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Abstract
Plant organellar RNA metabolism is run by a multitude of nucleus-encoded RNA-binding proteins (RBPs) that control RNA 
stability, processing, and degradation. In chloroplasts and mitochondria, these post-transcriptional processes are vital for 
the production of a small number of essential components of the photosynthetic and respiratory machinery—and conse
quently for organellar biogenesis and plant survival. Many organellar RBPs have been functionally assigned to individual steps 
in RNA maturation, often specific to selected transcripts. While the catalog of factors identified is ever-growing, our knowledge 
of how they achieve their functions mechanistically is far from complete. This review summarizes the current knowledge of 
plant organellar RNA metabolism taking an RBP-centric approach and focusing on mechanistic aspects of RBP functions 
and the kinetics of the processes they are involved in.
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Introduction
Essential complexity in plant organellar RNA 
maturation
Chloroplasts and mitochondria have their own, relatively 
small, genomes. However, both genomes carry particularly 
important genes associated with photosynthesis and respir
ation. Indeed, these genes are essential for the survival of 
the entire organism, be it plant or algae. As descendants of 
bacterial ancestors, organellar gene organization is character
ized by prokaryotic features. Genes are often arranged in op
erons, and many expression signals are of prokaryotic origin, 
such as the Shine–Dalgarno sequence for translation initi
ation. However, several billion years residing in eukaryotic 
cells has transformed the expression of organellar genes in 
chloroplasts and mitochondria. New and surprising events 
occur at all levels of gene expression. This is especially true 
for the steps between RNA synthesis and translation. 
Unlike cyanobacteria, plants and algae engage in complex 
maturation of organellar RNA. RNA precursors are processed 

into many segments, which require a set of RNases on one 
hand (Stoppel and Meurer 2011) and an array of 
RNA-binding proteins (RBPs) as protective factors on the 
other. The interplay of the RNases and RBPs leads to ex
tremely complex transcript patterns in plant organelles. 
Also, RBPs render plant organellar transcripts stable over 
long periods of time. The half-lives of organellar RNAs are 
in the range of hours (Germain et al. 2013), whereas typical 
mRNAs in prokaryotes last only minutes (Selinger et al. 
2003; Kristoffersen et al. 2012). Other peculiarities include in
trons, which are much more abundant in plant organelles 
compared to bacteria per kilobase of genetic information 
(Miura et al. 2022), and RNA editing, which is unknown in 
bacteria but can take epic dimensions in organelles, with 
nearly 500 edited sites in the organelles of Arabidopsis 
(Arabidopsis thaliana; Small et al. 2020) and 3,400 sites in 
the chloroplasts of the lycophyte Selaginella uncinata 
(Oldenkott et al. 2014). However, editing evolved in land 
plants, and to date, no organellar editing has been observed 
in green algae (Ichinose and Sugita 2017). In recent decades, a 
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variety of RBPs have been characterized that are involved in 
individual RNA maturation steps. More RBPs are present per 
gene in plant organelles than in any other known genetic 
compartment. To what extent these RBPs have a role in or
ganellar gene regulatory processes is at present unclear.

A multitude of nucleus-encoded proteins is required 
for a variety of organellar RNA maturation events
RNA maturation requires both catalytically active factors, such 
as RNases, and factors that confer specificity to RNA maturation 
events, such as RBPs. RBPs are responsible for virtually every as
pect of the life cycle of an RNA, including maturation, stabiliza
tion, localization, translation, and degradation (see also the 
review by Mateos and Staiger 2023, in this issue). Based on gen
ome annotations, localization predictions using the SUBA4 
database for Arabidopsis proteins, and published literature, ap
proximately 550 nucleus-encoded RBPs are conservatively esti
mated to be present in plant organelles (Table 1). Among them, 
the majority of RBPs belong to the pentatricopeptide repeat 
(PPR) protein family, with 106 and 328 RBPs predicted to 
be found in chloroplasts and mitochondria, respectively 
(Lurin et al. 2004; Hooper et al. 2014). In Chlamydomonas 
(Chlamydomonas reinhardtii) chloroplasts, at least 139 nuclear- 
encoded RBPs from the PPR (Tourasse et al. 2013), octotrico
peptide repeat (OPR) (Cerutti, Bohne, Rochaix, Vallon, unpub
lished data), and TRP-HAT (Bohne et al. 2016) family are found. 
At first glance, 550 RBPs is not an overly impressive number in 
the age of genomics. After all, hundreds of RBPs are found in 
yeast, mice, and other model organisms (Keene 2001; Lee and 
Schedl 2006; Kerner et al. 2011). In humans, more than 1,500 
RBPs have been identified using mRNA capture techniques 

(Baltz et al. 2012; Castello et al. 2012). Nevertheless, the number 
of RBPs found in chloroplasts is astounding in relation to the 
number of genes they serve. For example, Arabidopsis chloro
plasts have 120 genes, with more than one RBP present per 
gene, whereas human nuclei have 22,000 genes with an RBP/ 
gene ratio of 0.07 (Fig. 1 and Supplemental Table S1). It can 
be argued that a minimal set of RBPs is required to drive 
gene expression (e.g. to make a ribosome) even if only a single 
protein is produced. Thus, the RBP/gene ratio is high for mito
chondria in mammals and yeast considering their limited cod
ing potential (Fig. 1). A difference between the numbers shown 

Table 1. RBP families in Arabidopsis chloroplasts and mitochondria

Protein family Number of proteins targeted 
to chloroplastsa

Number of proteins targeted to 
mitochondriaa

References

Pentatricopeptide repeat (PPR) proteins 106 328 Supplemental Table S4 in Lurin 
et al. (2004)

Chloroplast RNA splicing and ribosome 
maturation (CRM)—proteins

10 5 Barkan et al. (2007) and Zhang 
et al. (2021)

Whirly (WHY)-proteins 2 1 Prikryl et al. (2008)
Plant organellar RNA recognition 

(PORR)-proteins
3 11 Kroeger et al. (2009) and 

Francs-Small et al. (2012)
DUF794/APO1 2 2 Watkins et al. (2011)
cpRNPs—chloroplast ribonucleoproteins (10) 10 0 Ruwe et al. (2011)
RNA recognition motif proteins (non-cpRNPs) 13 10 Ruwe et al. (2011)
Dead box helicases 11 8 Bobik et al. (2017) and Nawaz and 

Kang (2017)
RNAse III-like: RNC1 1 0 Watkins et al. (2007)
Peptidyl-tRNA hydrolase: CRS2 1 0 Jenkins and Barkan (2001)
Ribosome-release factors: 3 0 Stoppel et al. (2011)
Tetratricopeptide repeat protein binding RNA 

(R-TPR)/HCF107
1 0 Sane et al. (2005) and Hammani 

et al. (2012)
Mitochondrial transcription termination factor 

(mTERF)—proteins
12 10 Kleine (2012) and Robles and 

Quesada (2021)
K-homology (KH) domain proteins 3 1 SUBA
All RBP 185 276

aNumber of proteins is based on SUBA-predictions (Hooper et al. 2014), which incorporate mass-spec. data as well as microscopic localizations. In addition, numbers from re
ferences indicated in the last column are considered as well.

Figure 1. Abundance of RBPs in different organisms. RBP numbers are 
set in relation to gene numbers for humans and several model species 
as well as chloroplasts of Arabidopsis as a representative of embryo
phytes. For gene and RBP numbers as well as references, see 
Supplemental Table S1.
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here for plant and human/yeast organelles is that the human 
and yeast data are based on protein–RNA interactome studies, 
which led to the discovery of a multitude of noncanonical RBPs, 
while the plant organellar RBPs are based on canonical RBP an
notations with standard RNA-binding domains. It can be ex
pected that future similar discoveries of nonstandard RBPs in 
plant organelles will further increase the number of chloroplast 
and mitochondrial RBPs in plants and alga.

Ribonucleases: agonists of RNA decay and processing
The joint action of RBPs and Rnases determines organellar 
RNA turnover and transcript ends. The RNases that cleave 
organellar transcripts include endonucleases RNase E, 
CSP41a, CSP41b, and RNase J in chloroplasts (Stoppel and 
Meurer 2011; Germain et al. 2013) and PRORP (RNaseP), 
MNU1 and MNU2 in mitochondria (Gutmann et al. 2012; 
Stoll and Binder 2016; Bouchoucha et al. 2019). RNase E, 
and possibly RNase J, were shown to prefer A/U-rich se
quences in vitro (Schein et al. 2008; Halpert et al. 2019), 
matching the preference for AU-rich organellar genomes, 
particularly AU-rich intergenic spacers, which provide ample 
opportunities for RNA cleavage. However, whether RNA 
cleavage occurs at hotspots or shows specificity in vivo re
mains unknown. Interaction studies using endonucleases 
with RNA-plus-degradome sequencing are needed to eluci
date the initiation of RNA degradation.

