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Abstract
Phosphorus (P) is a macronutrient necessary for plant growth and development. Inorganic phosphate (Pi) deficiency modu
lates the signaling pathway of the phytohormone jasmonate in Arabidopsis thaliana, but the underlying molecular mechanism 
currently remains elusive. Here, we confirmed that jasmonate signaling was enhanced under low Pi conditions, and the 
CORONATINE INSENSITIVE1 (COI1)-mediated pathway is critical for this process. A mechanistic investigation revealed 
that several JASMONATE ZIM-DOMAIN (JAZ) repressors physically interacted with the Pi signaling-related core transcription 
factors PHOSPHATE STARVATION RESPONSE1 (PHR1), PHR1-LIKE2 (PHL2), and PHL3. Phenotypic analyses showed that 
PHR1 and its homologs positively regulated jasmonate-induced anthocyanin accumulation and root growth inhibition. 
PHR1 stimulated the expression of several jasmonate-responsive genes, whereas JAZ proteins interfered with its transcriptional 
function. Furthermore, PHR1 physically associated with the basic helix–loop–helix (bHLH) transcription factors MYC2, MYC3, 
and MYC4. Genetic analyses and biochemical assays indicated that PHR1 and MYC2 synergistically increased the transcription 
of downstream jasmonate-responsive genes and enhanced the responses to jasmonate. Collectively, our study reveals the cru
cial regulatory roles of PHR1 in modulating jasmonate responses and provides a mechanistic understanding of how PHR1 func
tions together with JAZ and MYC2 to maintain the appropriate level of jasmonate signaling under conditions of Pi deficiency.
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Introduction
Phosphorus (P) is a macronutrient essential for various bio
logical processes in plants. Plants take up P from the soil as 
inorganic phosphate (Pi; Raghothama 1999; Nussaume 
et al. 2011). Although P is abundant in the soil, its effective 
utilization is limited by its fixation (e.g. by metals in the 
soil), low diffusion rate, and conversion to organic phosphate 
by microorganisms (Raghothama 1999; Veneklaas et al. 2012; 

López-Arredondo et al. 2014). In response to Pi deficiency, 
plants have evolved various developmental, physiological, 
and biochemical adaptations (Péret et al. 2011; Zhang et al. 
2014; Castrillo et al. 2017). Pi deficiency-induced changes in 
Arabidopsis thaliana mainly include remodeling of the root 
system architecture (i.e. inhibition of root growth), decreased 
photosynthesis, and the accumulation of anthocyanins and 
starch (Yuan and Liu 2008; López-Arredondo et al. 2014; 
Crombez et al. 2019; Liu et al. 2022).
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Mechanistic investigations revealed the sophisticated sig
naling cascade networks underlying plant responses to Pi 
conditions (Thibaud et al. 2010; Yang and Finnegan 2010; 
Wild et al. 2016; Dong et al. 2017; Puga et al. 2017; Ham 
et al. 2018; Sega and Pacak 2019; He et al. 2020). The SPX 
(SYG1/PHO81/XPR1) domain proteins act as repressors of 
several downstream transcription factors in mediating Pi 
starvation responses (Lv et al. 2014; Wang et al. 2014; Ueda 
et al. 2020; Yang et al. 2022). Under conditions of Pi suffi
ciency, SPX1 and SPX2 interact with the MYB-CC-type tran
scription factor PHOSPHATE STARVATION RESPONSE1 
(PHR1), which prevents PHR1 from binding to and activating 
the promoters of PHOSPHATE STARVATION-INDUCED (PSI) 
genes (Wykoff et al. 1999; Rubio et al. 2001; Wang et al. 2018; 
He et al. 2020; Ried et al. 2021; Paz-Ares et al. 2022). Under 
conditions of Pi deficiency, the physical associations of 
SPX1 and SPX2 with PHR1 in the nucleus are diminished 
(Lv et al. 2014). The released PHR1 subsequently binds to 
the PSI promoters and upregulates their expression, thereby 
promoting Pi uptake and utilization by plants (Bustos et al. 
2010; Lv et al. 2014). In addition, SPX proteins also associate 
with other critical regulators, such as the nitrate sensor 
NITRATE TRANSPORTER1.1B (NRT1.1B) and the key tran
scription factor NIN-LIKE PROTEIN3 (NLP3), to integrate Pi 
and nitrogen (N) signaling networks in plants (Hu et al. 
2019; Hu and Chu 2020; Yang et al. 2022).

The PHR1 transcription factor and its close homolog 
PHR1-LIKE (PHL) are crucial activators of the Pi signaling 
pathway in Arabidopsis (Rubio et al. 2001; Müller et al. 
2015; Sun et al. 2016; Wang et al. 2018). A loss-of-function 
mutation of PHR1 leads to decreases in PSI expression and 
cell Pi content as well as impaired anthocyanin accumula
tion. Moreover, the plant biomass and shoot-to-root growth 
ratio are significantly lower for the phr1 mutant than for the 
wild-type control (Rubio et al. 2001). In contrast, the overex
pression of PHR1 results in the increased accumulation of Pi 
in cells and plant tolerance to Pi deficiency (Nilsson et al. 
2007). PHR1 and its PHL homologs directly modulate the ex
pression of PHOSPHATE1 (PHO1), PHOSPHATE 
TRANSPORTER1 (PHT1), PHOSPHATE TRANSPORTER 
TRAFFIC FACILITATOR1 (PHF1), and RIBONUCLEASE1 
(RNS1) and regulate Pi uptake and redistribution (Martín 
et al. 2000; Rubio et al. 2001; Bari et al. 2006; Bustos et al. 
2010). Among these genes, PHO1 is an important Pi trans
porter, mainly involved in the transfer of Pi from roots to 
shoots (Hamburger et al. 2002; Stefanovic et al. 2007; Arpat 
et al. 2012; Wege et al. 2016). PHT1, PHF1, and RNS1 contrib
ute to the translocation of Pi within plant cells (Nilsson et al. 
2007; Nussaume et al. 2011; Guo et al. 2015; Sun et al. 2016). 
PHR1 also upregulates the expression of the FLAVANONE 
3-HYDROXYLASE (F3’H) and LEUCOANTHOCYANIDIN 
DIOXYGENASE (LDOX) genes to mediate the synthesis of an
thocyanins under low Pi conditions (Liu et al. 2022).

