2019; Chen et al. 2020a; 
Patraquim et al. 2020). Recent studies found that variation 
in the uORFs causes allelic diversity in protein abundance 
in maize (Gage et al. 2022) and soybean (Glycine max) 
(Guo et al. 2022); thus, these experimental approaches can 
provide great opportunities for the identification of trans
lated ORFs and the quantification of translational control 
in crop grains on a genome-wide scale.

In plants, some studies have investigated the translational 
dynamics of genes in diverse aspects of development, growth, 
and environmental adaptation, including photomorphogen
esis, C4 photosynthesis, the circadian clock, seed germin
ation, and the responses to hypoxia stress, drought stress, 
phosphorus deficiency, and flooding (Liu et al. 2013; 
Juntawong et al. 2014; Lei et al. 2015; Bai et al. 2017; Bazin 
et al. 2017; Srivastava et al. 2018; Reynoso et al. 2019; 
Chung et al. 2020; Bonnot and Nagel 2021; 
Chotewutmontri and Barkan 2021). The identification of 
translated ORFs in plants has been investigated in 
Arabidopsis (Arabidopsis thaliana), tomato (Solanum lyco
persicum), and maize (Juntawong et al. 2014; Hsu et al. 
2016; Wu et al. 2019; Liang et al. 2021). Most studies use a sin
gle type of translation investigation method. Ribosome pro
filing allows the determination of ribosome positioning on 
mRNA at a single-nucleotide resolution and the identifica
tion of translated ORFs, but it is far less sensitive in detect
ing less-abundant mRNAs (Ingolia et al. 2009; Kronja et al. 
2014; Gandin et al. 2016) and has relatively lower read 
alignment accuracy due to the short length of the sequen
cing reads. Polysome profiling can reveal the translational
ly active fraction of an mRNA (Kronja et al. 2014) and 
produce longer sequencing reads. These reports highlight 
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the power of combining ribosome profiling and polysome 
profiling when studying the translatome, especially in allo
hexaploid wheat.

Bread wheat (Triticum aestivum, 2n = 6x = 42, BBAADD), 
which originated from 2 rounds of polyploidization, provides 
about 20% of the calories consumed by humans worldwide 
(International Wheat Genome Sequencing Consortium 
et al. 2018; Laugerotte et al. 2022). At the transcriptional le
vel, a large number of studies in allohexaploid wheat have re
vealed that stage-specific transcriptional expression and 
subgenome asymmetry are common (Liu et al. 2015; 
Ramirez-Gonzalez et al. 2018; Takahagi et al. 2018; Xiang 
et al. 2019), and homoeolog expression bias may affect phe
notypes (He et al. 2022); however, the translational dynamics 
of genes during allohexaploid wheat grain development re
main unknown. Here, we combined ribosome profiling and 
polysome profiling to construct a grain translatome data 
set for bread wheat and investigate translational control dur
ing grain development. We uncovered extensive stage- 
specific and subgenome-divergent translational regulation 
of mRNAs at a genome-wide scale. In addition, we uncovered 
actively translated ORFs, including uORFs in the 5′ untrans
lated regions (UTRs), downstream ORFs (dORFs) in the 3′ 
UTRs, and ORFs in long noncoding RNAs (lncRNAs), and 
characterized their expression dynamics. The combinatorial 
control of gene expression at the translational level by 
uORFs, dORFs, and microRNAs (miRNAs) was also revealed. 
This study sheds light on the regulation of gene expression, 
unannotated ORFs, and subgenome asymmetry at the post- 
transcriptional level in polyploid crops.

Results
A wheat grain time series translatome data set based 
on ribosome profiling and polysome profiling
To characterize the translational dynamics of genes during 
grain development at a genome-wide scale, we performed 
next-generation sequencing on the total mRNAs (RNA-seq), 
polysomal mRNAs (Poly-seq), and ribosome-protected 
mRNA fragments (Ribo-seq) of wheat grains at successive de
velopmental stages, including 5 d after anthesis (DAA), 10 
DAA, and 15 DAA (Fig. 1A; Supplemental Data Set 1). On aver
age, the Illumina sequencing platform yielded 76.9 million and 
75.7 million reads from each replicate of the total and polyso
mal mRNA samples, respectively, of which 89.1% and 90.3% 
could be mapped to the bread wheat Chinese Spring reference 
genome IWGSC RefSeq v2.1 (International Wheat Genome 
Sequencing Consortium et al. 2018; Zhu et al. 2021b). In add
ition, around 60.0 million ribosome footprint (RF) reads per 
replicate were generated for the ribosome profiling samples. 
After filtering out fragments of housekeeping RNAs (riboso
mal [rRNA], transfer [tRNA], and small nucleolar RNA 
[snoRNA]), nearly 78.6% of the RF reads could be mapped 
to the wheat reference genome. The high mapping rates em
phasize the high quality of our data sets.

We investigated the RF features that are strongly asso
ciated with the translation mechanism in organisms 
(Ingolia 2016; Calviello and Ohler 2017) to examine the qual
ity of the Ribo-seq libraries. We found that the RF size was 
about 27 nucleotides for the 3 grain developmental stages 
(Fig. 1B), which is similar to the footprint reported for 
Arabidopsis (Juntawong et al. 2014; Hsu et al. 2016), tomato 
(Wu et al. 2019), and maize (Lei et al. 2015; Reynoso et al. 
2019). Importantly, the distribution of RFs from wheat grains 
exhibited strong 3-nucleotide periodicity (Fig. 1C; 
Supplemental Fig. S1), a typical characteristic of actively 
translating ribosomes that shift down the mRNA by 3 nu
cleotides at a time. The RF metagene analysis showed that 
the peptidyl (P) sites within the wheat grain ribosomes are 
located between nucleotides 12 and 14 and the acceptor 
(A) site is located between nucleotides 15 and 17 for the 
27-nucleotide RFs (Fig. 1C). In addition, in comparison with 
the RNA-seq and Poly-seq reads, the Ribo-seq reads were 
mainly mapped to the annotated coding region and were 
sparse in the UTR (Supplemental Fig. S2). The replicates of 
the 3 types of libraries were highly correlated (R > 0.94; 
Supplemental Fig. S3), with replicates clustering together as 
expected.

We performed a gene expression quantification analysis 
(Supplemental Data Set 2) for all libraries. We took the aver
age fragments per kilobase of exon per million mapped frag
ment (FPKM) values as the abundance of the associated 
genes. The read count was normalized by sequencing depth 
with a sample-specific size factor implemented in DESeq2 
(Love et al. 2014). The total mRNAs were positively corre
lated with the RFs (R = 0.78 on average) and polysomal 
mRNA (R = 0.91 on average) (Supplemental Fig. S4). In add
ition, we performed a principal component analysis (PCA) for 
all samples and found that PC1 (explaining 58.2% of the vari
ation) separated the samples into RNA-seq (total mRNA/ 
transcription), Poly-seq (polysomal mRNA/translation), and 
Ribo-seq (RF/translation) groups, while PC2 (20.8% of the 
variation) separated the developmental process (Fig. 1E).

We analyzed the polysome profiles of diverse developmen
tal stages and found that changes in polysome profiles occur 
throughout all developmental phases (Fig. 1D), which is con
sistent with the result of the PCA. The Poly-seq data are most 
appropriate for the quantification of transcription abun
dance because Poly-seq reads have high mapping accuracy, 
while the Ribo-seq data are best used to uncover the 
positions of the ORFs. Our data sets are suitable for the inves
tigation of translational regulation during wheat grain 
development.