Once a free transcript end has been generated, polyadeny
lation by organelle poly (A) polymerases triggers exonucleo
lytic degradation (Zimmer et al. 2009; Hirayama 2021), which 
is performed by poly (A)-specific 3′–5′ exonucleases 
(Germain et al. 2013; Hirayama 2021). The mechanistic de
tails and regulatory impact of tailing processes on gene ex
pression in plant organelles remain largely unexplored. 
What is better understood is the role of exonucleases. 
PNPase and RNase II (also called RNR1) are responsible for 
generating 3′ ends of transcripts (Stoppel and Meurer 
2011; Germain et al. 2013) and are negative regulators of 
RNA half-lives (Walter et al. 2002; Holec et al. 2006; Hotto 
et al. 2011; MacIntosh and Castandet 2020). PNPase and 
RNase II sequentially degrade RNA until they are blocked 
by a structure or protein (Prikryl et al. 2011; Germain et al. 
2012), and the same mechanism occurs in mitochondria 
(Perrin et al. 2004; Holec et al. 2006). In chlorophytes, 
PNPase also contributes to RNA stability (Yehudai-Resheff 
et al. 2007) and also to the generation of some transcripts’ 
3′ ends, while other ends are a direct consequence of tran
scription termination (Rott et al. 1996; Wobbe and Nixon 
2013). Chlamydomonas does not have RNase E (Hotto 
et al. 2020), which might be one indication that different so
lutions were found in evolution to provide the necessary nu
cleolytic activities for RNA processing and degradation. With 
respect to 5′ → 3′ exonuclease activity, only RNase J has been 
identified in chloroplasts to date. Studies with RNase J mu
tants have demonstrated that RNase J plays a major role in 
the removal of noncoding RNA (Sharwood et al. 2011) and 
in trimming the 5′-end of RNA toward protein blocks in vitro 

(Pfalz et al. 2009; Luro et al. 2013). In Chlamydomonas, RNase 
J has only endonucleolytic activity in vitro (Liponska et al. 
2018) and it remains to be determined how RNase J fulfills 
its role in vivo if truly acting only as an endonuclease. No 
known 5′ → 3′ exonucleases have been found in plant mito
chondria (Sharwood et al. 2011) and the presumed 
ancestral mitochondrial 5′ → 3′ exonuclease, known as 
Pet127 protein in yeast, has been lost from the plant lineage 
(Łabędzka-Dmoch et al. 2022). Instead, mitochondrial 5′ 
ends are formed with the help of a special set of PPR proteins 
known as “restorer-of-fertility-like” (Rf) proteins (Fujii et al. 
2011; Dahan and Mireau 2013; and see the section below 
on cytoplasmic male sterility [CMS]) that guide unknown en
donucleases to sites in UTR regions (Fig. 2, no. 4a; Binder et al. 
2016; Fujii et al. 2016; Stoll and Binder 2016; Stoll et al. 2017; 
Colas des Francs-Small et al. 2018). Importantly, exonucleases 
require stop signals on RNA in the form of RBPs, as discussed 
in the next section.

Rnase companions: helical repeat proteins
PPR proteins
The PPR protein family has been reviewed extensively else
where (Barkan and Small 2014; Rovira and Smith 2019). 
Here, we focus on selected aspects of PPR proteins and pro
vide a brief overview of the PPR family. PPR proteins consist 
of tandem arrays of the eponymous repeat unit, of which dif
ferent numbers are found per protein, usually organized in 
tandem. Structural analyses have shown that the repeat array 
forms a superhelical surface that binds single-stranded RNA 
with high specificity and affinity (Barkan and Small 2014). 
This interaction with RNA is sufficiently tight and long- 
lasting to protect bound RNA against the action of nucleases, 
which leads to the accumulation of an RNA footprint (Ruwe 
and Schmitz-Linneweber 2012; Zhelyazkova et al. 2012). 
Determining RNA footprint abundance can provide clues 
about the activity of particular PPR proteins. Each PPR unit 
binds to a single RNA nucleotide (Barkan et al. 2012) via spe
cific hydrogen bonding interactions with 2 key amino acids 
(Shen et al. 2016). Therefore, decoding the amino acid se
quence to predict which RNA sequence a PPR protein binds 
is possible, at least in some cases (Barkan et al. 2012; 
Kobayashi et al. 2019). PPR units show some heterogeneity 
and can be classified into several types based on their repeat 
composition (Cheng et al. 2016). Generally, PPR proteins are 
divided into 2 functionally distinct classes: P- and PLS-class 
PPR proteins (Lurin et al. 2004; Cheng et al. 2016). P-class 
PPR proteins contain monotypic repeats and are generally as
sociated with tight, passive binding to noncoding RNA, play
ing a role in RNA stabilization and intron splicing. Binding 
with high affinity to UTR sequences is necessary to avoid dis
placement by exonucleases. In the few examples where KD 

values have been measured, recombinant P-class PPRs bind 
to their cognate RNA in the picomolar–nanomolar range. 
For example, the equilibrium KD values of PPR10 and 
HCF152 are 10 and 40 pM, respectively (McDermott et al. 
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2018), leading to stable protein–RNA complexes with life
times of 2 h or more. This binding is sufficient to withstand 
the action of exonucleases and prevent the degradation of 
bound RNA (Fig. 2; Pfalz et al. 2009; Prikryl et al. 2011). 
Because PPR proteins bind to most intercistronic spacers, 
polycistronic RNAs are processed to various lengths depend
ing on where the initial endonucleolytic cleavage occurs, al
lowing exonucleases to degrade RNA until they are blocked.

PLS-class PPR proteins, which are typically involved in RNA 
editing (Small et al. 2020; see below), contain a variety of 

repeat units and C-terminal extensions that are absent in 
P-class PPR proteins. Several PLS-class PPR proteins have ac
quired new roles in RNA stabilization, such as CRR2 
(Hashimoto et al. 2003; Ruwe et al. 2019), or intron-splicing, 
such as OTP70 (Chateigner-Boutin et al. 2011), which require 
long-lasting binding to noncoding RNA. Thus, these proteins 
fulfill the typical roles of P-class proteins, suggesting that little 
intrinsic functional difference in RNA binding exists between 
2 classes. Indeed, CRR2 generates some of the most abundant 
RNA footprints in Arabidopsis chloroplasts (Ruwe et al. 

Figure 2. Helical repeat proteins extend half-lives of organellar mRNAs. 1, Organellar RNAs are under attack by a variety of RNases (e.g. RNAse J, 
Rnase E, RNase II, and PNPase) during and after transcription. 2, If not protected, RNAs decay rapidly. 3, Helical repeat proteins protect RNAs against 
exo- and endonucleases. 4a, In mitochondria, PPR proteins bind to 5′ UTR regions and guide endonucleolytic cleavage, for instance via RNase P. 4b, 
Binding of helical repeat proteins to RNAs can also impact the local RNA structure since they keep their binding site in a single-stranded conform
ation. This can, for example, aid in intron folding and thus splicing. 5, The protective action of helical repeat proteins increases target RNA half-lives 
and thus opens an extended window of opportunity for translation and other RNA processing events, for example, splicing. 5a, Stochastic endo
nucleolytic cuts initiate exonucleolytic degradation up to helical repeat proteins, which leads to the complex transcript patterns known from plant 
organelles. Adjacent RNAs overlap at helical repeat protein BS. 5b and 6, The stabilization of RNAs allows slow processes like group II intron folding 
to happen. Splicing factors like CRM or MatK have time to aid in folding as RNA chaperones to eventually complete the catalytically active intron 
structure. 7, Helical repeat proteins remodel RNA structures in 5′-UTRs to allow ribosome entry at start codons. 8, flowchart of RNA editing and RNA 
splicing in plant organelles. Four RNA species can be distinguished for any RNA that is both spliced and edited. The gray arrows indicate that all RNA 
isoforms are subject to RNA degradation. This flowchart formed the basis for a mathematical model (using Catalyst.jl, Loman et al. 2022) to explore 
the effects of different RNA turnover rates on the splicing and editing status. 9 and 10, Ratios of spliced to unspliced and edited to unedited RNAs are 
shown at different degradation rates as electronic RNA gel blot results and modeled Sanger sequencing results. Each “+” indicates an order of mag
nitude increase in RNA degradation rate.
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2019). Splicing and RNA stability factors linger long enough 
for the surrounding sequences to be degraded by exonu
cleases with only RNA footprints remaining, indicating that 
chloroplasts can dispense with the fraction of PPR proteins 
that are presumably absorbed by superfluous short RNA 
footprints. In the case of PPR10, immunoprecipitation assays 
revealed that this fraction was larger than the amount of 
PPR10 bound to mature atpH or atpI mRNA (Ruwe et al. 
2016). Further quantification of different RNA isoforms 
bound by PPR proteins is needed to understand the impact 
of productive versus nonproductive binding of PPR proteins. 
Combined with the quantification of PPR proteins, these 
findings will help determine whether a PPR protein is limiting 
and potentially regulates the expression of the target RNA.

Other helical repeat proteins involved in transcript 
stabilization
The domain organization of PPR proteins, which includes de
generate repeats of helical dimers, is frequently found in na
ture and such proteins are classified as “helical repeat 
proteins.” While the PPR protein family is dominant in land 
plants, helical repeat proteins involved in RNA stabilization 
and maturation from other subfamilies are found in other 
plant organelles. PPR proteins are believed to be evolutionar
ily derived from tetratricopeptide repeat (TPR) proteins, 
which are known for their propensity to form protein–pro
tein interactions. However, some TPR proteins have 
evolved to bind RNA, including members of the 
half-a-tetratricopeptide (HAT) subfamily (Bohne et al. 
2016). Moreover, members of the mitochondrial transcrip
tion termination factor (mTERF) family (Table 1; Kleine 
2012; Macedo-Osorio et al. 2021; Robles and Quesada 
2021) can also stabilize RNA (Meteignier et al. 2020). 
Notably, chlorophyte algae have only a few PPR proteins 
and instead use related OPR proteins with a slightly longer 
repeat unit as the main organellar RNA maturation factor. 
For example, Chlamydomonas has only 14 PPR proteins but 
over 120 OPR proteins (reviewed in Macedo-Osorio et al. 
2021), whereas Arabidopsis has only 1 OPR (Rahire et al. 
2012; Kleinknecht et al. 2014; Bohne et al. 2016; 
Macedo-Osorio et al. 2021). Outside the green lineage, hepta
tricopeptide repeat (HPR) proteins, which are related to OPR 
proteins, are found frequently in Apicomplexans, a group of 
parasitic protists (Hillebrand et al. 2018) and another 
OPR-like family has been described in a photosynthetic cer
cozoan (Oberleitner et al. 2020). Helical repeat protein families 
may have expanded in any particular lineage by chance. Thus, 
the distinction between HAT, PPR, OPR, and HPR proteins 
may not be of much functional relevance, particularly since 
RNA recognition by the different protein families does not ap
pear to differ conceptually. As long as the expansion of helical 
repeat protein genes is possible, different evolutionary lineages 
will exploit sequence-specific RNA adaptors to manage their 
organellar transcripts. This hypothesis could be tested by re
placing OPR or HPR proteins with designer PPR proteins in 

a green alga model species such as Chlamydomonas or in an 
Apicomplexan model species such as Toxoplasma gondii.