Furthermore, PHR1 acts as a crucial node that is modu
lated by several key transcription factors involved in light 

and phytohormone signaling pathways. For example, the es
sential regulators of phytochrome signaling, FAR-RED 
ELONGATED HYPOCOTYL3 (FHY3) and ELONGATED 
HYPOCOTYL5 (HY5), as well as the crucial transcription fac
tor of ethylene signaling ETHYLENE-INSENSITIVE3 (EIN3), 
directly regulate PHR1 expression as part of the molecular 
mechanisms underlying the regulatory effects of light and 
ethylene on Pi responses (Liu et al. 2017; Sega and Pacak 
2019). The transcription factors AUXIN RESPONSE 
FACTOR7 (ARF7) and ARF19, which participate in the auxin 
signaling pathway, mediate plant root growth by binding to 
the PHR1 promoter and modulating its expression (Huang 
et al. 2018; Sega and Pacak 2019). Although there has been 
substantial progress in elucidating the Pi signaling network 
in recent years, the effects of Pi deficiency and PHR1 on en
dogenous phytohormone signaling and the associated mo
lecular mechanisms remain elusive.

The phytohormone jasmonate is a fatty acid compound 
ubiquitous in the plant kingdom and crucial for various 
physiological processes, including anthocyanin accumula
tion, primary root development, trichome formation, male 
fertility, and stress responses (Chini et al. 2016; Hu et al. 
2017; Guo et al. 2018; Howe et al. 2018; Zhou et al. 2019; 
Wasternack 2020; Cao et al. 2022; Han et al. 2023a). 
Jasmonate is perceived by the receptor CORONATINE 
INSENSITIVE1 (COI1), which is an F-box protein that inter
acts with Arabidopsis SKP1-like1 (ASK1) and ASK2, Cullin, 
and RING-BOX1 (Rbx1) to form the SCFCOI1 complex (Xie 
et al. 1998; Xu et al. 2002; Chini et al. 2007; Thines et al. 
2007; Yan et al. 2009). When jasmonoyl–isoleucine concen
trations increase in plants, JASMONATE ZIM-DOMAIN 
(JAZ) proteins, critical repressors of jasmonate signaling, 
are degraded via the SCFCOI1–26S proteasome pathway, trig
gering jasmonate signaling (Thines et al. 2007; Sheard et al. 
2010; Yan et al. 2013; Wu et al. 2020; Li et al. 2021a; Hu 
et al. 2023).

The JAZ repressors negatively regulate jasmonate signaling 
by suppressing the functions of transcription factors from 
multiple families (Fernández-Calvo et al. 2011; Kazan and 
Manners 2013; Chini et al. 2016; Mao et al. 2017). The basic 
helix–loop–helix (bHLH) transcription factor MYC2 was 
the first JAZ-binding factor to be identified. It was subse
quently revealed to target a large proportion of 
jasmonate-responsive genes and regulate diverse jasmonate- 
mediated physiological processes (Boter et al. 2004; 
Schweizer et al. 2013; Wang et al. 2019a; Zander et al. 2020; 
Zhai et al. 2020). MYC2 and its homologous MYC3 activate 
various jasmonate responses through a large transcription 
factor network (Zander et al. 2020). Additionally, JAZ repres
sors also mediate the crosstalk between jasmonate signaling 
and other phytohormone signaling pathways by targeting 
some essential components, such as EIN3, ABSCISIC ACID 
INSENSITIVE5 (ABI5), and DELLA proteins (Song et al. 
2011; Zhu et al. 2011; Hu et al. 2013; Qi et al. 2014; Boter 
et al. 2015; Zhai et al. 2015; Mei et al. 2022). Although the 
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jasmonate signaling network has been relatively thoroughly 
investigated, most studies focused on the interactions be
tween endogenous signals. Hence, it is largely unclear 
whether external signals are integrated with jasmonate sig
naling to regulate physiological processes in plants.

Previous studies have highlighted a connection between 
the Pi signaling pathway and jasmonate signaling pathway 
(Morcuende et al. 2007; Ribot et al. 2008; Khan et al. 2016; 
Zhao et al. 2018; Kong et al. 2021; Pandey et al. 2021). For in
stance, rice (Oryza sativa) OsPHR2 directly mediates the 
transcription of OsJAZ11 and OsMYC2 and modulates im
mune defense and Pi deficiency responses, respectively 
(Kong et al. 2021; Pandey et al. 2021). In Arabidopsis, the syn
thesis and signaling of jasmonate were induced by Pi defi
ciency in both roots and shoots (Morcuende et al. 2007; 
Aparicio-Fabre et al. 2013; Wang et al. 2014; Khan et al. 
2016). Consistently, Pi starvation leads to increased plant tol
erance to insect herbivory (Khan et al. 2016). Nevertheless, 
the exact regulatory mechanisms underlying how jasmonate 
signaling is enhanced under low Pi conditions remain to be 
further elucidated.