Extensive stage-specific translational regulation of 
gene expression during grain development
To gain a comprehensive understanding of the transcription
al and translational dynamics during the grain developmen
tal process, we identified a collection of 33,815 differentially 
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Figure 1. Polysome profiling and ribosome profiling expose translational dynamics during grain development. A) A schematic overview of the ex
perimental approach. The wheat grains from 3 developmental stages were used for the translatome investigation. B) Size distribution of the ribo
some footprint (RF). Mean and standard error are shown. C) Metagene analysis of the RF reads near the annotated translation start and stop sites. 
The 27-nucleotide RF reads and the combination of replicates are shown. The density of reads at each position was normalized across the density of 
the surrounding reads. Bars show RFs, and lines show total and polysomal mRNAs. The predicted position of the ribosome’s peptidyl (P) site of RF 
reads relative to the CDS start and stop codons is shown. The position of the RF reads is indicated by its 12th nucleotide within each footprint. The 
x-axis represents the relative distance of each RF reads to the start codon or the stop codon. The 0 on the x-axis represents that the 12th nucleotide 
of the RF reads was mapped to the 1st nucleotide of the start codon. The red, blue, and green bars represent the RF reads mapped to the 1st (ex
pected), 2nd, and 3rd reading frames, respectively. The inferred peptidyl (P) site (nucleotides 12 to 14) in the start codon and the acceptor (A) site 
(nucleotides 15 to 17) in the stop codon are illustrated. D) Polysome profiling was analyzed using a sucrose gradient sedimentation with 3 replicates 
using grain sampled at 5, 10, and 15 d after anthesis (DAA), and the optical density and a wavelength of 254 nm (OD254; arbitrary units) was mea
sured for the 3 grain developmental stages at the times indicated. E) Principal component analysis (PCA) of the RNA-seq, Poly-seq, and Ribo-seq data 
from the 3 grain development stages using the 10,000 most variable genes.
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expressed genes (DEGs), accounting for 64.1% of expressed 
genes, across the 3 types of libraries representing diverse de
velopmental stages (Supplemental Data Set 3). This high to
tal number of DEGs suggests that large numbers of genes are 
involved in the regulation of grain development, which is 
consistent with a previous grain transcriptome study 
(Xiang et al. 2019). In addition, more than half of the DEGs 
in the Ribo-seq data sets could also be detected in the 
RNA-seq or Poly-seq data sets (Supplemental Fig. S5), indi
cating high correlations among the 3 types of libraries.

We further performed a K-means coexpression analysis 
for the transcript abundance of the DEGs, resulting in 6 co
expression clusters with a range from 2,537 to 8,418 DEGs 
(Fig. 2A; Supplemental Data Set 4). The expression patterns 
of clusters 5 and 6 were not consistent between the tran
scriptome and the translatome, implying that translational 
regulation may have altered the expression of some genes. 
Furthermore, we acquired 857 differentially expressed pro
teins (DEPs; Supplemental Data Set 5) from a public prote
omic data set of the wheat cv. Cranbrook grains (Daba et al. 
2020) and found that the translatomic data can recover 
more DEPs than the transcriptomic data (Supplemental 
Fig. S6).

The translation state (TS; calculated as the ratio of polyso
mal mRNA abundance to that of total RNA) was used to 
measure the utilization efficiency of mRNA for protein syn
thesis. To reduce the count errors from short reads mapping, 
we used the Poly-seq and RNA-seq data to calculate TSs of 
mRNAs. We identified a total of 19,363 genes with altered 
TS to investigate the dynamics of translational regulation 
(Supplemental Data Set 6) and observed more genes with al
tered TS and a greater change in gene abundance at the tran
sition from 5 to 10 DAA. In detail, at the comparison of 5 to 
10 DAA, 95% of genes spanned a 25-fold range in the tran
script abundance ratio and a larger range (32-fold) in the 
TS ratio (Fig. 2B). The reverse situation was observed at the 
transition from 10 to 15 DAA (that is, the change in the tran
script abundance ratio is larger than that in the TS ratio) 
(Fig. 2C).

We next aimed to determine the biological processes in 
which the differentially translated genes might be involved 
and thus performed a Gene Ontology (GO) enrichment ana
lysis. The results revealed a significant enrichment in categor
ies related to starch biosynthesis (Supplemental Fig. S7). 
Based on the literature and public resources (Yao et al. 
2018; Chen et al. 2020b), we explored 903 genes associated 
with grain development (Supplemental Data Set 2) 
and found that almost half of them have altered TS 
(P = 3.4e−13, hypergeometric test) (Fig. 2D). An expression 
analysis revealed that these functional genes with a changed 
TS may be involved in diverse grain developmental stages 
(Fig. 2E). We viewed the expression patterns of several well- 
known genes (Fig. 2F). During the grain developmental 
process, GRAIN INCOMPLETE FILLING 1 (GIF1), known to 
control grain filling and yield (Wang et al. 2008), had an in
creased TS. GRAIN WIDTH 2 (GW2) (Song et al. 2007) and 

THOUSAND GRAIN WEIGHT 2 (TGW2) (Ruan et al. 2020), 
the homologs of which negatively regulate grain width and 
weight in rice (Oryza sativa), also had altered TSs. A previous 
study showed that higher GRAIN SIZE 5 (GS5) abundance is 
correlated with larger rice grain size (Li et al. 2011), and we 
found that GS5 had an increased TS in the 10-DAA grains. 
CATION CALCIUM EXCHANGER 4 (CCX4), a gene that con
trols the salicylic acid signaling pathway and compensates for 
cell enlargement (Fujikura et al. 2020), had an increased TS 
(Fig. 2G). In addition, we also examined the translational 
regulation of the starch biosynthesis–related genes. The su
crose synthase–related gene SUCROSE SYNTHASE 1 (Sus1) 
(Baroja-Fernandez et al. 2012) had an increased TS in the 
5-DAA grain, and Sus2 had an increased TS in the 10-DAA 
and 15-DAA grains (Fig. 2G). NUCLEAR FACTOR Y B9 
(NF-YB9), involving in starch biosynthesis during cereal endo
sperm development (Niu et al. 2021), had an increased TS in 
the 10-DAA grain. STORAGE PROTEIN ACTIVATOR (SPA), 
encoding a bZIP transcription factor that is negatively corre
lated with prolamin and starch accumulation in wheat grain, 
had a decreased TS. ABSCISIC ACID INSENSITIVE 19 (ABI19), 
encoding a grain filling–initiation regulator (Yang et al. 
2021a), had a decreased TS in the 10-DAA grain (Fig. 2F). 
These observations demonstrate that functional genes are 
under extensive translational regulation during grain 
development.

Subgenome asymmetry of translational regulation 
increases expression divergence between the wheat 
homoeologs
Hexaploid wheat that has undergone 2 rounds of polyploidi
zation displays an unbalanced transcriptional expression be
tween homoeologs (Ramirez-Gonzalez et al. 2018; Xiang et al. 
2019; He et al. 2022); however, the divergence of the transla
tional regulation between the allohexaploid wheat subge
nomes remains unknown. We calculated TSs of mRNAs 
using the Poly-seq and RNA-seq data. Given that homoeologs 
originate from orthologs that are then aggregated into a sin
gle genome through allopolyploidization (Glover et al. 2016), 
we expected and observed a high correlation of TS values be
tween the homoeolog pairs (Fig. 3A).

We next analyzed a total of 10,124 stably expressed homo
eolog triads (Supplemental Data Set 7) and found that 11.0% 
(5 DAA) to 31.8% (15 DAA) of the triads have an unbalanced 
TS between the subgenomes (Fig. 3B). The total number of 
unbalanced triads increased with grain development, sug
gesting that the change in the translational dynamics of 
homoeologs is related to grain development processes. A sig
nificant overlap between the triads with unbalanced tran
scription and the triads with unbalanced TS was found 
(Supplemental Fig. S8; Fig. 3C), suggesting that the triads 
with unbalanced transcription also tend to have unbalanced 
translational regulations. We discovered that nearly half of 
the triads have the same transcriptional and translational ex
pression patterns across all stages (Fig. 3D). Notably, 1,575 
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stage-specific triads have balanced transcriptional expres
sions but unbalanced translational expressions. The profiling 
of several individual homoeolog triads showed different 
homoeolog bias patterns between the transcriptional and 
translational levels (Fig. 3E). In homoeolog triads with unba
lanced TS, some genes involved in mRNA transport, rRNA 

processing, lipid homeostasis, and starch catabolic process 
were overrepresented (Supplemental Fig. S9). Many stage- 
specific enrichments were found, such as DNA repair, RNA 
splicing, and chaperone-mediated protein folding. We ob
served an unbalanced TS for the homoeolog triads of 
some well-known genes, such as Cyclin-T1;3 (Qi et al. 