A larger window of opportunity for RNA maturation
The immediate outcome of the action of helical repeat pro
teins, the most abundant P-class PPR proteins, is the baffling 
complexity of transcript isoforms, which exceeds bacterial 
and nuclear transcript heterogeneity. The production of 
shorter, often monocistronic, forms from longer precursor 
RNAs has long been assumed to be beneficial for protein 
production. Chloroplast operons contain genes with very dif
ferent functions, and separating individual cistrons was 
speculated to contribute to adjusting individual transcript 
amounts and improving translation. The results of experi
ments with in vitro translation systems supported this idea, 
where the translational output of some mRNAs was strongly 
influenced by the processing state of the UTRs (Yukawa et al. 
2006; Adachi et al. 2012; Kuroda and Sugiura 2014). However, 
these results did not align with polysome analysis results and 
more recent ribosome profiling experiments in which all 
mRNA isoforms, including unspliced mRNA, were translated 
(Barkan 1988; Zoschke et al. 2013; Zoschke and Barkan 2015; 
Zoschke and Bock 2018). In addition, precipitation of nascent 
peptides together with their mRNAs did not show a prefer
ence for translation of a particular transcript isoform 
(Barkan 1988), suggesting that in vivo translation is inde
pendent of RNA processing for many, if not most, RNAs. 
The curious complexity of transcript patterns has drawn at
tention away from the key effects of helical repeat proteins, in
cluding their decisive, direct impact on translation initiation 
via RNA restructuring (Fig. 2, no. 7) and their impact on tran
script half-lives (Fig. 2, no. 5). Although the specifics of the for
mer effect are beyond the scope of this review, the importance 
of the latter effect is discussed in more detail below.

The half-lives of chloroplast transcripts, determined by 
blocking transcription and measuring RNA quantities over 
time, is in the range of hours or even days (Klaff and 
Gruissem 1991; Kim et al. 1993; Germain et al. 2012; 
Germain et al. 2013; Szabo et al. 2020). Noninvasive in vivo 
labeling methods reported somewhat shorter but compar
able half-lives (Szabo et al. 2020). These values are in stark 
contrast to those of bacteria, where mRNA half-lives were 
generally measured in minutes (Selinger et al. 2003; 
Kristoffersen et al. 2012). Helical repeat proteins are respon
sible for the elongated half-lives for many RNAs. The deletion 
of a stabilizing helical repeat protein often results in the ap
parent absence of any remaining RNA, that is, its half-life ap
proaches zero. This has 2 implications: first, no other 
stabilizing factors can compensate for the action of helical re
peat proteins; and second, no window of stability exists after 
transcription since decay occurs instantaneously. This con
curred with the findings that many PPR proteins and RBPs 
are associated with nucleoids and the location of transcrip
tion (Pfalz et al. 2006; Majeran et al. 2011), and are thus avail
able to protect nascent transcripts.
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RNA stabilization by helical repeat proteins opens a win
dow of opportunity that facilitates slow RNA maturation 
steps (Fig. 2). Among them, RNA splicing requires folding 
of the catalytic core of ribozymatic group II introns and is 
a comparatively slow process, given that many RNA–RNA 
and protein–RNA interactions are needed to achieve the cor
rect RNA-fold. Chloroplast splicing is particularly inefficient 
and slow, as indicated by the substantial amounts of un
spliced mRNAs that accumulate under normal growth con
ditions (see for example RNA gel blots on wild-type 
samples in Jenkins et al. 1997). Helical repeat proteins extend 
the half-lives of intron-containing RNA precursors, thus sup
porting intron folding and splicing (Fig. 2, no. 6). For example, 
2 PPR proteins positively affect the transcript stability of the 
2 rps12 mRNA halves, supporting the trans-splicing of rps12 
(Lee et al. 2019). The same holds true for psaA trans-splicing 
factors in Chlamydomonas (reviewed in Kück and Schmitt 
2021). PPR5, another PPR protein that supports splicing by 
increasing transcript stability, is required for splicing an in
tron in the trnG-UCC primary transcript (Beick et al. 2008). 
PPR5 binds to an endonuclease-sensitive site, which likely 
blocks access by RNase. Furthermore, the chloroplast PPR 
protein SOT1 (also named PPR53 in maize) facilitates the 
splicing of ndhA by increasing the transcript stability of 
ndhA through association with CAF2 (Li et al. 2021). 
Mathematical modeling of splicing efficiency under different 
RNA stability conditions demonstrates that low turnover 
rates favor the accumulation of spliced versus unspliced tran
script isoforms (Fig. 2, nos 8/9). Similar effects are observed 
for edited and unedited mRNA (Fig. 2, no. 10). Modulating 
RNA stability can thus dramatically alter the efficiency of or
ganellar RNA maturation. Of course, extending the time for 
splicing might go hand in hand with the direct function of 
helical repeat proteins in RNA folding, and thus the forma
tion of catalytic centers for group II introns (Fig. 2, no. 4b). 
RNA splicing and participating factors are explored in greater 
detail in the next section.

Organellar splicing machinery
Plant organelles predominantly contain Group II introns, 
whereas Group I introns are prevalent in algae such as 
Chlamydomonas. Group I and II introns are ribozymes that 
catalyze their own splicing, necessitating complex RNA– 
RNA interactions (Mukhopadhyay and Hausner 2021). 
Plant organellar introns have substantially diverged from 
the canonical intron structure during evolution, while spli
cing chemistry has been mostly conserved (Hausner et al. 
2006). Proteinaceous cofactors are required to obtain a cata
lytically active intron structure in vivo. The following sections 
introduce some of these cofactor proteins, focusing on select 
nuclear-encoded RBPs.

Helical repeat proteins in splicing
Among the nuclear-encoded helical repeat proteins required 
for RNA splicing, many belong to the PPR protein family and 
a few belong to the mTERF family (Hammani and Barkan 

2014; Lee et al. 2021). More than 60 (mostly P-class) PPR pro
teins play a proposed role in the splicing of different organel
lar introns (Supplemental Table S2). In most cases, these 
factors have been determined purely by genetic means, 
which creates bias. For example, although splicing factors 
have been identified for most introns in mitochondrial nad 
genes, very few have been identified in mitochondrial genes 
encoding subunits of other respiratory complexes or ribo
somes, presumably because the loss of such splicing factors 
would be lethal. Furthermore, comparing accumulated un
spliced versus spliced mRNA in mutants is not a failsafe 
method to identify splicing factors since accelerated RNA 
turnover inevitably leads to an increased ratio of unspliced 
to spliced RNA (Fig. 2, no. 9). Thus, RNA stabilization factors 
can be misclassified as splicing factors. Only select cases have 
identified an interaction between a putative splicing factor 
and its target intron, as demonstrated by coimmunoprecipi
tation techniques (e.g. Beick et al. 2008; Khrouchtchova et al. 
2012; Lee et al. 2019; Hammani and Barkan 2014) or gel shift 
experiments (e.g. Aryamanesh et al. 2017; Ito et al. 2018). 
Thus, mechanistic insights come from only a few case studies. 
A particularly complex case is the first intron of rps12 mRNA, 
which is found divided between 2 chloroplast loci, that is, it is 
trans-spliced. In vivo and in vitro RNA-binding studies sup
ported by footprint analyses and code-based target site pre
dictions have demonstrated that 2 PPR proteins bind close to 
the free ends of the 2 intron halves (Schmitz-Linneweber 
et al. 2006; Aryamanesh et al. 2017; Tadini et al. 2018; Lee 
et al. 2019). Binding of PPR proteins maintains the target sites 
in a single-stranded state (Prikryl et al. 2011), which may be 
necessary to form the correct structure for splicing (Fig. 2, no. 
4b).

The trans-splicing of chloroplast psaA mRNA in 
Chlamydomonas is an even more complex splicing event. 
psaA mRNA is assembled from 4 independently generated 
transcripts (Goldschmidt-Clermont et al. 1991). Initial genet
ic analyses revealed that at least 14 nuclear loci are involved 
in the maturation of this single chloroplast mRNA. To date, 
genes for half of these loci have been identified (Kück and 
Schmitt 2021). Among them, RAA1, RAA8, and RAT2 encode 
proteins that have OPR domains (Balczun et al. 2005; 
Merendino et al. 2006; Marx et al. 2015). Together with other 
factors, they form 2 major subcomplexes, excising either in
trons i1 or i2. These subcomplexes most likely interact to co
ordinate the splicing process (Lefebvre-Legendre et al. 2016; 
Kück and Schmitt 2021), thereby forming a large splicing ma
chine. Therefore, psaA trans-splicing has often been inter
preted as an example of how nuclear spliceosomes could 
have evolved from Group II introns.