In this study, we used molecular and genetic approaches to 
reveal the biological functions of PHR1 in the jasmonate sig
naling pathway and to clarify how Pi deficiency cooperates 
with endogenous jasmonate signaling to mediate physiological 
processes in plants. We initially confirmed that Pi deficiency 
activates jasmonate-related responses in Arabidopsis, includ
ing anthocyanin accumulation, decreased primary root 
growth, and increased expression of jasmonate-responsive 
genes. We also observed that the COI1-mediated pathway is 
critical for Pi deficiency-stimulated jasmonate signaling. 
Further analyses indicated that several JAZ repressors interact 
with PHR1, PHL2, and PHL3 in yeast and plants. Phenotypic 
analyses revealed that PHR1 and its PHL homologs have re
dundant positive effects on jasmonate-induced responses. 
Compared with the wild-type control, the phr1 phl2, phr1 
phl3, and phl2 phl3 double mutants and the phr1 phl2 phl3 tri
ple mutant were less sensitive to jasmonate, whereas transgen
ic seedlings overexpressing PHR1, PHL2, or PHL3 were more 
sensitive to jasmonate. PHR1 stimulates the expression of sev
eral jasmonate-responsive genes, whereas JAZ proteins inter
fere with the transcriptional function of PHR1. Genetic 
analyses indicated that the overexpression of PHR1 suppresses 
the reduced jasmonate sensitivity phenotype of 
JAZ1-accumulating plants. Additionally, PHR1 interacts with 
the transcription factors MYC2, MYC3, and MYC4. 
Furthermore, PHR1 and MYC2 function coordinately in the 
jasmonate signaling pathway to activate downstream target 
genes. Taken together, our results suggest that PHR1, the 
core transcription factor of Pi signaling, positively regulates 
jasmonate-mediated anthocyanin accumulation and root 
growth inhibition. The findings of this study provide a mech
anistic understanding of how jasmonate signaling is enhanced 
under Pi-deficient conditions.

Results
Pi deficiency activates jasmonate signaling, and the 
COI1-mediated pathway is critical for this process
Previous studies have shown that Pi deficiency upregulates 
the expression of several jasmonate-responsive genes 
(Morcuende et al. 2007; Wang et al. 2014; Khan et al. 
2016). To verify whether Pi deficiency promotes plant re
sponses to jasmonate, we treated wild-type seedlings with 
methyl jasmonate (MeJA) on modified half-strength 
Murashige and Skoog (MS) medium containing different 
concentrations of Pi. The seedlings grown under 
Pi-sufficient conditions accumulated more anthocyanins 
and had shorter primary roots in the presence of MeJA com
pared to the mock-treated seedlings (Supplemental Fig. S1, A 
to C). Moreover, the MeJA-induced anthocyanin accumula
tion and root growth inhibition were further enhanced un
der Pi-deficient conditions. We also compared the changes 
in anthocyanin content and root length response to MeJA 
at different Pi concentrations, which indicated that these dif
ferences were greater under Pi-deficient conditions 
(Supplemental Fig. S1, D and E). These observations suggest 
that Pi deficiency promotes plant responses to jasmonate.

To further validate these results, we performed a reverse 
transcription quantitative PCR (RT-qPCR) analysis to examine 
the expression of several well-characterized jasmonate- 
responsive genes. These genes included anthocyanin synthesis- 
related gene LDOX and the jasmonate-induced ALLENE OXIDE 
SYNTHASE (AOS) and LIPOXYGENASE2 (LOX2) genes. As 
shown in Supplemental Fig. S1F, LDOX, AOS, and LOX2 were 
more highly expressed under Pi-deficient conditions than un
der Pi-sufficient conditions upon MeJA treatment. Together, 
these findings show that Pi deficiency stimulates 
jasmonate-induced anthocyanin accumulation and root 
growth inhibition.

To investigate the molecular basis underlying Pi 
deficiency-activated jasmonate signaling, we tested whether 
the crucial components of the endogenous jasmonate signal
ing pathway modulate these processes. The F-box protein 
COI1 is the receptor of jasmonate and positively regulates 
jasmonate responses (Liu et al. 2004; Ren et al. 2005; Yan 
et al. 2009, 2013; Wasternack 2020). Two leaky 
loss-of-function COI1 mutants, coi1-2 and coi1-16, did not dif
fer in anthocyanin content under both Pi-sufficient and 
Pi-deficient conditions in the presence of MeJA, although 
in both conditions, the anthocyanin content of two mutants 
was much lower when compared to the wild-type control 
(Supplemental Fig. S2, A and B). Moreover, coi1-2 and 
coi1-6 had longer roots when compared to the wild type re
gardless of Pi concentrations, as in both conditions, the root 
length of the mutants was increased (Supplemental Fig. S2, A 
and C). JAZ proteins are vital repressors of jasmonate signal
ing (Chini et al. 2007; Thines et al. 2007; Sheard et al. 2010). 
jazQ quintuple mutants (lacking five JAZ repressors; 
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Campos et al. 2016), similar to the wild-type controls, had a 
significant increase in anthocyanin level under Pi-deficient 
conditions when compared to the Pi-sufficient conditions 
(Supplemental Fig. S2, A and B). In both conditions, the 
jazQ mutants had greater anthocyanin levels than the wild- 
type controls (Supplemental Fig. S2, A and B). In addition, 
the root length of jazQ was reduced when compared to 
the wild type under both Pi conditions in response to 
MeJA (Supplemental Fig. S2, A and C). Subsequent data ana
lyses showed that the coi1-2 and coi1-16 were less sensitive to 
changes in Pi conditions when comparing anthocyanin levels 
while the jazQ mutant remained responsive (Supplemental 
Fig. S2D). Unlikely, in the root length assays, all mutant and 
wild-type lines analyzed were responsive to changes in Pi 
conditions (Supplemental Fig. S2E). Nevertheless, the 
changes in root elongation upon MeJA treatment were less 
extensive in the coi1-2 and coi1-16 mutants under both Pi 
conditions compared with those of wild type and jazQ 
(Supplemental Fig. S2E). Considered together, these results 
suggest that the COI1-mediated endogenous pathway pro
motes Pi deficiency-stimulated jasmonate responses.