A

F

B C

D E

G

Figure 2. Translational dynamics of gene expression during grain development. A) Coexpression of differentially expressed genes (DEGs) at the tran
scriptional and translational levels at 3 different grain development stages (5, 10, and 15 d after anthesis). For the transcriptome and translatome, the 
expression values (FPKMs) were normalized by dividing by the maximum FPKM at the transcriptional or translational level. The K-means method 
was employed to identify coexpression clusters. B and C) Scatterplots showing the fold changes of the translation state (TS) and transcriptional 
expression levels during grain development. The transitions from 5 d after anthesis (DAA) to 10 DAA B) and from 10 to 15 DAA C) were analyzed. 
Dashed lines represent the 2.5 and 97.5 percentiles. The fold changes of the mRNA abundance ratio B) and TS ratio C) between the 2.5 and 97.5 
percentiles are indicated in red text, respectively. Red and purple points indicate genes with upregulated and downregulated TSs, respectively. D) 
The Venn diagram shows that most of the genes involved in grain development have an altered TS. The genes involved in grain development were 
taken from the literature (Yao et al. 2018; Chen et al. 2020b). P-value, hypergeometric test. E) Translational expression patterns of 437 grain devel
opment–related genes with altered TS. The Z-scores of the expression levels of each gene at the translational level were visualized. The high Z-score 
on the gradient scale represents the high expression levels at the translational level. F) Expression profiles of 9 functional genes. Differential expres
sion and translation analyses were performed. G) Total mRNA (RNA-seq), polysomal mRNA (Poly-seq), and ribosome footprint (Ribo-seq) read 
coverage on key genes regulating wheat grain development and filling. The read coverage was normalized by the million reads mapped to nuclear 
coding sequences.

http://academic.oup.com/plcell/article-lookup/doi/10.1093/plcell/koad075#supplementary-data
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2012), GS2 (Hu et al. 2015), GRAIN LENGTH 3.2 (GL3.2) (Xu 
et al. 2015), SHORT GRAIN LENGTH (SGL) (Wu et al. 2014), 
NF-YB1 (Bai et al. 2016), and SUBSTANDARD STARCH 
GRAIN 4 (SSG4) (Matsushima et al. 2014) (Fig. 3F). These 
observations demonstrate that subgenome asymmetry for 
translational regulation is pervasive during grain 
development.

Sequence length, GC content, and normalized 
minimal free energy alter the translation of mRNAs
The mRNA sequence features may play important roles in 
translational regulation, modulating RNA translation, and 
protein abundance (Kawaguchi and Bailey-Serres 2005; 
Juntawong et al. 2014; Lei et al. 2015; Traubenik et al. 
2020). To identify sequence features associated with transla
tional regulation in wheat grains, we compared the sequence 
length, GC content, and normalized minimal free energy 
(NMFE) of the coding sequence (CDS), 5′ UTR, and 3′ UTR 
regions of the mRNAs (Supplemental Fig. S10). According 

to their TS, the mRNAs were classified into 3 groups: 
high TSs, middle TSs, and low TSs (see Materials and meth
ods). The results showed that the well-translated mRNAs 
generally have extreme CDS, 5′ UTR, and 3′ UTR sequence 
lengths compared with the poorly translated mRNAs 
(Supplemental Fig. S10A–C). Furthermore, we observed 
that the mRNAs with a high GC content and low NMFE in 
the 5′ UTR are generally poorly translated. In contrast, the 
mRNAs with a low GC content and high NMFE in the 3′ 
UTR and CDS are generally poorly translated. The above find
ings were also previously observed in maize (Lei et al. 2015), 
highlighting similar sequence features affecting mRNA trans
lation in crops. In addition, the dynamic triads have signifi
cantly higher (P < 0.01, Wilcoxon test) coefficients of 
variation (CVs) among homoeologs than the stable triads 
in terms of sequence length, GC content, and NMFE of 
CDS, 5′ UTR, and 3′ UTR (Supplemental Fig. S10, D–F), sug
gesting that these sequence features may contribute to un
balanced translation between homoeologs.

A C D F

B

E

Figure 3. Expression bias of homoeologs at the translational level. A) Pearson correlation coefficients (PCCs) of the translation state (TS) between 
homoeolog triads (green) and random (black) gene pairs. B) Ternary plots showing the relative TSs of triads in grains at 5 d after anthesis (DAA), 10, 
and 15 DAA. Each point corresponds to a gene triad with an A, B, and D coordinate. The color indicates the homoeolog bias pattern. The bottom 
percentage is the proportion of unbalanced homoeolog triads. The unbalanced group consists of 6 other groups of triads, excluding the balanced 
triads. C) Overlap between the triads with unbalanced transcriptional expressions and the triads with unbalanced TSs. P-value, hypergeometric test. 
Triads were combined for the 3 developmental stages. D) Summary of the homoeolog expression bias patterns at the transcriptional and transla
tional levels in 5-, 10-, and 15-DAA grains. The ordinate shows the proportion of each triad group. The right panel indicates whether homoeolog 
triads in each group have balanced mRNA abundance or TE. E) Several examples show the unbalanced TSs between the homoeolog triads that are 
balanced at the transcriptional level. The relative TS of each triad was calculated. F) Unbalanced translation of triads of the well-known genes in
volved in grain development. Each block represents a homoeolog triad.

http://academic.oup.com/plcell/article-lookup/doi/10.1093/plcell/koad075#supplementary-data
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Identification and characterization of active 
annotated and unannotated ORFs  
at a genome-wide scale
To catalog the translated sequences in the wheat grain, we 
identified genome-wide ORFs using the Ribo-seq data based 
on the annotated transcripts in the reference genome and 
the newly assembled transcripts (Fig. 4A). According to pre
viously described methods (Zhao et al. 2018; Tian et al. 2019), 
we assembled lncRNAs in the wheat grains using the sequen
cing data sets generated in this study. We then identified a 
total of 81,488 annotated ORFs (aORFs) within protein- 

coding genes in the reference genome. In addition, we discov
ered 3,360 unannotated ORFs potentially encoding peptides 
(Supplemental Data Set 8), including 1,254 uORFs in the 5′ 
UTRs, 367 dORFs in the 3′ UTRs, 825 internal ORFs (iORFs) 
in annotated CDSs but in a different reading frame, and 
914 ORFs in the lncRNAs (lORFs), the transcripts of which 
lacked prior protein-coding annotations. We found that 
most of the unannotated ORFs have a shorter sequence 
than the aORFs in CDSs (Fig. 4B), and 21.6% of the unanno
tated ORFs had non-AUG start codons (Fig. 4C). The 
Ribo-seq reads mapping to the unannotated ORFs exhibited 

A E

B C D

F G H

Figure 4. Genome-wide identification and characterization of actively translated open reading frames (ORFs). A) Summary of the ORFs identified, 
including the upstream ORFs (uORFs), annotated ORFs (aORFs), downstream ORFs (dORFs), internal ORFs (iORFs), and ORFs in lncRNAs (lORFs). B) 
Size distribution of the identified ORFs. The lengths were normalized. C) Start-codon usage of the identified ORFs. Numbers within the plots re
present the percentages of ORFs with different start-codon usages. D) Translational expression patterns of the identified short ORFs (sORFs), which 
contain fewer than 300 nucleotides. Expression values were scaled to Z-scores. The K-means method was used to construct coexpression clusters of 
sORFs. The thick line in the middle represents mean. E) Predicted subcellular localization of the proteins encoded by sORFs. The TargetP software 
(Almagro Armenteros et al. 2019) was used here. F–H) Coverage of RNA-seq, Poly-seq, and Ribo-seq in examples of an aORF F), lORF G), and dORF 
H). Read coverage was normalized by the million reads mapped to nuclear coding sequences. The gene model of the aORF is well supported by the 
sequencing reads F). In long noncoding RNA (lncRNA), the sequencing reads support the expression of a lORF G). Sequencing reads in aORFs pro
vided strong support for dORFs H).

http://academic.oup.com/plcell/article-lookup/doi/10.1093/plcell/koad075#supplementary-data
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the expected strong 3-nucleotide periodicity of positions 
(Supplemental Fig. S11), indicating that we had identified ac
tive unannotated ORFs on a genome-wide scale.