CRM proteins: splicing specialists and the question of 
splicing complexes
While PPR proteins are the jack of all trades in organellar 
RNA maturation, including splicing, the chloroplast RNA 
splicing and ribosome maturation (CRM) family of RBPs is 
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more specialized, with all but 1 member involved in RNA spli
cing in chloroplasts and mitochondria (Wang et al. 2022). 
The best-characterized CRM family member is CRS1, which 
is essential for splicing the atpF intron (Till et al. 2001). In vi
tro RNA structure analysis in the presence and absence of 
CRS1 indicated that CRS1 promoted intron folding via specif
ic interactions with 2 intron domains (Ostersetzer et al. 
2005). Whether intron remodeling is a general feature of 
members of the CRM family remains unclear, but RNA chap
erone activity has been demonstrated for at least one CRM 
protein, CFM4, by using CFM4 to complement a chaperone- 
deficient Escherichia coli mutant (Lee et al. 2014).

CRM proteins have been shown to interact directly with 
CRM relatives, PPR proteins, and other splicing factors in 
chloroplasts (Ostheimer et al. 2003, 2005; reviewed in 
Wang et al. 2022) and mitochondria using one-on-one inter
action studies (Chen et al. 2019; Zhao et al. 2020; Wang et al. 
2020b; Fan et al. 2021; Cao et al. 2022). Whether these spli
cing factors form larger complexes, in the manner of a spli
ceosome, remains largely unclear. CRM proteins may 
attach to introns independently and/or consecutively. The 
complex formation of multiple splicing factors has been as
certained for trans-splicing (Kück and Schmitt 2021); genetic 
data coupled with RNA coimmunoprecipitation suggest that 
organellar introns are usually served by at least 2 splicing fac
tors and often by many more (Germain et al. 2013; Lee et al. 
2019); Biochemical experiments have shown that chloroplast 
introns are found in large ribonucleoprotein particles that in
clude multiple different splicing factors (eg, Kroeger et al. 
2009; Kück and Schmitt 2021). However, some splicing fac
tors may act consecutively rather than simultaneously. In 
the case of chloroplast ycf3 intron 1, mutants of six PPR pro
teins, three CRM proteins, and CRS2 showed reduced splicing 
efficiency (Supplemental Table S2) (Jenkins et al. 1997; 
Ostheimer et al. 2003). A similar number of factors were re
ported for the chloroplast ndhA intron (Supplemental Table 
S2). However, many proteins that have been genetically 
linked to organellar splicing defects have not been shown 
to be associated with the affected intron, leaving open the 
possibility that these splicing defects are indirect effects. All 
of the mutants described herein induced more or less severe 
defects in plant and chloroplast development, including al
binism and other pigment deficiencies, as well as retarded 
or aberrant leaf growth. Such developmental defects may 
very well affect splicing indirectly. Retrograde signals from 
defective chloroplasts to the nucleus are known to affect a 
multitude of genes encoding proteins involved in chloroplast 
functions, possibly including splicing factors. Other effects 
could be based on physiological changes in defective chloro
plasts. Indeed, reduced or lost photosynthetic capacity likely 
impacts ion homoeostasis in chloroplasts, which can affect 
RNA folding and thus intron splicing. This idea is supported 
by recent findings in which changes in potassium levels in 
chloroplasts affected rRNA maturation, possibly via RNA 
folding (Schock et al. 2000; DeTar et al. 2021). Notably, mag
nesium is a potent mediator of Group II intron splicing in 

mitochondria (Schock et al. 2000; Gregan et al. 2001). Thus, 
ion concentration changes in defective organelles could 
lead to secondary splicing defects. Additional factors likely 
contribute to the efficiency of intron removal, and individual 
introns are likely to be affected nonuniformly by such 
changes given different intron structures. For example, ycf3 
intron 1 and the ndhA intron are particularly sensitive to 
chloroplast deficiencies. Additionally, nad2 intron 1 is simi
larly sensitive in mitochondria, and unspliced RNA contain
ing this intron accumulated in many different mutants 
(Colas des Francs-Small et al. 2014). Unraveling the individual 
splicing kinetics for various Group II introns in organelles and 
elucidating why different sets of proteins are needed for dif
ferent introns will be exciting. Nevertheless, carefully asses
sing the function of any presumed splicing factor in intron 
removal remains important. Data showing interactions be
tween factors and introns in vivo are needed to support 
the presence of direct effects. In addition, control mutants 
with similar but mechanistically unrelated chloroplast devel
opmental defects will help discern direct from indirect 
effects.

Honorary mentions
In addition to helical repeat proteins, a number of smaller 
protein families are involved in RNA splicing, such as plant 
organelle RNA recognition (PORR) proteins or the DUF794 
protein family (Kroeger et al. 2009; Watkins et al. 2011). 
Moreover, a number of orphan splicing factors, such as the 
RanBP2-type zinc finger protein OZ2 (Bentolila et al. 2021) 
and the curious DNA- and RNA-associated Whirly1 protein, 
are involved in RNA splicing (Prikryl et al. 2008; Melonek et al. 
2010; Krupinska et al. 2022). Given that Group II introns are 
complex RNA structures that require multiple RNA–RNA in
teractions and convoluted RNA-folding pathways during and 
after synthesis, it is unsurprising that several RNA helicases 
capable of removing misfolded RNA structures have been 
identified as splicing factors in plant organelles (Kohler 
et al. 2010; Asakura et al. 2012; He et al. 2012; Gu et al. 
2014; Carlotto et al. 2016; Bobik et al. 2017). For all helicases, 
the intron structures targeted by unwinding activity remain 
to be determined. Further, ribosomal proteins are an unex
pected group of proteins that were recently added to the 
ever-growing list of plant organellar splicing factors (Wang 
et al. 2020a). Specifically, members of the nuclear-encoded 
uL18 ribosomal protein family are targeted to either plant 
mitochondria or chloroplasts, supporting the splicing of 
mitochondrial or chloroplast introns, respectively (Wang 
et al. 2020a). While 2 out of 8 uL18 proteins were identified 
as organelle ribosomes, 2 others cosedimented with introns, 
thus promoting splicing in gradient centrifugation assays. 
However, the prevalence of this functional change in riboso
mal proteins remains unknown.

In summary, the diversity of RNA-binding domains that 
are active during splicing is impressive. Splicing factors are 
recruited from canonical RBP families and also opportunis
tically recruited from other sources. For example, CRS2 is 
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derived from a peptidyl-tRNA hydrolase (Jenkins and 
Barkan 2001) and RNC1 harbors remnants of the RNase III 
domains (Watkins et al. 2007). Both factors have lost their 
original enzymatic activity. In addition, factors important 
for DNA metabolism and ribosomal proteins have been 
neo-functionalized to become splicing factors, such (WHY1, 
uL18 members; Prikryl et al. 2008; Wang et al. 2020a). Overall, 
eukaryotic cells invest in a plethora of factors to splice organel
lar RNA.

Outlook: in vitro splicing
Recently, a chloroplast-derived in vitro system was presented 
that enables detailed analysis of the splicing process and un
raveling of mechanistic details (Inaba-Hasegawa et al. 2021). 
This indicated that chloroplast-derived introns underlie the 
expected mechanism. However, deviations were also ob
served. For example, the exon-binding site 2–intron-binding 
site 2 interaction did not appear to be essential for the spli
cing process. In addition, the first nucleotide of the 3′ exon 
was shown to be irrelevant in splicing. Moreover, the condi
tions for splicing in chloroplasts were relatively relaxed com
pared to those in bacteria. Expansion of the proteinogenic 
machinery for chloroplast introns may play an important 
role here. The greater number of trans-acting factors sup
porting the structural formation of Group II introns allows 
greater variability in intron sequences, which is analogous 
to the evolution of the spliceosome as a trans-splicing ma
chine, requiring very few and degenerate target sequences 
in introns to carry out its function.

And tRNA maturation
As they are derived from prokaryotes, chloroplasts and mito
chondria possess bacterial-like translation machinery. 
However, while chloroplast ribosomes strongly resemble 
those of bacteria (Bieri et al. 2017; Perez Boerema et al. 
2018), plant mitoribosomes have diverged significantly dur
ing evolution. In particular, their rRNA structure and protein 
composition differ extensively from those of E. coli ribosomes 
(Bonen 2004; Waltz et al. 2021, 2019). Moreover, most plas
tids encode a complete set of tRNAs sufficient to decode 
the genetic code of the plastome (Alkatib et al. 2012; 
Cognat et al. 2013), whereas plant mitochondrial genomes 
encode only 0 to 40 tRNA genes and depend on the import 
of the remaining components from the cytosol (Mower 2020; 
Warren and Sloan 2020). rRNAs contained in organellar ribo
somes are usually encoded in one operon. In Arabidopsis 
chloroplasts, a 7.4-knt polycistronic precursor transcript en
codes the 16S rRNA, 2 Group II intron-containing tRNAs, as 
well as the 23S, 4.5S, and 5S rRNAs. The precursor is then pro
cessed at multiple levels to produce mature tRNA and rRNA, 
similar to what occurs in bacteria where many factors are in
volved in the biogenesis of ribosomes, including rRNA matur
ation. In recent years, several factors implicated in 16S and/or 
23S rRNA maturation have been discovered and functionally 
characterized based on mutant phenotypes (Germain et al. 
2013). Many of these factors are RNases (Stoppel and 