JAZ repressors physically interact with PHR1, PHL2, 
and PHL3
JAZ proteins negatively regulate jasmonate signaling by inter
acting with and inhibiting downstream transcription factors 
(Kazan and Manners 2013; Howe et al. 2018). Moreover, JAZ 
repressors function together with several transcriptional 
modulators to integrate jasmonate with other signaling 
pathways (Hou et al. 2010; Zhou et al. 2019; Mei et al. 
2022). PHR1 is a core stimulator of Arabidopsis Pi starvation- 
dependent responses (Rubio et al. 2001; Bari et al. 2006; Lv 
et al. 2014; Wang et al. 2018). Because JAZ repressors are im
plicated in Pi deficiency-enhanced jasmonate signaling, we 
queried whether JAZ also physically associate with PHR1.

To verify this possibility, we used the yeast two-hybrid 
(Y2H) system to analyze the possible interactions between 
JAZ and PHR1. For these analyses, sequences encoding the 
full-length JAZ proteins were ligated with the sequence en
coding the Gal4 activation domain in the prey vector 
(AD-JAZ), whereas the sequence encoding the N-terminal re
gion of PHR1 (amino acids 1 to 226) was fused to the se
quence encoding the Gal4 DNA-binding domain of the 
bait vector (BD-PHR11–226). As shown in Fig. 1A, PHR1 inter
acted with JAZ1, JAZ2, JAZ3, JAZ4, JAZ5, JAZ8, JAZ9, JAZ10, 
and JAZ11 in yeast. We also analyzed the possible physical as
sociations between JAZ and PHL (PHL1 to PHL4). PHL2 and 
PHL3 were observed to interact with JAZ4, JAZ6, JAZ8, and 
JAZ9 in yeast (Supplemental Fig. S3). No interaction was de
tected between JAZ and PHL1 or PHL4 (Supplemental Fig. 
S3).

To further confirm the interactions between PHR1 and JAZ 
proteins, we performed bimolecular fluorescence comple
mentation (BiFC) assays in Nicotiana benthamiana. The se
quence encoding the N-terminal fragment of yellow 

fluorescent protein (nYFP) under the control of the cauli
flower mosaic virus (CaMV) 35S promoter (Pro35S) was fused 
with the sequence encoding JAZ1, JAZ7, or JAZ9 to produce 
JAZ1-nYFP, JAZ7-nYFP, and JAZ9-nYFP. Next, sequences en
coding PHR1 and PHL1 were ligated to the sequences encod
ing the C-terminal fragment of YFP (cYFP) to generate 
PHR1-cYFP and PHL1-cYFP. When JAZ1-nYFP or JAZ9-nYFP 
was co-expressed with PHR1-cYFP in N. benthamiana leaves, 
strong YFP fluorescence was detected in the nucleus of trans
formed cells stained with 4′,6-diamidino-2-phenylindole 
(DAPI; Fig. 1B; Supplemental Fig. S4A). However, fluorescence 
was undetectable in the negative controls in which JAZ7-nYFP 
was co-expressed with PHR1-cYFP or when JAZ1-nYFP or 
JAZ9-nYFP was co-expressed with PHL1-cYFP (Fig. 1B; 
Supplemental Fig. S4A). In addition to BiFC assays, 
co-immunoprecipitation (CoIP) assays provided further in 
vivo evidence of the association between JAZ1 and PHR1 in 
transgenic Arabidopsis plants simultaneously overexpressing 
JAZ1 and PHR1 (PHR1-HA-L5 JAZ1-Δ3A). These plants were de
veloped by introducing PHR1 overexpression into JAZ1-Δ3A 
plants (transgenic plants overexpressing JAZ1 with deletion 
of Jas-encoding domain under the control of Pro35S; Han 
et al. 2018; Fig. 1C). To further characterize which JAZ1 protein 
region is required for the interaction with PHR1, we performed 
a directed Y2H analysis, which indicated the regions contain
ing the ZIM domain of JAZ1 interacted with PHR1 in yeast 
(Fig. 1D). Based on these experiments, we conclude that 
PHR1 physically interacts with several JAZ proteins.

Disruption of PHR1, PHL2, and PHL3 attenuates 
jasmonate-induced anthocyanin accumulation and 
root growth inhibition
Having demonstrated that JAZ repressors physically interact 
with PHR1, PHL2, and PHL3, we investigated whether these 
transcription factors modulate jasmonate responses. To as
sess this possibility, we initially analyzed the transcription 
of PHR1 and its close homologs (PHL1 to PHL4) in wild-type 
seedlings with or without MeJA treatment. Similar with JAZ1 
expression (as a positive control), their expression levels in
creased significantly in the MeJA-treated seedlings 
(Supplemental Fig. S5), suggesting that jasmonate triggers 
the transcription of PHR1 and its close homologs. To validate 
whether PHR and PHL respond to jasmonate, we compared 
the phenotypes of the wild-type control and the 
loss-of-function phr1, phl2, and phl3 single mutants upon 
MeJA treatment on a medium with different concentrations 
of Pi. The anthocyanin contents and root lengths were similar 
between the phr1, phl2, and phl3 single mutants and the 
wild-type control in the presence of 30 µM MeJA 
(Supplemental Fig. S6). Accordingly, mutations to PHR1, 
PHL2, or PHL3 alone have little effect on jasmonate 
responses.