Small peptides, encoded by sORFs, play fundamental roles in 
plant growth, development, and environmental adaptation. 
We identified a total of 1,883 sORFs (Supplemental Data 
Set 9) from the newly identified uORFs, dORFs, lORFs, and 
iORFs. To characterize the expression dynamics of these 
sORFs at the translational level, we performed a coexpression 
analysis using the K-means method and obtained 5 sORF co
expression clusters representing different expression patterns 
(Fig. 4D). For instance, genes in cluster C3 might have import
ant roles in the early development of the grain because of their 
higher abundance in the 5-DAA grain. A further subcellular lo
calization analysis predicted 636 ORFs harboring signal pep
tides, 28 ORFs harboring chloroplast transit peptides, and 76 
ORFs harboring mitochondrial transit peptides (Fig. 4E). 
These findings highlight that the identified sORFs may be 
functionally expressed.

Our translatome data sets can be used to improve the gen
ome annotation of the complex allohexaploid wheat gen
ome. The profiling of several individual transcripts showed 
that both the aORFs (Fig. 4F) and the newly identified 
ORFs (Fig. 4, G and H) have evidence of ribosome and poly
some reads within the coding regions.

uORFs act as regulatory elements to influence the 
translation efficiency of mRNAs
Some uORFs can affect the translation of the main ORFs 
(mORFs) in plants (Juntawong et al. 2014; Lei et al. 2015; 
Wu et al. 2019), but their roles in bread wheat remain un
known. To investigate the effect of uORFs on gene transla
tion, we calculated the translation efficiencies (TEs) of ORFs 
using the RNA-seq and Ribo-seq data. As expected, mRNAs 
with uORFs have lower TEs than mRNAs without uORFs 
(Fig. 5A). Furthermore, we found that uORFs with AUG 
start codons have higher TEs than uORFs with non-AUG 
start codons and that the mRNAs with AUG uORFs have 
lower TEs than the mRNAs with non-AUG uORFs 
(Fig. 5B), implying that AUG-start uORFs may have a stron
ger suppressive effect on mORF abundance.

Kozak sequences are important for start codon recognition 
and translation initiation in organisms (Kozak 1987). We ob
served an expected well-conserved Kozak sequence feature 
at the positions of −3 (A/G) and 4 (G) around the AUG start 
codons of the aORFs (Supplemental Fig. S12) and mORFs, 
but not uORFs (Fig. 5C). A further GO enrichment analysis 
of the mRNAs with uORFs showed that these mRNAs may 
be involved in photosynthesis, rhythmic processes, and pro
tein autophosphorylation (Supplemental Fig. S13A). In add
ition, we found that the mRNAs with uORFs have lower 
TEs than their homologous genes with similar functional an
notations and without uORFs (Supplemental Fig. S13B), 
suggesting that some homologous genes with similar func
tions may have different translation efficiencies due to the 

variation of the uORF. Some uORFs are negatively correlated 
with the translation of mORFs, such as in CALCINEURIN 
B-LIKE PROTEIN 9 (CBL9) (Pandey et al. 2004), 
ILA1-INTERACTING PROTEIN 4 (IIP4) (Zhang et al. 2018c), 
SHOU4 (Polko et al. 2018), and DDB1-CUL4 ASSOCIATED 
FACTOR 1 (DCAF1) (Zhang et al. 2008) (Fig. 5D), suggesting 
that the uORF has a repressive effect.

Over evolutionary time, conserved proteins could be 
functionally important. To investigate the evolutionary his
tory of uORFs, we acquired 4 eudicot genomes and 4 mono
cot genomes and identified the evolutionarily conserved 
peptide uORF (CPuORF) (Supplemental Data Set 8). 
With a whole-genome search for uORF homologs, we iden
tified 134 angiosperm-conserved CPuORFs, which may re
present the uORFs encoding functionally important 
proteins (Supplemental Fig. S14). In addition, we found 
58 Poaceae-specific CPuORFs in all 5 Poaceae genomes 
(Supplemental Fig. S14), which may contribute to Poaceae evo
lution. There is not a statistically significant difference between 
the TEs of the mRNAs with CPuORFs and those with non-CP 
uORFs (Supplemental Fig. S13C). Interestingly, 317 homoeolog 
triads have present–absent variations (PAVs) of uORFs among 
the 3 subgenomes, which might contribute to homoeolog 
translation bias. In addition, we found that the uORFs of 
BASIC LEUCINE ZIPPER 53 (bZIP53) and genes encoding the 
ultraviolet-B receptor UVR8 have different RF coverage between 
homoeologs (Supplemental Fig. S15). In summary, these obser
vations highlight the potential role of uORFs in wheat evolution.

To further verify the effect of uORFs on the translation of 
the mORFs, we measured the expression of ORFs in Nicotiana 
benthamiana leaves using a dual-luciferase (LUC) system by 
calculating the ratio of LUC activity to the control Renilla re
niformis luciferase (REN) activity (Hellens et al. 2005). We se
lected 2 active uORFs with Ribo-seq reads for further 
experiments (Fig. 5E; Supplemental Fig. S16A). These uORFs 
are located in the 5′ UTR region of the genes TabZIP53-5A 
and TaCBL1-1B. In an expression cassette driven by the 35S 
promoter, cassettes with only the complete uORFs or deleted 
uORFs were constructed upstream of the LUC-coding region. 
A second 35S promoter–driven cassette expressing REN as an 
internal vector control was also included in the resulting con
structs (Fig. 5G). Compared with cassettes with the intact 
uORFs, cassettes with the deleted uORFs consistently gener
ated substantially higher LUC/REN activity levels for 
TabZIP53-5A (Fig. 5H) and TaCBL1-1B (Supplemental Fig. 
S16B), with fold increases of approximately 7.0 and 3.5, re
spectively, while reverse transcription quantitative PCR 
(RT-qPCR) assays revealed that the LUC/REN mRNA ratios 
of transcripts did not differ significantly (Fig. 5I; 
Supplemental Fig. S16C). These results demonstrated that 
these 2 uORFs suppress the translation of the downstream 
mORFs with no effect on transcription.