Meurer 2011; Hotto et al. 2015; Liu et al. 2015). However, sec
ondary effects on chloroplast rRNA maturation in mutant 
lines could not be excluded, and only a few defined binding 
sites (BS) on rRNA precursors have been mapped. For ex
ample, the PPR-SMR protein SOT1 in Arabidopsis, similar 
to its ortholog PPR53 in maize, binds to the 5´ end of the di
cistronic 23S–4.5S rRNA precursor (Wu et al. 2016; Zoschke 
et al. 2016), as indicated by in vitro RNA-binding assays and 
the absence of a corresponding RNA footprint in a sot1 mu
tant (Wu et al. 2016). In addition to protecting the 5′ end of 
the precursor RNA, SOT1 may have endonucleolytic activity 
that mediates the maturation of the rRNA precursor tran
script (Zhou et al. 2017). Other maturation factors that rec
ognize the 23S rRNA precursor include the RBD1 and the 
DEAD-box RNA helicase RH50 (Wang et al. 2016; Paieri 
et al. 2018). 16S rRNA maturation depends on the factors 
RBF1 and RAP, with the latter representing the sole OPR pro
tein in Arabidopsis (Fristedt et al. 2014; Kleinknecht et al. 
2014). RAP binds to the 5′-region of the 16S rRNA precursor 
and assists in maturation. Strikingly, RAP, similar to the rRNA 
maturation-related chloroplast GTPases DER and RBD1, dis
plays nucleoid localization, which supports the idea that 
rRNA maturation and ribosome assembly occur close to 
the chloroplast genome (Jeon et al. 2014; Kleinknecht et al. 
2014; Wang et al. 2016). Indeed, many ribosome biogenesis 
factors that function in rRNA maturation and ribosome as
sembly have been identified in the proteomic analysis of 
chloroplast nucleoids from maize (Majeran et al. 2011; 
Germain et al. 2013). As discussed previously (Bohne 2014), 
nucleoids might provide a scaffold for the establishment of 
an intraorganellar microenvironment, facilitating ribosome 
assembly via substrate channeling and avoiding precocious 
association of mRNA with immature 30S ribosomal subunits.

Similar to rRNA maturation, the maturation of organellar 
tRNA precursor transcripts is generally similar to that in bac
terial counterparts, although some deviations have been re
ported (Frank and Pace 1998; Rossmanith 2012; 
Salinas-Giegé et al. 2015). One example is RNase P, an enzyme 
that removes the 5´-region of organellar tRNA precursors. In 
bacteria, RNase P is usually a ribonucleoprotein that contains 
a catalytically active RNA moiety. However, an RNase P was 
identified in organelles that is composed only of protein, 
named proteinaceous RNase P (PRORP). PRORP belongs to 
a class of PIN-like ribonucleases that contain an additional 
PPR domain (Gobert et al. 2010, 2019; Bhatta and Hillen 
2022). Although organellar PRORPs are active as single- 
subunit enzymes in vitro, recent interactome studies have re
vealed that they can also form high-molecular-weight com
plexes containing ribosomes and other RNA maturation 
enzymes (Zhou et al. 2015; Bouchoucha et al. 2019).

The endonuclease RNase Z is involved in the maturation of 
the 3′-end of tRNA. Genetic analysis has revealed that the 
plastid enzyme is essential for chloroplast biogenesis in rice 
(Long et al. 2013). Interestingly, the dually located mitochon
drial/chloroplast mTERF6 protein from Arabidopsis has been 
shown to be specifically involved in the maturation of plastid 
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tRNAIle (Romani et al. 2015). This raises the possibility that 
individual tRNA maturation steps during the general steps 
of tRNA maturation might enable fine-tuning of balanced 
tRNA accumulation in organelles.

RNA editing
RNA transcripts in plant organelles undergo many base mod
ifications that alter base-pairing and thus RNA folding and 
translation. These include many different modifications to 
tRNAs and rRNAs, but also modification of mRNAs. 
Adenosine methylation (m6A) of mRNAs is common in 
mitochondria and chloroplasts, although the functional im
pact of this is not yet clear (Wang et al. 2017; Murik et al. 
2020). Of much more interest to researchers has been the de
amination of cytidine to uridine, commonly referred to as 
RNA editing (Small et al. 2020), as this changes the sequence 
of the mRNA and very often results in a change in the se
quence of the encoded protein. C-to-U RNA editing is nearly 
ubiquitous in land plant organelles, lacking only from march
antiid liverworts (Groth-Malonek et al. 2007; Rüdinger et al. 
2008), but occurs at greatly different frequencies in different 
plants, with, for example, only 2 (Miyata and Sugita 2004) 
and 11 (Rüdinger et al. 2009) edited sites in Physcomitrium 
patens chloroplasts and mitochondria, respectively, but up 
to several thousand in each organelle in some Selaginella spe
cies (Hecht et al. 2011; Oldenkott et al. 2014; Smith 2020; 
Zhang et al. 2022). In angiosperms, commonly a few dozen 
cytidines are edited in chloroplasts (Giegé and Brennicke 
1999; Chateigner-Boutin and Small 2007; Ruwe et al. 2013; 
Sloan et al. 2018) but several hundred in mitochondria 
(Giegé and Brennicke 1999; Chateigner-Boutin and Small 
2007; Ruwe et al. 2013; Sloan et al. 2018). The hydrolytic de
amination of cytidine to uridine is usually considered irre
versible under physiological conditions, as discussed in 
Gerke et al. (2020), but remarkably “reverse” editing 
(U-to-C) does occur in some hornworts (Kugita et al. 
2003), lycophytes (Grewe et al. 2011), and ferns (Hiesel 
et al. 1994); and can even be the dominant form of editing 
in some species (Knie et al. 2016; Gerke et al. 2020). RNA edit
ing has attracted much research since its discovery and the 
historical development of the field has been reviewed recent
ly (Small et al. 2020), so here we will confine ourselves to de
scribing our current understanding of the editing machinery 
and how RNA editing is integrated with other steps in plant 
organellar RNA maturation.

The principal factors involved in RNA editing are PLS-class 
PPR proteins (Yagi et al. 2013b; Cheng et al. 2016). These act 
as specificity factors, determining which cytidines are edited 
(Okuda et al. 2006). The PPR array in these proteins binds to 
the RNA 5′ of the site to be edited, with the last motif of the 
PPR array aligned with the nucleotide at position −4 (Barkan 
et al. 2012; Yagi et al. 2013a). PPR editing factors have a 
C-terminal domain comprising 2 PPR-like helix-turn-helix 
motifs (named E1 and E2) and a cytidine deaminase domain 
of about 160 amino acids, usually terminating in a character
istic Asp–Tyr–Trp triplet that has led to this domain being 

commonly referred to as the “DYW” domain (Fig. 3; Lurin 
et al. 2004; Cheng et al. 2016). The DYW domain contains 
a typical cytidine deaminase active site (Salone et al. 2007; 
Wagoner et al. 2015) with a zinc ion (Hayes et al. 2013; 
Boussardon et al. 2014) bound by an HxE (x)nCxxC motif 
which based on similarity to other deaminases (Iyer et al. 
2011), probably acts in concert with an essential glutamate 
residue (Hayes et al. 2015) to catalyze cytidine deamination. 
Crystal structures of the deaminase domain suggest that the 
active site may be occluded by a “gating domain” (Takenaka 
et al. 2021), implying a conformational change in binding to 
the target site that allows access to the catalytic center. The 
precise placing of the deaminase domain on the RNA by the 
PPR array leads to highly specific base editing; in most cases 
(but not all), cytidines adjacent to the editing site are not edi
ted (Choury et al. 2004; Arenas-M et al. 2013). In chloroplasts, 
most editing factors only edit a single site in the transcrip
tome, whereas in mitochondria, editing of multiple sites is 
more common. Where multiple sites are edited, the up
stream sequences that form the PPR binding site are similar 
enough for the same PPR array to bind them both/all 
(Hammani et al. 2009).

The factors responsible for “reverse” editing appear to be a 
subclade of DYW proteins whose presence and abundance 
correlate strongly with U-to-C events (Gutmann et al. 
2020), and whose PPR arrays are a good match for U-to-C 
editing sites (Gerke et al. 2020). Synthetic proteins based 
on these sequences can catalyze U-to-C editing (Ichinose 
et al. 2022). How 2 very similar sets of proteins catalyze reac
tions in opposite directions will be an intriguing puzzle to 
solve.

Some PPR editing factors are “broken” into 2 parts, one 
providing the PPR array, and the other the deaminase do
main (Boussardon et al. 2012; Gutmann et al. 2017). In 
some cases, these interactions are highly specific (e.g. CRR4 

Figure 3. Structure of a DYW–PPR protein. PPR proteins are generally 
characterized by their extended tract of helical elements that is flanked 
at its N-terminus by an unstructured targeting peptide. While the PPR 
tract is responsible for base-specific RNA recognition of all PPR pro
teins, DYW–PPR proteins have an additional, C-terminal DYW domain 
with base deamination activity. The structure shown is of MEF1 
(Zehrmann et al. 2009) as predicted by AlphaFold (Jumper et al. 2021).
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and DYW1 in Arabidopsis; Boussardon et al. 2012), but in 
others a single DYW domain may provide deaminase activity 
to many different PPR partners, as appears to be the case for 
DYW2 (Andrés-Colás et al. 2017; Guillaumot et al. 2017; 
Malbert et al. 2020) and MEF8 (Verbitskiy et al. 2012; Diaz 
et al. 2017; Yang et al. 2022) in Arabidopsis and PCW1 in 
maize (Wang et al. 2022). Thus, although the number of 
PLS-class proteins in the proteome correlates fairly well 
with the number of editing events in the organelle transcrip
tome (Fujii and Small 2011; Gutmann et al. 2020), the num
ber of DYW proteins may not.