Because PHR1, PHL2, and PHL3 have redundant functions 
in plant responses to Pi deficiency (Rubio et al. 2001; Guo 
et al. 2015; Müller et al. 2015; Sun et al. 2016; Wang et al. 
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2018), we speculated that they may have partially overlap
ping roles in mediating jasmonate signaling. To test this hy
pothesis, we constructed phr1 phl2, phr1 phl3, and phl2 phl3 
double mutants and the phr1 phl2 phl3 triple mutant 
through genetic crossing. Next, we sowed the seeds of these 
double and triple mutants on a medium with or without 
30 µM MeJA for an analysis of the resulting seedlings in terms 
of their anthocyanin accumulation and primary root growth. 
In response to the MeJA treatment, the anthocyanin con
tents were lower in these mutants, especially the triple mu
tant, than in the wild-type plants under both Pi-sufficient 
and Pi-deficient conditions (Fig. 2, A and B). The roots of 
these mutants grown on 30 µM MeJA-containing medium 
were significantly longer than those of wild-type plants 
(Fig. 2, A and C); however, in the absence of MeJA, the root 
lengths were similar between the mutants and the wild-type 
control. Moreover, in the presence of MeJA, the Pi 
deficiency-induced changes in anthocyanin contents and 
root lengths were reduced in these mutants than in the wild- 
type seedlings (Fig. 2, D and E). To confirm these observations, 
we examined the expression of several jasmonate-responsive 
genes [i.e. LDOX, DIHYDROFLAVONOL 4-REDUCTASE (DFR), 
AOS, and LOX2] in double and triple mutants treated with 
MeJA under different Pi concentrations. The transcript levels 

of these genes were lower in the double mutants than in 
the wild-type seedlings following the MeJA treatment at differ
ent Pi conditions, but they were even lower in the triple mu
tant (Fig. 2F). Hence, PHR1, PHL2, and PHL3 may positively 
modulate jasmonate-induced anthocyanin accumulation 
and root growth inhibition.

In addition to the PHR1 and PHLs, we considered whether 
the Pi transport-related proteins PHF1, RNS1, and PHT1 also 
contribute to jasmonate signaling. To examine this possibil
ity, we analyzed the deletion mutants phf1-1 and rns1 as 
well as the pht1;1 pht1;5 double mutant regarding their 
anthocyanin contents and root growth on modified half- 
strength MS medium with or without MeJA. There were 
no significant differences in the anthocyanin accumulation 
and root growth between these mutants and the wild-type 
seedlings (Supplemental Fig. S7). Thus, these Pi 
transport-related proteins may not participate in the modu
lation of jasmonate signaling in plants.

An earlier study showed that endogenous jasmonate con
tent was elevated in wild-type seedlings under Pi-deficient 
conditions (Khan et al. 2016). This observation prompted 
us to further investigate whether PHR1 and its PHL homo
logs mediate the biosynthesis of jasmonate. To test this pos
sibility, we measured jasmonate content in roots of 

Figure 1. Physical interactions of JAZ repressors with PHR1, PHL2, and PHL3. A) Y2H assay analyses. Protein interactions were indicated by the ability 
of cells to grow on dropout medium lacking Leu, Trp, His, and Ade and containing 20 mM 3-aminotriazole after a 2-d incubation. pGBKT7 (BD) and 
pGADT7 (AD) were used as negative controls. Bars = 2.5 mm. B) BiFC analyses. The fluorescence detected in the nucleus of transformed Nicotiana 
benthamiana cells co-expressing JAZ1-nYFP (or JAZ9-nYFP) with PHR1-cYFP under the control of the cauliflower mosaic virus (CaMV) 35S pro
moter (Pro35S). No signal was observed in the negative controls where PHR1-cYFP and JAZ7-nYFP or PHL1-cYFP and JAZ1-nYFP (or 
JAZ9-nYFP) were co-expressed. Nuclei are indicated by DAPI staining. Bars = 15 µm. C) CoIP assays. Total proteins were extracted from 8-d-old 
transgenic Arabidopsis seedlings simultaneously overexpressing PHR1 and JAZ1 (PHR1-HA-L5 JAZ1-Δ3A) under the control of Pro35S. 
3Myc-fused JAZ1 was immunoprecipitated using an anti-Myc antibody (1:250) and the co-immunoprecipitated PHR1-HA protein was detected 
using an anti-HA antibody (1:10,000). Protein input for 3Myc-fused JAZ1 in the immunoprecipitated complexes was also tested and is displayed. 
Experiments were repeated three times, with similar results. IP, immunoprecipitation. D) Y2H assay showing that the ZIM domain of JAZ1 is re
sponsible for the interaction with PHR1. Left: diagram of the full-length and truncated JAZ1 constructs with specific deletions. Right: interactions 
are indicated by the ability of yeast cells to grow on the dropout medium lacking Leu, Trp, His, and Ade and containing 20 mM 3-aminotriazole after 
a 2-d incubation. BD and AD were used as negative controls. Bars = 2.5 mm.
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wild-type and phr1 phl2 phl3 mutant seedlings under both 
Pi-sufficient and Pi-deficient conditions with or without ex
ogenous MeJA treatment. As shown in Supplemental Fig. S8, 
the phr1 phl2 phl3 mutants accumulated less jasmonate in 
roots compared with the wild-type plants under 
Pi-deficient conditions without MeJA addition. However, 
the jasmonate levels in wild-type roots were similar with 

those in phr1 phl2 phl3 mutant roots when 30 μM MeJA 
was applied, regardless of Pi conditions (Supplemental 
Fig. S8). These findings suggest that PHR1 and its PHL 
homologs positively affect jasmonate synthesis under 
Pi-deficient conditions in the absence of MeJA, whereas 
they exert little effect on jasmonate accumulation in re
sponse to MeJA exposure.