Furthermore, we identified a uORF located in the 5′ UTR of 
CINNAMOYl-COA REDUCTASE 2 on chromosome 5D 
(TaCCR2-5D) (Fig. 5F), which displayed a positive correlation 
between the translation of the uORF and the mORF, 

http://academic.oup.com/plcell/article-lookup/doi/10.1093/plcell/koad075#supplementary-data
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Figure 5. Upstream open reading frames (uORFs) alter the translation efficiency (TE) of mRNAs in wheat. A) Cumulative distributions of the TEs of 
mRNAs with uORFs. A 2-sided Wilcoxon test was performed. B) TE of uORFs with and without an AUG start codon and their downstream mORFs. 
The left panel shows TEs of AUG uORFs and non-AUG uORFs. The right panel shows TEs of mORFs with and without an AUG uORF. The “w/o 
uORF” group represents 1,000 randomly selected mORFs without uORFs. Two-sided Wilcoxon tests were performed. C) Kozak sequences of 
uORFs and main ORFs (mORFs). A chi-square test was performed. D) Several genes with uORFs alter the mORF TE. The TEs of the uORFs and 
mORFs across developmental stages are anticorrelated. E and F) Coverage of Ribo-seq reads in TabZIP53-5A E) and TaCCR2-5D F). Read coverage 
was normalized by the million reads mapped to nuclear coding sequences. In the region upstream of the mORF, the sequencing reads support the 
expression of uORFs. Green boxes, uORFs. The base sequences and the length of the uORFs (uORFTabZIP53-5A, uORFTaCBL1-1B) can be found in 
Supplemental Data Set 10. G) Schematic of the dual-luciferase system used to investigate the effect of uORFs on the translation of mORFs. 35S, 
cauliflower mosaic virus 35S promoter. REN, Renilla reniformis luciferase; LUC, firefly luciferase. Del indicates the deletion of a uORF. H–K) The effect 
of the different cassettes on the LUC/REN activity H and J) and LUC/REN mRNA level I and K) associated with the mORF in the dual-luciferase 
reporter system. P-values were calculated using 2-sided Student’s t-test. uORFTabZIP53-5A and uORFTaCCR2-5 were derived from TabZIP53-5A and 
TaCCR2-5D, respectively. H and I) TabZIP53-5A. J and K) TaCCR2-5D. Mean and standard error are shown. L) A frequency distribution histogram 
of the correlation between the TEs of uORFs and those of their mORFs. TEs of uORFs and their mORFs were calculated, respectively. All replicates 
from 3 developmental stages were used. The Spearman correlation coefficients were used to measure the correlation.
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and studied it to identify whether uORFs can improve the 
translation of mORFs. Compared with the mutant 
uorfTaCCR2-5D-Del, uORFTaCCR2-5D had a higher level of LUC/ 
REN activity (Fig. 5J) and a comparable LUC/REN mRNA level 
(Fig. 5K), showing that the uORF enhances the translation of 
the TaCCR2-5D mORF. In addition, we analyzed the correl
ation between uORF TEs and mORF TEs and observed an 
overall mildly positive correlation between uORF TEs and 
mORF TEs, rather than an anticorrelation (Fig. 5L), which 

was also observed in a previous study in human hearts 
(van Heesch et al. 2019). These findings suggest that some 
uORFs can enhance the translation of mORFs, but through 
an unknown mechanism.

Combinatorial regulation of mRNA translation by 
uORFs, dORFs, and miRNAs
MicroRNAs (miRNAs) can pair with target sites to downre
gulate gene expression by degrading the resulting mRNAs 

A

D

F G H

E

B C

Figure 6. Combinatorial regulation of gene expression at the translational level by upstream open reading frames (uORFs), downstream ORFs 
(dORFs), and microRNAs (miRNAs). A–C) Cumulative distributions of the transcriptional level (A), translational level (B), and translation state 
(TS) (C) of the miRNA target genes and non-miRNA target genes. The different colored lines represent mRNAs with or without miRNA target 
sites. Two-sided Wilcoxon tests were performed. Only expressed genes with a FPKM > 1 were retained. A random set of the gene without 
miRNA target sites was used as a control. D) The fold changes in expression levels of several miRNAs during grain development. The comparison 
of 15-DAA grains to 5-DAA grains was shown. E) The TS distributions of the targets of several miRNAs. The predicted targets with miRNA-mediated 
translation repression were shown. Two-sided Wilcoxon tests were performed. F) A Venn diagram illustrates the cooccurrence of miRNAs and 
uORFs in gene models. A hypergeometric test was performed. G) The TS distributions of the “u−m−,” “u−m+,” “u+m−,” and “u+m+” mRNAs. 
“u−,” genes without an uORF; “u+,” genes with an uORF; “m−,” non-miRNA target genes; “m+,” miRNA target genes. A random set of the gene 
without uORFs or miRNA target sites was used as a control. Two-sided Wilcoxon tests were performed. ***P < 0.001. H) dORFs enhance the TSs 
of mRNAs with uORFs or microRNA target sites. “d−”, genes without a dORF. “d+”, genes with a dORF. The random set of the gene without specific 
features was used as a control.
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or suppressing their translation (Axtell 2013; Rogers and 
Chen 2013; Axtell and Meyers 2018; Song et al. 2019); the 
effects of miRNAs on gene translation in crops require fur
ther study. To determine the effect of miRNAs on gene ex
pression in wheat, we first predicted the miRNA-mediated 
translational regulation relationships on a genome-wide scale 
and obtained a set of 14,441 putative miRNA targets. The TSs 
based on the RNA-seq and Poly-seq data were used here. The 
miRNA targets have lower transcriptional expression levels 
than the mRNAs without miRNA target sites (Fig. 6A). 
Consistent with the previous report that miRNAs negatively 
regulate gene expression through translational repression, 
more drastic differences were observed when we analyzed 
the transcript abundance of miRNA targets at the transla
tional level (Fig. 6, B and C). The mRNAs with miRNA target 
sites had lower levels of translational expression (Fig. 6B) and 
lower TSs (Fig. 6C), highlighting that miRNAs might downre
gulate gene expression by suppressing translation. In add
ition, we obtained a public small RNA sequencing data set 
of 5- and 15-DAA grains (Meng et al. 2013) to investigate 
miRNA expression levels. We analyzed several examples of 
miRNAs whose expression is associated with reduced trans
lation of their downstream targets (Fig. 6, D and E). The 
miRNAs, including miR156, miR172, miR846, miR1142, and 
miR857, have changed expression levels during grain devel
opment (Fig. 6D). A further analysis shows that the patterns 
of abundance change of the miRNAs were opposite to those 
of the TSs of their predicted targets, suggesting that these 
miRNAs can repress the translation of the predicted targets 
(Fig. 6E). In addition, we analyzed the subgenome variations 
in miRNA target sites and found that the dynamic triad 
group (23.3%) has a slightly higher proportion (Chi-squared 
test P = 0.10; see Materials and methods) of miRNA target 
site PAVs than the stable triad group (19.5%).

Given that both miRNAs and uORFs can downregulate 
gene expression at the translational level, we investigated 
the locations of the miRNA target sites and uORFs and found 
a high cooccurrence ratio in mRNA (Fig. 6F), suggesting that 
uORFs and miRNAs tend to coregulate shared mRNAs. To 
further examine the combinatorial effect of miRNAs and 
uORFs on gene expression at the translational level, we di
vided genes into 4 groups: “u−m−,” “u+m−,” “u−m+,” and 
“u+m+,” by the presence or absence of uORFs (u+ or u−, re
spectively) or miRNA target sites (m+ or m−, respectively). In 
comparison with the other mRNA sets, the “u−m−” mRNAs 
had higher TSs, as expected (Fig. 6G). Compared with the TSs 
of the “u−m−” mRNAs, both the “u+m−” mRNAs and the “u 
−m+” mRNAs had a reduced TS. The “u+m+” mRNAs had 
the lowest TSs.

We found that dORFs can also enhance the translation of 
the mRNAs (Supplemental Fig. S17), and thus, we hypothe
sized that dORFs may weaken the translation inhibition by 
uORFs or miRNAs. We investigated the location of the 
dORFs but did not observe a significant cooccurrence between 
the dORFs and the miRNAs or uORFs (Supplemental Fig. S18). 
In comparison with the TS of the “u+d−” mRNAs and the 

“m+d−” mRNAs, the “u+d+” mRNAs and the “m+d+” 
mRNAs had higher TSs (Fig. 6H). These observations reveal 
that uORFs and miRNAs may tend to combinatorially repress 
gene translation, while the presence of dORFs may enhance 
the translation of mRNAs to some extent.

Discussion
Translational regulation can modulate gene expression dur
ing plant growth and environmental adaptation. Many re
searchers have studied gene regulation at the 
transcriptional level in crop grains (Pfeifer et al. 2014; Xiang 
et al. 2019), while a global understanding of the control of 
translation is still lacking. Multiple approaches, such as 
Ribo-seq and Poly-seq, have been developed for translatome 
investigation (Ingolia 2016; Zhao et al. 2019). Here, we per
formed Ribo-seq, Poly-seq, and RNA-seq to examine the tran
scriptome and translatome of developing grains in the 
important food crop wheat.