Single PPR–DYW proteins contain everything needed to 
catalyze the editing of their target RNA, as demonstrated 
by the reconstitution of C-to-U editing in bacteria 
(Oldenkott et al. 2019; Bernath-Levin et al. 2021; Royan 
et al. 2021; Ichinose et al. 2022), mammalian cells (Ichinose 
et al. 2022; Lesch et al. 2022), and in vitro (Hayes and 
Santibanez 2020). However, in plant organelles, numerous 
other “editing factors” have been identified by genetic ap
proaches or protein–protein interaction screens using PPR 
proteins as bait (Sun et al. 2016). The best-known of these 
are the RIP or MORF proteins (Bentolila et al. 2012, 2013; 
Takenaka et al. 2012) encoded by a small multigene family. 
All of these appear to be targeted to mitochondria or chlor
oplasts, where they interact with PPR editing factors 
(Takenaka et al. 2012; Härtel et al. 2013b; Brehme et al. 
2015; Glass et al. 2015; Bayer-Császár et al. 2017; Ren et al. 
2020) and influence their RNA-binding activity (Yan et al. 
2017; Royan et al. 2021). RIP/MORF mutants generally 
show multiple (overlapping) editing defects, suggesting 
each RIP/MORF protein can interact with many different 
PPR proteins, and that many of these PPR proteins are at 
least partially reliant on their assistance for full activity 
(Takenaka et al. 2012; Bentolila et al. 2013). Many other 
editing-associated factors have been identified, including 
RBPs such as RRM-domain proteins (Tillich et al. 2009a; 
Sun et al. 2013; Shi et al. 2015; Shi et al. 2017; Searing et al. 
2020) and the zinc-finger protein OZ1 (Sun et al. 2015; 
Gipson et al. 2022), the RNA helicase ISE2 (Bobik et al. 
2017), and P-class PPR proteins such as NUWA 
(Andrés-Colás et al. 2017; Guillaumot et al. 2017). The role 
of these auxiliary proteins in RNA editing is not entirely clear. 
Often the same or related proteins are implicated in other 
RNA maturation activities, suggesting that they may not be 
tightly or solely associated with the editing machinery. The 
concept of an “editosome” has been advanced in the litera
ture (Sun et al. 2016) but the experimental evidence for 
this hypothetical multi-subunit complex remains inconclu
sive, with the complexes detected so far being extremely het
erogeneous in size and difficult to purify intact (Bentolila 
et al. 2012; Huang et al. 2019; Sandoval et al. 2019). Given 
the demonstration that a single editing factor alone can cata
lyze editing on a specific target (Hayes and Santibanez 2020), 
it seems possible to us that auxiliary editing factors act in ser
ies via weak transient interactions to facilitate editing rather 
than forming a stable, well-defined complex.

Editing in relation to other steps in RNA maturation
The kinetics of RNA editing are not yet well-understood, but 
it appears to be a relatively fast process, given that editing at 
most sites generally exceeds 90% (Ruwe et al. 2013). In com
parison, splicing tends to be much slower, with a greater pro
portion of unprocessed transcripts present in the organelle. 
Thus editing often precedes splicing, and indeed, in some 
cases splicing is dependent upon prior editing, either because 
the editing creates a sequence motif required for the 
intron-splicing mechanism (Castandet et al. 2010; Xu et al. 
2020), or because binding of the PPR array to the RNA is 
needed for intron folding (Yap et al. 2015).

It is obviously preferable that editing precedes translation, 
given that should unedited or partially edited transcripts be 
translated, proteins with the “wrong” amino acid sequence 
would be generated. Such proteins can be deleterious 
(Hernould et al. 1993). How this is avoided is not yet clear. 
Partially edited mRNAs do not appear to be excluded from 
ribosomes (reviewed in Zoschke and Bock 2018), and in mu
tants lacking specific editing factors, the unedited transcripts 
are translated normally, giving rise to defective proteins. Yet 
in wild-type plants there is no evidence of any complete 
translation products being produced from unedited or par
tially edited transcripts (Lu and Hanson 1994). Either any 
such products are rapidly degraded, or the editing factors 
themselves prevent complete translation of unedited 
mRNA by remaining bound until editing is complete. 
However, where it has been tested, PPR editing factors 
bind almost equally tightly to edited or unedited target 
RNA (Okuda et al. 2014). The situation is particularly acute 
in hyper-editing plants such as ferns and lycophytes where 
thousands of editing factors edit thousands of sites and 
translation must surely be deferred until editing is complete. 
One way in which this is achieved is by the mRNA being un
translatable until edited because it lacks a start codon 
(Hirose and Sugiura 1997; Chotewutmontri and Barkan 
2016) or contains premature stop codons (Kugita et al. 
2003). Start codons can be introduced by C-to-U editing of 
an ACG codon, and U-to-C editing can alter UAA, UAG 
and UGA stop codons to CAA (Gln), CAG (Gln), or CGA 
(Arg), respectively. Such start and stop codon editing is high
ly prevalent in hyper-editing plants (Kugita et al. 2003; Grewe 
et al. 2011; Li et al. 2018). As long as these translation- 
determining editing events occur late in the process, transla
tion of unedited mRNAs can be avoided. Indeed, long-read 
single-molecule sequencing has recently shown for the 
Arabidopsis ndhD mRNA that the last of 4 editing sites to 
be processed within this transcript is within the start codon 
(Guilcher et al. 2021).

CMS and nuclear factors involved in fertility 
restoration
CMS is a fertility phenotype in plants determined by the ex
pression of aberrant mitochondrial genes. The CMS trait be
comes visible only during flowering when otherwise 
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healthy-looking plants fail to produce functional pollen 
(Chase 2007). Genes that determine CMS are created during 
recombination events in mitochondrial genomes and often 
display a chimeric structure, that is, they are composed of 
conserved mitochondrial sequences as well as unique se
quences of unknown origin (reviewed in Chen and Liu 
2014). Newly created CMS genes can be expressed via frag
ments of mitochondrial promoter sequences or through co
transcription with upstream mitochondrial genes (Hanson 
and Bentolila 2004; Tang et al. 2017).

The presence of CMS-associated genes in the mitochon
drial genome is often masked by nuclear restorer-of-fertility 
(Rf) genes, which block their expression and restore pollen 
production and plant fertility by reducing their deleterious 
effects (Hanson and Bentolila 2004). As a result, 
CMS-associated genes are often detected only by interspecif
ic crosses or somatic cell fusions that create alloplasmic 
plants carrying the cytoplasm from 1 plant species and nu
cleus from a different species (Chase 2007). Several Rf genes 
have been cloned, the majority of which belong to a specific 
clade in the PPR family, referred to as Rf-like (RFL) genes (Fujii 
et al. 2011; Dahan and Mireau 2013; Gaborieau et al. 2016). 
Molecular studies have indicated that Rf-PPR proteins have 
at least 2 modes of action. In the first mode of action, 
some Rf proteins bind and induce cleavage of CMS-causing 
transcripts (Menassa et al. 1999; Wang et al. 2006; Huang 
et al. 2015; Liu et al. 2016; Melonek et al. 2021). However, 
the mechanism by which Rf proteins induce RNA cleavage re
mains unclear. Rf proteins do not contain any known endo
nuclease motifs, and cleavage generally occurs up to 100 nt 3′ 
of the Rf-binding site, making it unlikely that the Rf protein 
itself is involved (Colas des Francs-Small et al. 2018). 
PRORP reportedly performs the RFL2-promoted cleavage of 
orf29 in Arabidopsis (Fujii et al. 2016), but the endonucleoly
tic activity remains elusive in other cases (Colas des 
Francs-Small et al. 2018). The second mode of action was 
documented in molecular studies of the Ogura CMS system 
in rapeseed (Wang et al. 2021). The Rfo/PPR-B protein was 
demonstrated to suppress the expression of the CMS tran
script (orf138) by impeding its translation via ribosome 
blockage rather than by inducing its cleavage (Wang et al. 
2021).

Recently, several Rf gene candidates in rye and barley were 
found to encode members of the mTERF family (Bernhard 
et al. 2019; Vendelbo et al. 2021). No sequence similarity ex
ists between mTERF and PPR proteins; however, similar to 
PPRs, mTERFs consist of α-helical repeats and function in 
RNA-associated processes (Meteignier et al. 2020). 
Genome-wide studies of mTERF proteins in plants have 
shown that a group of mTERF genes shares several genomic 
features with the RFL-PPR clade (Walkowiak et al. 2020; 
Melonek and Small 2022). Similar to RFL-PPRs, 1 clade of 
mTERF genes is highly expanded in plants, especially in cer
eals (Walkowiak et al. 2020; Melonek and Small 2022), and 
is organized into clusters adjacent to or intermixed with 
RFL-PPR clusters in the genome (Melonek and Small 2022). 

The location of RFL-mTERF clusters overlaps with the 
mapped Rf loci in wheat and rye (Walkowiak et al. 2020; 
Melonek and Small 2022). Based on these discoveries and 
the analogous relationship with RFL-PPRs, this clade was 
named RFL-mTERF (Walkowiak et al. 2020). Nevertheless, 
the contribution of RFL-mTERF proteins to fertility restor
ation in plants remains to be elucidated.