Figure 2. Mutation of PHR1, PHL2, and PHL3 attenuated jasmonate-induced anthocyanin accumulation and root growth inhibition. A) Phenotypes 
of 8-d-old wild-type (WT), phr1 phl2, phr1 phl3, phl2 phl3, and phr1 phl2 phl3 seedlings grown on modified half-strength Murashige and Skoog (MS) 
medium containing different concentrations of Pi with or without (Mock) 30 µM methyl jasmonate (MeJA). In the absence of MeJA (mock), an 
equal volume of 10% (v/v) ethanol was added. The media containing 0.65 mM or 1 µM KH2PO4 were used as the Pi-sufficient (Pi+) and 
Pi-deficient (Pi−) media, respectively. Experiments were performed four times with similar results by analyzing different batches of seedlings 
(more than 60 seedlings for each sample per replicate). Bars = 5 mm. B) Anthocyanin contents in 8-d-old WT, phr1 phl2, phr1 phl3, phl2 phl3, 
and phr1 phl2 phl3 seedlings grown on Pi+ or Pi− media with or without 30 µM MeJA. Experiments were performed eight times with more 
than 100 seedlings for each sample per replicate. Data are means ± standard deviation (SD) from eight independent experiments (n = 8 replicates). 
FW, fresh weight. C) Root length of 8-d-old WT, phr1 phl2, phr1 phl3, phl2 phl3, and phr1 phl2 phl3 seedlings grown on Pi+ or Pi− media with or 
without 30 µM MeJA. Experiments were performed four times with similar results by analyzing different batches of seedlings (more than 60 seedlings 
for each sample per replicate). The root length of 20 representative seedlings was measured for each sample per replicate by using a vernier caliper. 
Data are means ± SD (n = 20 representative plants). D) Anthocyanin content changes in 8-d-old WT, phr1 phl2, phr1 phl3, phl2 phl3, and phr1 phl2 
phl3 seedlings induced by 30 µM MeJA. Data represent the anthocyanin content differences of seedlings grown on Pi+ or Pi− media. The differential 
value on the y axis represents the difference between the anthocyanin content of seedlings treated with 30 µM MeJA and that of mock-treated 
seedlings. The data used to calculate these difference values are from panel B. Data are means ± SD from eight independent experiments (n = 8 
times). E) Percentage of root length changes in 8-d-old WT, phr1 phl2, phr1 phl3, phl2 phl3, and phr1 phl2 phl3 seedlings induced by 30 µM 
MeJA. Data represent the percentages of root length changes of seedlings grown on Pi+ or Pi− media. The percentages represent the differences 
of root length with or without 30 µM MeJA treatment divided by root length without MeJA exposure. The data used to calculate percentage are 
from panel C. Data are means ± SD (n = 20 representative plants). F) RT-qPCR analyses of LDOX, DFR, AOS, and LOX2 expression levels in WT, phr1 
phl2, phr1 phl3, phl2 phl3, and phr1 phl2 phl3 seedlings. For LDOX and DFR, total RNA was extracted from 8-d-old seedlings (more than 60 seedlings 
for each sample per replicate) grown on Pi+ or Pi− media with or without 30 µM MeJA. For AOS and LOX2, total RNA was extracted from 8-d-old 
seedlings (more than 60 seedlings for each sample per replicate grown on Pi+ or Pi− media) which were treated with or without 100 μM MeJA for 
6 h. Data are means ± SD from five independent experiments (n = 5 times). Bars with different letters are significantly different from each other (P <  
0.05). Data were analyzed by a two-way ANOVA using Tukey’s HSD test.

http://academic.oup.com/plcell/article-lookup/doi/10.1093/plcell/koad057#supplementary-data
http://academic.oup.com/plcell/article-lookup/doi/10.1093/plcell/koad057#supplementary-data
http://academic.oup.com/plcell/article-lookup/doi/10.1093/plcell/koad057#supplementary-data


2138 | THE PLANT CELL 2023: 35; 2132–2156                                                                                                                    He et al.

Transgenic seedlings overexpressing PHR1, PHL2, or 
PHL3 exhibit enhanced jasmonate-mediated 
anthocyanin accumulation and root growth 
inhibition
To further reveal the PHR1 role in jasmonate signaling, we 
generated transgenic plants overexpressing PHR1 under the 
control of Pro35S. The RT-qPCR analysis showed that PHR1 
was most highly expressed in the PHR1-HA-L5 and 
PHR1-HA-L8 transgenic plants (Supplemental Fig. S9). We 
subsequently examined the anthocyanin accumulation and 
root elongation of the T5 progeny of PHR1-HA-L5 and 
PHR1-HA-L8 seedlings grown on modified half-strength MS 
medium with different concentrations of Pi upon MeJA 
treatment. The PHR1-HA-L5 and PHR1-HA-L8 seedlings accu
mulated more anthocyanins and had shorter roots than the 
wild-type control in the presence of MeJA under both 
Pi-sufficient and Pi-deficient conditions (Fig. 3, A to C; 
Supplemental Fig. S10, A and B). The statistical analysis of 
the data indicated that the PHR1-HA-L5 and PHR1-HA-L8 
plants were more sensitive to MeJA than the wild-type plants 
in terms of the jasmonate-induced changes to anthocyanin 
contents and root elongation at all Pi concentrations 
(Fig. 3, D and E; Supplemental Fig. S10, C and D). Having de
monstrated the partial functional redundancy of PHR1, 
PHL2, and PHL3 in the regulation of jasmonate signaling, 
we speculated whether the overexpression of PHL2 or PHL3 
also promotes jasmonate responses. To test this possibility, 
we further generated PHL2- or PHL3-overexpressing trans
genic plants (PHL2-HA-L3 and PHL3-HA-L7; Supplemental 
Fig. S9) and analyzed their phenotypes. Similar to 
PHR1-HA-L5 plants, PHL2-HA-L3 and PHL3-HA-L7 seedlings 
were also more responsive to jasmonate (Fig. 3, A to D).