The 3 highly similar subgenomes of bread wheat mean that 
the short Ribo-seq reads may be incorrectly mapped; how
ever, we combined Ribo-seq and Poly-seq reads to maximize 
the power of our translatome investigation by examining 
both the ORF positions and expression levels. We used 
Poly-seq reads (paired-end 150-bp reads) to perform gene ex
pression quantification and translation analysis and used the 
Ribo-seq reads mainly to annotate new translation events 
and their genome positions. We also observed that most of 
the DEGs in the Ribo-seq data sets could be detected in 
RNA-seq or Poly-seq data sets, and we further experimentally 
validated the Ribo-seq-based expression patterns of several 
uORFs. The significant 3-nucleotide periodicity further veri
fied the quality of the translatome data set. The present 
translatome resource represents a comprehensive translation 
investigation of developing crop grains.

Multiple wheat genome assemblies are available 
(International Wheat Genome Sequencing Consortium 
et al. 2018; Walkowiak et al. 2020), but the current gene an
notations in assemblies are generally automatically produced 
by universal pipelines and result in many unannotated and 
mis-annotated events. The translated ORFs are also yet to 
be investigated in wheat. Using high-quality translatome 
data sets, we unveiled a large number of previously unanno
tated translation events, including uORFs, dORFs, iORFs, and 
lORFs (i.e. ORFs in lncRNAs), and provided a resource for the 
validation of aORFs in CDSs. We found that 21.6% of unan
notated ORFs use non-AUG start codons, which can be fur
ther investigated using translation inhibitors and translation 
factor mutants (Kearse and Wilusz 2017). Similarly, we found 
that uORFs with a non-AUG start codon have lower TE. We 
revealed that many sORFs have stage-specific expression pat
terns and possess the predicted signal and mitochondrial 
transit peptides, suggesting that these sORFs may play im
portant roles during grain development.

However, several limitations are also present when explor
ing Ribo-seq data in polyploid wheat. Accurately mapping 

http://academic.oup.com/plcell/article-lookup/doi/10.1093/plcell/koad075#supplementary-data
http://academic.oup.com/plcell/article-lookup/doi/10.1093/plcell/koad075#supplementary-data
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short Ribo-seq reads to the genome has always been, and 
continues to be, a challenge for the polyploid plant commu
nity. Putative ORFs predicted by Ribo-seq data require fur
ther independent experimental validation. Some uORFs 
and dORFs in the wheat genome remain unidentified be
cause about 39% of the high-confidence genes still lack anno
tated UTRs, and the current tools for translated ORF 
detection, including RiboTaper (Calviello et al. 2016) and 
RiboCode (Xiao et al. 2018), are based on annotated tran
script information. Future genomic studies should therefore 
focus on improving genome annotation.

Our study provides a valuable opportunity to investigate 
translational regulation during grain development. We found 
that the expression of some genes is stage specific and regu
lated at the translational level during wheat grain develop
ment. Many well-known genes, such as TabZIP53, TaGIF1, 
TaGW2, TaGS5, TaSPA, TaABI19, TaSus2, TaSus1, and 
TaNF-YB9, have an altered TS throughout the developmental 
process. We found that the bZIP53 CPuORF is conserved in 
angiosperms and is homologous to the uORFs of S1 class 
bZIPs. The S1 class bZIPs control amino acid and sugar me
tabolism (Rahmani et al. 2009; van der Horst et al. 2020). 
Increasing sucrose levels induces ribosome stalling near the 
stop codon of the CPuORF, thereby inhibiting bZIP11 protein 
production (Wiese et al. 2004; van der Horst et al. 2020). We 
also performed a phylogenetic analysis for 260 wheat bZIPs 
and found that several homologs of TabZIP53-5A have 
uORFs and that uORFs of 3 S1-group bZIPs are conserved 
in the 3 wheat subgenomes (Supplemental Fig. S19). The ab
sence of reads on the TabZIP53-5A mORF suggested that the 
sucrose content was high in developing wheat grains.

Interestingly, our study revealed that, contrary to expecta
tions, some uORFs are positively associated with gene trans
lation in wheat, which has also been shown in human hearts 
(van Heesch et al. 2019). We further used a dual-luciferase 
system to verify this finding. Furthermore, the translation 
of genes may be combinatorially repressed by uORFs and 
miRNAs, although the presence of dORFs may weaken this 
inhibition. Notably, even good prediction tools are not fool
proof, as miRNA-target complementarity, underpinned by 
central matches, is not the sole dictator of the mRNA silen
cing outcome (Li et al. 2014). Overall, these observations re
veal that extensive translational regulation increases the 
flexibility of gene expression during the grain developmental 
process.

An allopolyploid genome necessitates the orchestration of 
complex intergenomic gene expression across multiple as
pects, from transcription to protein production (Coate et al. 
2014; Pfeifer et al. 2014; Yang et al. 2021b). A previous study 
produced a unique polysome profiling data set of tetraploid 
wheat seedlings and revealed that the RNA structure can 
modulate translation asymmetry between subgenomes of 
tetraploid wheat (Yang et al. 2021b). Allohexaploid wheat 
(Triticum aestivum, BBAADD) has undergone 2 rounds of 
polyploidization and has a nonbalanced expression between 
homoeologs at the transcriptional level (Ramirez-Gonzalez 

et al. 2018). Our study provides a comprehensive resource 
for investigating the diverse translational regulations between 
the allohexaploid wheat subgenomes. We found that many 
homoeolog triads have unbalanced TSs across the subge
nomes, and their unbalanced translation regulation is stage 
specific. We also found that the triads with unbalanced tran
scription tend to have unbalanced translational regulation. 
One possible explanation is the presence of variable variant 
sites between the subgenomes. The presence of unbalanced 
TSs between the homoeologs of many well-known genes sug
gests that the unbalanced translational regulation between 
homoeologs is a crucial step in modulating gene expression 
during grain development. The analyses of the variations in 
uORFs, miRNA target sites, sequence length, GC content, 
and NMFE among homoeologs have shed light on the possible 
mechanisms causing unbalanced translational regulation. 
These observations provide insights into the unbalanced 
gene expression between subgenomes.

Our research used Ribo-seq, Poly-seq, and RNA-seq to cre
ate a valuable resource for the study of translational regula
tion and actively translated ORFs in developing wheat grains. 
These findings also explain the expression divergence be
tween subgenomes at the post-transcriptional level. 
Overall, our study highlights the importance of translational 
regulation in modulating gene expression during grain devel
opment in crops.

Materials and methods
Plant materials and growth conditions
Triticum aestivum cv. Chinese Spring was utilized in this in
vestigation. The sterilized seeds were soaked in water for 3 
d in the dark at 4°C, after which the seedlings were grown 
in a growth chamber at 22°C/18°C (day/night), 16 h light/ 
8 h dark, with a light intensity of 3,000 lux (Master 
GreenPower CG T 400W E40; Philips), and 60% relative hu
midity. The grain samples were sampled at 5, 10, and 15 d 
after anthesis (DAA) and were harvested from different 
plants grown in the growth chamber. For each sample, devel
oping seeds from 5 different plants were mixed to represent 
one biological replicates, and at least 2 or 3 biological repli
cates were used. All samples were immediately frozen in li
quid nitrogen and stored at −80°C until required.