Why are there so many RBPs in plant organellar RNA 
maturation?
Complexity gain without selective advantages?
The immediate gut response to complexity in biological sys
tems is that the intricacies observed serve a purpose, for ex
ample in making a process more efficient or providing 
regulatory means for a process. Given that many RBPs are es
sential for chloroplast or even plant development, the notion 
of importance equaling evolutionary advantage seems even 
more logical. However, there is no evidence that the vast ma
jority of RBPs serve a regulatory purpose or improve the ef
ficiency of existing processes. Other evolutionary theories 
have been proposed to explain the complexity of plant orga
nellar RNA maturation based on the peculiarity of the orga
nellar genome in the context of the nuclear host genome 
(Maier et al. 2008; Gray et al. 2010; Lukes et al. 2011; 
Castandet and Araya 2012). These hypotheses begin with 
the idea that organellar genomes can accumulate deleterious 
mutations, but that these mutations fail to be disadvanta
geous if a nuclear factor suppresses their effects. The most 
thorough elaboration of this idea is the constructive neutral 
evolution (CNE) theory (Stoltzfus 1999; Lukes et al. 2011). 
Although only a general theory, CNE is particularly relevant 
for DNA-containing endosymbiotic organelles, suggesting 
that neutral protein–protein, RNA–RNA, or protein–RNA in
teractions occur among host factors and organellar factors. 
Among these interactions, the latter are the most relevant 
for our considerations. While being neutral at the start, in 
the case of a deleterious mutation in a particular host factor, 
a corresponding organellar factor might ensure the neutrality 
of the mutation. Consider the following tangible examples in 
the context of organelle biology: (i) transcript stability versus 
exonucleases can be mediated via terminal stem loops. If a 
helical repeat protein can potentially recognize a sequence 
element at such a terminus, the stem loop can be lost, 
with no effect on stability (Fig. 4A). (ii) A T → C mutation 
in a reading frame leading to a deleterious amino acid shift 
or even a stop codon can be suppressed in the presence of 
a PLS–PPR protein leading to a C → U editing event at this 
site (Fig. 4B). (iii) RNA–RNA interactions important for in
tron catalysis can be compromised if mutations allow alter
native, energetically favored interactions. RBPs can resolve 
such misfolding by acting as RNA chaperones or as helical re
peat proteins to maintain certain sequences in a single- 
stranded conformation (Fig. 4C).

If the CNE holds true, a multitude of neutral interactions 
should be observable. While neutrality is impossible to 
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ascertain since not all conditions under which an interaction 
might become relevant can be analyzed, a number of exam
ples might fall into this neutral class of host–organelle inter
actions. For example, PPR proteins can interact with target 
RNA without having any particular effect on the RNA tran
script level. A case in point is the chloroplast PPR protein 
CRR2, which produces RNA footprints without showing 
any RNA aberrations in crr2 null mutants, such as in the 
matK reading frame. Among the targets of CCR2, several 
antisense RNA species, including ycf2, rpoC2, and rpl23, do 
not seem to serve any purpose, nor do they affect the corre
sponding sense RNA (Ruwe et al. 2019). The expression of all 
4 targets is essential for chloroplast and plant survival, but 
crr2 mutations have none of the expected macroscopic phe
notypes that would occur if any of these 4 genes showed 

reduced expression. The only effect observed after crr2 
knockout is the loss of stabilization of processed rps7 and 
ndhB transcripts in plastids, which leads to loss of the NDH 
complex (Hashimoto et al. 2003). Thus, it can be hypothe
sized that CRR2–RNA interactions for matK, rpl23, rpoC2, 
and ycf2 are examples of neutral CNE interactions. Other ex
amples include editing factors that are not essential for plant 
survival. The loss of the mitochondrial editing factor MEF12 
and concomitant loss of editing at site nad5-374 does not 
lead to a detectable phenotype (Hartel et al. 2013a). 
Similarly, MEF10 mutants do not edit mitochondrial 
nad2-842 and fail to show phenotypic differences from the 
wild-type (Härtel et al. 2013b). In general, several editing sites 
are not conserved in evolution, flickering between C and T 
over time, which speaks against their functional importance 

A

C

B

Figure 4. Examples for the evolution of RNA:protein interactions according to the CNE theory. A) Suppression of a loss of an important RNA sec
ondary structure by a helical repeat protein. The 5′-terminus of an mRNA is protected against exonucleolytic degradation by RNase J via a stem- 
loop. 1, A helical repeat protein that can bind in the vicinity of the stem-loop (binding site marked in orange) emerges in evolution. The helical repeat 
protein can serve as an alternative to the stem-loop to protect the mRNA against 5′-to-3′ degradation. 2, A mutation destroys the stem-loop 
(marked in red). 3, This mutation is, however, neutral in the background of the helical repeat protein stabilizing the RNA independently. B) 
Suppression of a T-to-C mutation by RNA editing. A coding sequence requires a uridine (large U) at a particular site to encode the correct amino 
acid and thus keep the corresponding protein functional. 1, A DYW–PPR protein (hexagon = DWY-domain) emerges in evolution that can bind 
upstream of the critical U (binding site in orange). 2, Whether or not the DYW–PPR protein binds to the target sequence is at first irrelevant— 
all messages encode the correct protein. A T-to-C mutation at the DNA-level leads to a codon change that is detrimental to the corresponding 
protein. 3, The mutation is however neutral in the background of the DYW–PPR protein that performs C-to-U base deamination at the RNA level 
and thus restores the correct codon. C) Suppression of a mutation negatively affecting the structure of a group II intron. A group II intron requires 
folding into the correct structure (a simplified 2D-representation is shown) to allow forming of the ribozyme catalytic center and thus intron re
moval. 1, A helical repeat protein emerges in evolution that can bind to a single-stranded region of the intron (binding site shown in orange). 2, 
Whether interaction with this helical repeat protein occurs or not is in the beginning irrelevant for splicing. 3, A mutation leads to a sequence elem
ent that is prone to base-pair with the sequence marked in orange. 4, Base-pairing between the mutated (red) sequence and the orange sequence 
leads to an unproductive alternative intron structure that blocks splicing. However, binding of the helical repeat protein forces the orange sequence 
element into single-strandedness, preventing detrimental misfolding, and fostering continuous splicing.
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and suggests that it does not matter whether a T is already 
encoded at the genome level or a U is established at the 
RNA level—arguing against editing being regulatory in these 
cases (Tillich et al. 2006b, 2006a, 2009b; Wu and Chaw 2022). 
Indeed, mutation of C → T edits at the genomic level is faster 
than that of nonedited Cs, which has been taken as evidence 
that editing confers little if any selective advantage at most 
sites (Shields and Wolfe 1997). Again, one of the most striking 
examples supporting the CNE theory is psaA trans-splicing in 
Chlamydomonas. Despite the involvement of many 
nucleus-encoded factors, the entire process was readily by
passed via the introduction of an intron-less psaA gene 
into the chloroplast genome (Lefebvre-Legendre et al. 
2014). This uncoupled psaA expression from splicing factors 
and allowed wild-type growth under all tested growth condi
tions. Thus, trans-splicing per se does not fulfill an important 
regulatory function.

A prerequisite for CNE is that evolution provides a con
stant stream of available nuclear factors for resolving pro
blems arising from organellar mutations. As mentioned 
above, helical repeat protein families have expanded across 
different taxa. For example, in the case of RF-like PPR proteins 
(discussed above in the section on CMS), specific genomic 
loci constantly spawn novel family members (Fujii et al. 
2011), suggesting that novel editing factors arise from gene 
duplications (Wu and Chaw 2022). Such recombination 
events and duplications are considered to be the main reser
voir for CNE processes to date.

Evidence for regulation: start codon editing— 
regulation, translational regulation, and protein 
diversity
Despite the copious amounts of RNA maturation in plant or
ganelles, and the many references to “regulation” of gene ex
pression by RNA maturation factors in the literature, there is 
little published evidence that RNA maturation controls the 
rate of accumulation of organelle gene products under nat
ural conditions. Evidence that RNA maturation factors are 
rate-limiting for gene expression is scarce, and evidence 
that the levels or activities of RNA maturation factors are 
modulated in response to changes in external conditions 
or feedback from organelle function is scarcer still. Thus, 
using a strict definition of regulation (Pichersky 2005), the 
degree to which RNA maturation controls organelle gene ex
pression is very much an open question, despite the large 
number of potentially regulatory steps. The best evidence 
comes from studies on Chlamydomonas, where RNA matur
ation factors are implicated in “control by epistasy of synthe
sis” (CES), a regulatory mechanism that serves to avoid 
nonstoichiometric expression of subunits of the same com
plex (reviewed in Choquet and Wollman 2009). In the best- 
studied example, unassembled cytochrome f interacts with 
and induces the degradation of MCA1, an RNA stability fac
tor for the petA mRNA encoding cytochrome f (Boulouis 
et al. 2011). This acts as a feedback loop that avoids the 

accumulation of excess unassembled cytochrome f. CES 
acts as a feedback control mechanism on expression of sub
units for several complexes in Chlamydomonas chloroplasts 
(Wostrikoff et al. 2004; Drapier et al. 2007; Boulouis et al. 
2011; Wietrzynski et al. 2021) and in yeast mitochondria 
(Herrmann et al. 2013), although the exact molecular details 
(and whether it is RNA maturation or translation initiation 
that is the control point) often remains unclear. To what ex
tent CES operates in land plant chloroplasts is still unclear 
(Chotewutmontri et al. 2020; Wostrikoff and Stern 2007).

A different potential form of regulation of gene expression 
via RNA maturation is RNA editing, especially via the cre
ation or removal of start and stop codons. In plants with a 
lot of start and stop codon editing it can be shown that these 
editing events are far more conserved than other editing 
events (Li et al. 2018), implying they confer an adaptive ad
vantage. This may be because they provide a regulatory op
portunity to control the timing and level of expression of 
the gene product, but may also simply be due to the oppor
tunity this affords to avoid premature translation of partially 
edited mRNAs, as discussed above. Disentangling these 2 po
tential explanations will be difficult.