To substantiate these observations, we analyzed the ex
pression of several jasmonate-responsive genes, including 
LDOX, DFR, AOS, and LOX2 in PHR1-HA-L5, PHL2-HA-L3, 
and PHL3-HA-L7 plants treated with MeJA at different Pi con
ditions. These genes were significantly more highly expressed 
upon MeJA treatment in the PHR1-HA-L5, PHL2-HA-L3, and 
PHL3-HA-L7 plants than in the wild-type plants, and their 
MeJA-induced expression was enhanced by Pi deficiency 
(Fig. 3F). Therefore, the overexpression of PHR1, PHL2, or 
PHL3 renders the plants more responsive to jasmonate. 
Overall, these findings further demonstrate that PHR1, 
PHL2, and PHL3 positively regulate jasmonate-induced 
anthocyanin accumulation and root growth inhibition.

PHR1 directly stimulates the expression of several 
jasmonate-responsive genes, whereas JAZ proteins 
interfere with the transcriptional function of PHR1
Having ascertained that PHR1 positively mediates jasmonate 
signaling in plants, we further analyzed whether PHR1 direct
ly regulates the expression of downstream genes responding 
to jasmonate. More specifically, we initially conducted yeast 
one-hybrid (Y1H) analyses to assess whether PHR1 binds the 
promoter regions of several jasmonate-inducible genes, such 

as LOX2, LOX3, AOS, and ALLENE OXIDE CYCLASE2 (AOC2). 
Previous studies revealed that PHR1 recognizes the 
PHR1-binding sequence (P1BS) cis-element (GNATATNC) 
in the promoters of PSI genes (Rubio et al. 2001; Wu et al. 
2013; Puga et al. 2014; Guo et al. 2015; Ruan et al. 2015). 
The putative P1BS element fragments in the LOX2, LOX3, 
AOS, and AOC2 promoters were cloned into the pAbAi vec
tor to generate pAbAi-pLOX2.1, pAbAi-pLOX3.1, 
pAbAi-pAOS.1, and pAbAi-pAOC2.1, respectively (Fig. 4A; 
Supplemental Fig. S11). We inserted the full-length PHR1 
coding sequence into pGADT7 to produce the AD-PHR1 
construct. The results based on Y1H analyses showed that 
PHR1 interacted with the LOX2 and LOX3 promoter regions 
(pLOX2.1 and pLOX3.1) in yeast cells (Fig. 4A; Supplemental 
Fig. S11). To verify these findings, we performed chromatin 
immunoprecipitation (ChIP) assays by using PHR1-HA-L5 
seedlings grown under both Pi-sufficient and Pi-deficient 
conditions with or without MeJA treatment. As shown in 
Fig. 4B, PHR1 was enriched at the LOX2 and LOX3 promoter 
regions (pLOX2-a and pLOX3-a; Supplemental Table S1) un
der Pi-deficient conditions. Moreover, the enrichment of 
PHR1 on the LOX2 and LOX3 promoters was increased 
upon MeJA treatment (Fig. 4B). These results suggested 
that PHR1 directly associates with the promoters of LOX2 
and LOX3 in vivo under Pi-deficient conditions, and this asso
ciation is responsive to jasmonate.

Because JAZ proteins physically interact with PHR1 (Fig. 1), 
we investigated the modulatory effects of JAZ proteins on 
transcriptional functions of PHR1. To test whether JAZ1 af
fects the binding of PHR1 to the promoter regions of LOX2 
and LOX3 (pLOX2-a and pLOX3-a), we conducted ChIP ana
lyses by using PHR1-HA-L5 JAZ1-Δ3A plants grown under 
Pi-deficient conditions with MeJA treatment. As shown in 
Fig. 4C, ChIP assays revealed that the enrichment of PHR1 
on the LOX2 and LOX3 promoters was reduced in 
PHR1-HA-L5 JAZ1-Δ3A compared with PHR1-HA-L5 plants. 
This observation suggests that JAZ proteins interfere with 
the binding of PHR1 to promoter regions of downstream tar
get genes. To further analyze the regulation of JAZ proteins 
on PHR1, we conducted dual-luciferase (LUC) reporter assays 
using Arabidopsis wild-type mesophyll protoplasts (Yoo et al. 
2007). The effector constructs contained PHR1, JAZ1, JAZ9, or 
GFP under the control of Pro35S, whereas the reporter con
struct comprised a native or mutant version of LOX2 pro
moter fused to the LUC gene (Supplemental Fig. S11). For 
the mutant form of LOX2 promoter (named LOX2mut pro
moter), the putative P1BS element was mutated. 
Compared with the effect of GFP alone, the co-expression 
of PHR1 and GFP substantially increased the expression of 
LUC driven by the LOX2 promoter (Fig. 4D). Additionally, 
the LUC expression level was lower when PHR1 and JAZ1 
were co-expressed than when PHR1 and GFP were co- 
expressed (Fig. 4D). Similar assay results were obtained 
when JAZ9 was co-expressed with PHR1 (Fig. 4D). 
However, co-expression of PHR1 with GFP or JAZ proteins 
had little effect on LOX2 transcription when the P1BS 
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element was mutated (Fig. 4E). These results suggest that the 
P1BS element is crucial for the regulation of PHR1 on LOX2 
expression. Taken together, these results suggest that PHR1 
is a transcriptional activator of the jasmonate-responsive 
LOX2 gene, but its function is attenuated by JAZ repressors.