Ribosome profiling assays
After the grains at the 3 phases of development were pulver
ized into fine powder in liquid nitrogen, 0.3 g of the ground 
grains was lysed in 2 mL extraction buffer containing 50 mM 

Tris–HCl (pH 7.5), 200 mM KCl, 15 mM MgCl2, 1% (v/v) Triton 
X-100, 20 mM β-mercaptoethanol, 1 U/μL DNase I, and 
50 mg mL−1 cycloheximide. After 10 min in an ice bath, 
the cell debris was removed by centrifugation at 20,000 × g 
for 10 min at 4°C. The lysates with an A260 value of 2 were 
used to digest at the condition of room temperature for 
2 h with adding 15 μL RNase I (Invitrogen, cat. no. 

http://academic.oup.com/plcell/article-lookup/doi/10.1093/plcell/koad075#supplementary-data
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AM2294) and then stopped by adding 20 μL RNase inhibitor 
(Invitrogen, cat. no. AM2694). The sample was immediately 
transferred into a MicroSpin S-400 column to enrich the 
RNA-ribosome complex (monosomes). We then utilized an 
improved hybridization capture technology to remove virtu
ally all the cytoplasmic (nuclear-encoded) and chloroplast 
ribosomal RNA (rRNA) using Ribo-Zero Magnetic Kit 
(MRZSR116; Madison, WI, USA).

Preparation of total and polysomal RNA
The ground grains (0.2 g) were lysed in 0.4 mL extraction buf
fer containing 200 mM Tris–HCl (pH 9.0), 200 mM KCl, 35 mM 

MgCl2, 2 mM EGTA, 1% (v/v) Triton X-100, 1% (v/v) Tween 
20, 2% (v/v) polyoxyethylene, 2.5 mg heparin, 5 mM DTT, 
100 μg mL−1 chloramphenicol, and 100 μg mL−1 cyclohexi
mide. After 10 min in an ice bath, the cell debris was removed 
by centrifugation at 13,200 × g for 15 min at 4°C. The super
natants were centrifuged for 2 h at 4°C at 41,000 rpm 
(SW55Ti rotor in a Beckman L-100XP ultracentrifuge) in a 
density gradient of 15% to 60% sucrose. Gradient Profiler 
(BioComp Instruments) was used to separate the various su
crose components after a speed reduction without braking 
and to measure their optical densities at 254 nm. Fourteen 
350-mL fractions were collected automatically and used for 
the subsequent extraction of polysome-bound RNA. For 
polysome-RNA isolation, the fractions marked as “polysome” 
in Fig. 1, D were pooled and then extracted using TRIzol 
Reagent (Thermo Fisher Scientific, Waltham, MA, USA). 
Total RNA was extracted from grains using TRIzol Reagent. 
We then used Hieff NGS MaxUp II Dual-Mode mRNA 
Library Prep Kit for Illumina (cat no.12300; Yeasen, 
Shanghai, China) which used beads coupling of Oligo (dT) 
to isolate intact poly (A)+ RNA from previously isolated total 
RNA.

Library construction and sequencing
The total and polysomal mRNA samples were used to pre
pare RNA-seq libraries using the Illumina standard 
mRNA-seq library preparation kit, following the manufac
turer’s protocol. The RNA-seq and Poly-seq libraries were se
quenced to generate 150 bp paired-end reads on the Illumina 
NovaSeq 6000 platform. Ribosome-protected mRNA was 
used to prepare a library with the NEBNext Multiplex Small 
RNA Library Prep Set for Illumina (New England Biolabs, 
Ipswich, MA, USA) in accordance with the manufacturer’s in
structions. After PCR amplification, the samples were used 
for quality control and deep sequencing with an Illumina 
NovaSeq 6000 platform.

Reads mapping and processing
All RNA-seq and Poly-seq reads were processed and filtered 
using fastp (Chen et al. 2018), with the default parameters. 
The high-quality reads were mapped to the bread wheat 
Chinese Spring reference genome IWGSC RefSeq v2.1 
(International Wheat Genome Sequencing Consortium 
et al. 2018; Zhu et al. 2021) using STAR (Dobin et al. 2013). 

Only uniquely mapped reads were used for the subsequent 
analysis. In addition, all high-quality Ribo-seq reads with a 
length of 18 to 40 nucleotides were retained. The rRNA, 
tRNA, and snoRNA sequences in wheat were downloaded 
from Ensembl Plants (Cunningham et al. 2022), and the re
maining Ribo-seq reads were aligned against these sequences 
using bowtie2 (Langmead and Salzberg 2012) to produce the 
unaligned reads. The unaligned reads were mapped to the 
wheat genome using STAR, allowing up to 2 mismatches 
and a maximum of 50 multimapping positions. One align
ment was randomly selected for the multimapping reads 
over all possible best alignments, as described in a previous 
study (Hsu et al. 2016). These options can improve the 
read count for individual transcripts (Hsu et al. 2016). 
FeatureCounts (Liao et al. 2014) with the default parameters 
was used to count the reads mapped to each feature. 
Expression quantification was followed by read normaliza
tion and size factor estimation using DESeq2 (Love et al. 
2014). The FPKM values were used to measure the expression 
levels of the genes.

The RF length distribution, 3-nucleotide periodicity, and 
metagene analysis were performed in R. For the 3-nucleotide 
periodicity analysis, each read was assigned a relative distance 
to the start codon and end codon, and the cumulative read 
depth at each relative distance was obtained. The relative 
phasing of each site was calculated according to the previ
ously described method (Lei et al. 2015).

To avoid bias from low-expression gene models, only those 
gene models with a mean FPKM > 1 were considered to be 
expressed genes. The expression levels from the biological re
plicates were combined. The Pearson correlation coefficients 
between samples were calculated using the cor.test function 
in R. A PCA analysis was performed using the prcomp func
tion in R and visualized using ggplot2. The normalized ex
pression values (log2 (FPKM + 1)) were used for the 
correlation analysis, and the Z-scores were used for the 
PCA analysis.

Identification of wheat lncRNAs
Wheat grains from multiple developmental stages were 
pooled to construct strand-specific RNA-seq libraries using 
dUTP-based methods. The libraries were sequenced to gen
erate 150-bp paired-end reads on the Illumina NovaSeq plat
form. A strict identification pipeline was used to discover 
lncRNAs in wheat, as previously described (Zhao et al. 
2018). For each biological replicate, the transcripts were first 
assembled using StringTie (Pertea et al. 2015). StringTie 
merge was utilized to merge the assembled transcripts 
from all replicates into a final, unified set of transcripts. 
Only the transcripts with class codes “u,” “x,” and “i” from 
Cuffcompare (Trapnell et al. 2012) were retained. The tran
scripts with an FPKM > 1 and a length of more than 
200 bp were used for further analysis. Taking the transcripts 
as the query sequence and the Swiss-Prot protein sequences 
as the database, the transcripts with protein-coding potential 
were first removed using the BLASTX (Altschul et al. 1990) 
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program with an E value cutoff of 1e−3. The coding-potential 
calculator (Kong et al. 2007) was further utilized to remove 
the transcripts with protein-coding potential. The retained 
transcripts were considered potential lncRNAs.

Differential expression analysis
To perform a DEG analysis, the nonnormalized read counts 
were used as inputs for the R package DESeq2 (Love et al. 
2014). The genes with a false discovery rate (FDR) of <0.01 
and a fold change >1 were considered to be DEGs. In add
ition, the nonnormalized read counts were used as inputs 
for the software RiboDiff (Zhong et al. 2017) to perform a dif
ferential TS analysis. The genes with an FDR <0.05 and a fold 
change > 1 were considered to have differential TSs. The ex
pression levels of all genes across samples were scaled to the 
Z-scores. The R function kmeans was then used to generate 
coexpression clusters. The R package pheatmap was used for 
the visualization.

Functional enrichment analysis
The function descriptions and homologs of genes were ac
quired from Triticeae-GeneTribe (TGT) (Chen et al. 2020b). 
The GO enrichment analysis was performed using TGT, 
and terms with an FDR <0.05 were considered significant. 
All expressed genes were used as a background gene set. In 
addition, the grain development gene enrichment analysis 
was based on the hypergeometric test. The genes associated 
with grain development were acquired from the 
funRiceGenes database (Yao et al. 2018). The functional 
genes were also acquired from the WheatOmics database 
(Ma et al. 2021).