An alternative reason for the lack of studies demonstrating 
true regulation of plant organellar gene expression is that 
most such studies are conducted under laboratory condi
tions and only test single stressors. In natural settings, mul
tiple environmental parameters are likely to change, and it 
is possible that organellar RNA processing is used to react 
to such changes. A rare in situ study of Arabidopsis halleri 
in a natural ecosystem demonstrated seasonal genome-wide 
differences in gene expression, including differential expres
sion of plant organellar RNA processing factors (Nagano 
et al. 2019). Another example is the altered environmental 
adaptation of mutants of RNA processing factors, such as he
licases and RBPs (Nawaz and Kang 2017; Lee and Kang 2020). 
Given the regulatory challenges of conducting field studies of 
genetically modified plants in Europe and other parts of the 
world, it will be some time before we have a more compre
hensive understanding of how plant organellar RNA matur
ation is regulated under real-world conditions.

RNA maturation and synthetic biology
Chloroplasts (and to a much lesser extent, mitochondria) 
make an excellent “chassis” for synthetic biology due to their 
small, well-understood genomes, and prodigious production 
potential (Boehm and Bock 2019; Bock 2022). Most chloro
plast synbio projects have used natural control elements to 
drive expression of transgenes and thus are reliant on the 
host factors for correct expression of the desired products. 
In many cases, it would be preferable to use synthetic control 
elements that act orthogonally to the natural on- or off- 
switches of gene expression such that the intended products 
can be produced independently of them. Research to achieve 
this is in its infancy, but some exciting progress is being made. 
Although some effort is being put into developing transcrip
tional control of chloroplast transgenes (Piccinini et al. 2022), 
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the majority of the effort so far mimics the endogenous 
chloroplast gene expression system by relying on RNA mat
uration to control gene expression. PPR proteins in particular 
lend themselves to rational design because each repeat unit 
binds a single nucleotide and the specificity-determining re
sidues are known (Filipovska and Rackham 2013; Yagi et al. 
2014). Synthetic PPR proteins with predictable binding affin
ities have been designed and tested by several groups with 
considerable success (Coquille et al. 2014; Gully et al. 2015; 
Shen et al. 2015, 2016; Yan et al. 2017; Miranda et al. 2018; 
Spåhr et al. 2018; Yu et al. 2019; Bernath-Levin et al. 2021; 
Manavski et al. 2021; Royan et al. 2021; Lesch et al. 2022). 
When expressed in chloroplasts, such proteins bind avidly 
to the intended target, and for example, can be used for 
RNA capture (McDermott et al. 2019). It is a small step 
from there to design proteins that can influence RNA matur
ation in desired ways.

Promoting expression of target RNAs with synthetic 
helical repeat proteins
An inducible chloroplast expression system using a helical re
peat protein was described for Chlamydomonas (Surzycki 
et al. 2007). The TPR protein NAC2, which is required for 
the stabilization of psbD mRNA (Boudreau et al. 2000; 
Ossenbühl and Nickelsen 2000), was used to regulate the ex
pression of foreign genes under the control of the psbD 5′ 
UTR. For this purpose, the NAC2 gene was placed under 

the control of the copper-repressible cytochrome c6 pro
moter in the nuclear genome of Chlamydomonas strain 
nac2-26 (Kuchka et al. 1989; Surzycki et al. 2007). Upon the 
depletion of copper ions, expression of the foreign gene dri
ven by the psbD 5′ UTR was induced in an NAC2-dependent 
manner. In a related system, the cytochrome c6 promoter 
was replaced by the vitamin-repressible MetE promoter 
and a thiamine pyrophosphate-responsive riboswitch to con
trol NAC2 expression (Croft et al. 2007; Helliwell et al. 2014; 
Ramundo and Rochaix 2015). By supplying vitamin B12 and 
thiamine to the growth medium, the expression of NAC2 
and proteins encoded by the transgenes under the control 
of the psbD 5′ UTR could be reversibly inactivated.

Such inducible promoters in combination with binding se
quences of native or artificial helical repeat proteins, as min
imal intercistronic expression elements, may be used for the 
stabilization and translation of transgenes in synthetic oper
ons (Fig. 5; Legen et al. 2018). This could be particularly help
ful for the synchronous expression of functional units 
required for the balanced translation of introduced metabol
ic pathways. Moreover, the use of artificial PRR/OPR/TPR 
proteins designed to recognize certain RNA sequences that 
do not occur in the target genome could enable the specific 
regulation of foreign genes and reduce the risk of unwanted 
homologous recombination events.

A particularly well-studied PPR protein, RNA stabilizer, and 
translation factor, PPR10, was modified to predictably and 
specifically bind a range of RNA sequences that differed 

Figure 5. Helical repeat proteins for an optimized, synchronized, and regulated expression of transgenes in organelles. The expression of native or 
designer helical repeat proteins encoded in the nucleus under control of the c6 promoter can be induced specifically by copper depletion. After its 
translation in the cytosol, the protein is imported into the organelle, where it interacts with BS to regulate the expression of a synthetic operon 
encoding the proteins X, Y, and Z.

1740 | THE PLANT CELL 2023: 35; 1727–1751                                                                                                                Small et al.



from their original targets (Barkan et al. 2012; Miranda et al. 
2017). This approach was used to create a synthetic PPR10 
that could bind a variant of the natural atpH 5′ UTR se
quence (Rojas et al. 2019). When fused upstream of a GFP 
marker gene, this variant atpH 5′ UTR conferred 
synthetic-PPR10-dependent expression of GFP. As the syn
thetic PPR10 specifically recognized the variant atpH 5′ 
UTR and none of the endogenous mRNAs, and since the en
dogenous PPR10 could not bind to this sequence, the meth
od provided an orthogonal “switch” that was largely 
independent of the host’s regulation of chloroplast gene ex
pression (Rojas et al. 2019). Indeed, this approach was used to 
drive GFP expression even in nonphotosynthetic tissues by 
expressing synthetic PPR10 from a suitable promoter (Yu 
et al. 2019). Other synthetic PPR proteins that can act as 
RNA stabilizers have also been created (Manavski et al. 2021).

Alternative approaches to promote the expression of a tar
get RNA can be envisaged via other aspects of RNA matur
ation. For example, synthetic RNA editing factors can be 
designed to promote the activity of the desired gene product 
by altering the coding sequence, as demonstrated by comple
mentation of an rpoA-editing mutant with a synthetic edit
ing factor (Royan et al. 2021). Although this approach has not 
yet been used to activate the expression of chloroplast trans
genes, the approach seems feasible. Indeed, it would seem 
possible to not only alter the coding sequence but also create 
start codons to switch on translation of the target RNA at 
will.

Manipulating target RNAs with synthetic PPR 
proteins
For some applications, it is necessary to prevent expression of 
the target RNA rather than to promote it. This can also be 
achieved by use of synthetic RBPs, which represents an alter
native to reverse genetic approaches that are difficult in plant 
organellar genomes. For example, the PPR protein RPF2 was 
modified to switch its target from the 5′ UTR of cox3 to the 
coding sequence of nad6. Expression of this modified PPR in 
Arabidopsis mitochondria induced cleavage of nad6 mRNA 
and a dramatic decrease in Nad6 protein and assembled 
Complex I (Colas des Francs-Small et al. 2018). This approach 
could be used to create synthetic Rf genes for use in control
ling CMS in hybrid breeding systems, with the advantage that 
in theory the new Rf-gene variants could be created by single- 
nucleotide base editing of host RFL genes rather than requir
ing introduction of a transgene. Again, alternative ways of 
preventing expression of a target RNA can be envisaged, 
for example, introduction of a stop codon via RNA editing, 
or expression of a dominant negative factor that competes 
with a factor required for RNA stabilization or initiation of 
translation.

Outlook
Much progress has been made in understanding the complex 
RNA maturation systems in plant organelles, but much 

remains to be discovered. The considerable (and necessary) 
efforts that have been put into cataloging the numerous 
RBPs involved need to be complemented by equivalent ef
forts at understanding the processes mechanistically. There 
are several particular areas that we would encourage re
searchers to focus on. Our understanding of the kinetics of 
RNA maturation in organelles is still rudimentary. A much 
better understanding of the rates of the different processes 
(and the rate-limiting steps within them) are needed to dis
cover which have regulatory potential. New labeling techni
ques that can provide high-throughput pulse-chase analysis 
appear to offer a way forward (Szabo et al. 2020). With re
spect to the macromolecular interactions involved, nearly 
all the focus has been on the RBPs and their interaction 
with RNA, but little attention has been paid to RNA–RNA in
teractions (either inter- or intramolecular) which are surely 
also extremely important. Again, new technologies for ex
perimentally probing RNA structures exist (Strobel et al. 
2018), but application to plant organellar RNAs is just start
ing (Gawroński et al. 2020). Building on this last point, the 
larger-scale organization of the RNA maturation machinery 
within organelle nucleoids is a very open question. There is 
a lot of active research in other genetic systems looking at 
the structure and activities of ribonucleoprotein “granules” 
using new approaches that could be highly relevant to plant 
organelles (Wiedner and Giudice 2021). Pulling together the 
organellar variety of RBPs and RNAs into granular structures 
could facilitate RNA maturation analogous to what was al
ready observed in human mitochondria (Jourdain et al. 
2016). In terms of genomic engineering a plastid genome as 
an expression hub for high-value proteins, removing the ne
cessity of any RNA processing, e.g. starting by removing all in
trons and editing sites, could be an exciting research avenue. 
Finally, new avenues into finding regulatory roles for RNA 
maturation in organelles may be found in tissues beyond 
leaves—a case in point is the putative role of mitochondrial 
gene expression in regulating seed germination and early 
seedling establishment (Best et al. 2020). Thus several oppor
tunities for exciting breakthroughs are on the horizon.
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