Sequence feature analysis
For the sequence feature analysis, the transcript with the 
longest coding sequence was used to represent a gene. The 
genes were grouped according to their TS, resulting in 3 
groups: “high TS” (TS > 2), “middle TS” (0.5 < TS < 2), and 
“low TS” (TS < 0.5). The sequence length and GC content cal
culations were performed using in-house scripts. RNAfold 
was used to calculate the NMFE, representing the sequence 
stability of the secondary structure. We obtained 2 triad 
groups, namely, the stable triad group with balanced TS 
and the dynamic triad group with unbalanced TS. CVs of se
quence features among homoeologs were calculated accord
ing to the formula CV = SDMean and represent the extent of 
sequence variation.

Detection and analysis of actively translated ORFs
The wheat reference genome IWGSC RefSeq v2.1 and the 
identified lncRNAs were combined to facilitate the identifica
tion of the genome-wide unannotated translated ORFs. For 
the ORF discovery analysis, the offset parameters (i.e. the in
ferred P-site position for each footprint length) were first ob
tained through a metagene analysis. For the 25-, 26-, 27-, and 
28-nucleotide footprints, the inferred offset values were 9, 10, 
11, and 12, respectively. The merged bam files were utilized 

for ORF discovery using RiboCode (Xiao et al. 2018) and 
the defined offset parameters. The alternative start codons, 
such as CTG, GTG, and TTG, were used. The minimum size 
was set at 8 amino acids. The uORFs or dORFs that over
lapped with annotated CDSs were discarded, and the remain
ing ORFs were further classified into 5 types: uORFs, dORFs, 
aORFs, iORFs, and lORFs. The ORFs with fewer than 300 nu
cleotides were considered to be sORFs, potentially encoding 
small peptides. The TargetP software (Almagro Armenteros 
et al. 2019) was used to determine the subcellular location 
of proteins with the plant model.

Translation efficiency analysis
Because allohexaploid wheat has 3 similar subgenomes, we 
combined Poly-seq and Ribo-seq to investigate the transla
tional landscape. To reduce the errors from short reads map
ping, we mainly used the Poly-seq and RNA-seq data to 
calculate TSs of mRNAs using the formula FPKMPoly-seq/ 
FPKMRNA-seq. To improve the accuracy of the analyses, genes 
with an FPKM > 1 were retained for further analysis. In add
ition, we used the Ribo-seq data to investigate TEs of unan
notated sORFs because Ribo-seq provides unique 
opportunities for investigating the translation of sORFs. 
The formula is FPKMRibo-seq/FPKMRNA-seq. The Spearman cor
relation coefficient between the TEs of the uORFs and CDSs 
was calculated using the R function cor.

Evolutionary analysis of uORFs
Genome assemblies and annotations of Triticum aestivum, 
Hordeum vulgare, Brachypodium distachyon, Oryza sativa, 
Zea mays, Solanum lycopersicum, Vitis vinifera, Glycine max, 
and Arabidopsis thaliana were obtained from Ensembl 
Plants (http://plants.ensembl.org/) and TGT. TransDecoder 
was used to predict all potential ORFs with a minimum 
length of 8 amino acids. We then searched for homologous 
sequences of uORFs using BLASTP with all the predicted 
ORFs in the other 8 genomes as the database. Results were 
filtered to retain only the best hit (an identity of >50% 
and an e-value of <0.01). Only the complete ORFs from start 
to stop codon were retained.

Phylogenetic analysis
To perform the phylogenetic analysis of wheat bZIPs, we 
first identified potential bZIPs using PlantTFdb (Jin et al. 
2017) and iTAK (Zheng et al. 2016). The intersections be
tween the genes identified by PlantTFdb and those by 
iTAK were considered the high-confidence bZIP genes. 
The transcript with the longest coding sequence is 
used to represent a gene. The protein sequences were 
acquired from the IWGSC RefSeq v2.1 annotation and 
were then aligned using MUSCLE (Edgar 2004). trimAL 
(Capella-Gutierrez et al. 2009) was further used to remove 
poor aligned regions. The phylogenetic tree was con
structed in MEGA-X (Kumar et al. 2018) using the 
neighbor-joining method with 10,000 bootstrap replicates. 
The evolutionary distances were computed using the 

http://plants.ensembl.org/
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Poisson correction method. The tree file can be found at 
https://chenym1.github.io/data_resources/.

Translation state bias analysis across homoeolog 
triads
Using a previously reported method as a reference 
(Ramirez-Gonzalez et al. 2018), the relative TS and homoeo
log TS bias categories were defined. The homoeolog triads 
were acquired from the TGT database. To avoid bias from 
low-expression gene models, only the genes with an FPKM 
sum > 2 and a transcription FPKM minimum above 0.5 
were retained. The relative TS (RTS) was calculated as follows:

RTSA =
TSA

TSA + TSB + TSD
, RTSB =

TSB

TSA + TSB + TSD
,

RTSD =
TSD

TSA + TSB + TSD
,

(1) 

where A, B, and D represent the genes corresponding to the 
A, B, and D homoeologs in the triad. The relative TS of each 
homoeolog per triad was visualized using the R package 
ggtern (Hamilton and Ferry 2018).

Identification and analysis of miRNA targets
The expressed miRNAs in wheat grains were acquired from 
the previous studies (Meng et al. 2013; Sun et al. 2014; Li 
et al. 2015). The expression levels of miRNAs in the 5-DAA 
and 15-DAA grains were acquired from a public sRNA se
quencing data set (Meng et al. 2013). In addition, 
psRNATarget (Dai et al. 2018), a widely used software for pre
dicting miRNA targets in plants, was used to identify poten
tial miRNA targets using the miRNA sequences and the 
IWGSC RefSeq v2.1 annotation as the input. Scoring schema 
V2 (2017) in psRNATarget was used, and the central mis
match range of 10 to 11 nucleotides, leading to translational 
inhibition, was used to identify potential miRNA-mediated 
translational regulations. Potential miRNA targets with only 
central mismatches were used for subsequent analyses. We 
considered a mRNA to be translationally repressed by 
miRNA if it has at least one miRNA target site causing trans
lation repression. Chi-squared test was used to determine the 
significance of miRNA-induced homoeolog translation bias.

Dual-luciferase reporter system and reverse 
transcription quantitative PCR
The wild-type and mutant (deleted) forms of each gene’s uORF 
sequence were cloned separately into a pGreenII0800-LUC vec
tor and expressed in Nicotiana benthamiana leaf cells by 
Agrobacterium tumefaciens–mediated gene transformation 
(Hellens et al. 2005). About 2 d after infiltration, the activities 
of firefly luciferase (LUC) and the internal control Renilla lucifer
ase (REN) were detected separately using dual-luciferase assay 
reagents (Promega, Madison, Wisconsin, USA) following the 
manufacturer’s instructions. The ratios of the LUC/REN activ
ities and LUC/REN mRNA levels were calculated as described 

previously (Xu Greene et al. 2017; Xu Yuan et al. 2017; Zhang 
et al. 2018b). All primers used in this study are listed in 
Supplemental Data Set 10. Total RNA was extracted from N. 
benthamiana leaves using TRIzol Reagent (Thermo Fisher 
Scientific), and cDNAs were generated using the HiScript Q 
RT SuperMix (Vazyme Biotech, Nanjing, China). RT-qPCR was 
conducted using AceQ qPCR SYBR Green Master Mix 
(Vazyme Biotech) on a CFX96 real-time PCR machine 
(Bio-Rad Laboratories, Hercules, CA, USA). RT-qPCR was per
formed as technical triplicates per sample. Three biological re
plicates were performed and similar results were obtained; 
the figure shows the results of one replicate. All primers used 
in this study are listed in Supplemental Data Set 10. 
Significance was calculated by t-test. The detailed statistical in
formation is shown in Supplemental Data Set 11.

Accession numbers
Accession numbers of the genes which are discussed in the 
main text are provided in Supplemental Data Set 12.
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