To further dissect the relationship between JAZ and PHR1, 
we tested whether PHR1 overexpression could partially re
store the phenotype of JAZ1-Δ3A plants. Similar with the 

coi1-2 and coi1-16 mutants, the observed decrease in antho
cyanin accumulation and the increase in the primary root 
length suggested that JAZ1-Δ3A seedlings were less sensitive 
to jasmonate under both Pi-sufficient and Pi-deficient condi
tions (Fig. 4, F and G). Following the MeJA treatment, the 
PHR1-HA-L5 JAZ1-Δ3A plants were in between the 
PHR1-HA-L5 and JAZ1-Δ3A plants in terms of their anthocya
nin content and root growth (Fig. 4, F and G). Further 

Figure 3. Overexpression of PHR1, PHL2, or PHL3 enhances jasmonate-induced anthocyanin accumulation and root growth inhibition. A) 
Phenotypes of 8-d-old wild-type (WT), PHR1-HA-L5, PHL2-HA-L3, and PHL3-HA-L7 seedlings grown on modified half-strength Murashige and 
Skoog (MS) medium containing different concentrations of Pi with or without (Mock) 15 µM methyl jasmonate (MeJA). In the absence of 
MeJA (mock), an equal volume of 10% (v/v) ethanol was added. The media with 0.65 mM and 1 µM KH2PO4 were used as the Pi-sufficient (Pi+) 
and Pi-deficient (Pi−) media, respectively. Experiments were performed four times with similar results by analyzing different batches of seedlings 
(more than 60 seedlings for each sample per replicate). Bars = 5 mm. B) Anthocyanin contents in 8-d-old WT, PHR1-HA-L5, PHL2-HA-L3, and 
PHL3-HA-L7 seedlings grown on Pi+ or Pi− media with or without 15 µM MeJA. Experiments were performed eight times with more than 100 seedlings 
for each sample per replicate. Data are means ± SD from eight independent experiments (n = 8 times). FW, fresh weight. C) Root length of 8-d-old WT, 
PHR1-HA-L5, PHL2-HA-L3, and PHL3-HA-L7 seedlings grown on Pi+ or Pi− media with or without 15 µM MeJA. Experiments were performed four times 
with similar results by analyzing different batches of seedlings (more than 60 seedlings for each sample per replicate). The root length of 20 represen
tative seedlings was measured for each sample per replicate. Data are means ± SD (n = 20 representative plants). D) Anthocyanin content changes in 
8-d-old WT, PHR1-HA-L5, PHL2-HA-L3, and PHL3-HA-L7 seedlings induced by 15 µM MeJA. Data represent the anthocyanin content differences of seed
lings grown on Pi+ or Pi− media. The differences mean the anthocyanins of seedlings with 15 µM MeJA treatment minus those of seedlings without 
MeJA treatment. The data used to calculate these difference values are from panel B. Data are means ± SD from eight independent experiments (n = 8 
times). E) Percentage of root length changes in 8-d-old WT, PHR1-HA-L5, PHL2-HA-L3, and PHL3-HA-L7 seedlings induced by 15 µM MeJA. Data re
present the percentages of root length changes of seedlings grown on Pi+ or Pi− media. The percentages mean the differences of root length with 
or without 15 µM MeJA treatment divided by root length without MeJA exposure. The data used to calculate percentage are from panel C. Data 
are means ± SD (n = 20 representative plants). F) RT-qPCR analyses of LDOX, DFR, AOS, and LOX2 expression levels in WT, PHR1-HA-L5, 
PHL2-HA-L3, and PHL3-HA-L7 seedlings. For LDOX and DFR, total RNA was extracted from 8-d-old seedlings (more than 60 seedlings for each sample 
per replicate) grown on Pi+ or Pi− media with or without 15 µM MeJA. For AOS and LOX2, total RNA was extracted from 8-d-old seedlings (more than 
60 seedlings for each sample per replicate grown on Pi+ or Pi− media) which were treated with or without 100 μM MeJA for 6 h. Data are means ± SD 

from five independent experiments (n = 5 times). Bars with different letters are significantly different from each other (P < 0.05). Data were analyzed by 
a two-way ANOVA using Tukey’s HSD test.
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Figure 4. PHR1 directly stimulates the expression of several jasmonate-responsive genes, whereas JAZ proteins interfere with the transcriptional 
function of PHR1. A) Yeast one-hybrid analyses of the binding of PHR1 to the LOX2 and LOX3 promoters in yeast cells. The empty triangle represents 
the range of yeast concentrations from the dilutions 100 (OD600 = 0.8) to 10−3. pGADT7-p53 + pAbAi-p53 was used as a positive control, and 
pGADT7 + pAbAi-p53 was used as a negative control. Bars = 2.5 mm. B and C) ChIP-qPCR analyses of the enrichment of PHR1 in the AOC2 
(pAOC2-a), LOX2 (pLOX2-a), LOX3 (pLOX3-a), and AOS (pAOS-a) promoters. Eight-d-old PHR1-HA-L5 seedlings grown on half-strength 
Murashige and Skoog (MS) medium with different concentrations of Pi were treated with or without 100 µM methyl jasmonate (MeJA) for 1 h 
(B). The media with 0.65 mM and 1 µM KH2PO4 were used as the Pi-sufficient (Pi+) and Pi-deficient (Pi−) media, respectively. Eight-d-old wild-type 
(WT), PHR1-HA-L5, and PHR1-HA-L5 JAZ1-Δ3A seedlings grown on Pi− media were treated with 100 µM MeJA for 1 h (C). More than 50 seedlings for 
each sample were pooled for ChIP assays using an anti-HA antibody. qPCR data from the ChIP assays with the ACTIN2 untranslated region sequence 
(pACTIN2) as a negative control. Data are means ± SD from three independent biological replicates. D) Transient dual-luciferase reporter assays 
indicating that PHR1 promotes the transcription of LOX2, whereas the JAZ repressors interfere with the transcriptional activation of LOX2 by 
PHR1. Data are means ± SD from three independent biological replicates. E) Transient dual-luciferase reporter assays showing that the P1BS 
cis-element of the LOX2 promoter is crucial for the regulation by PHR1. The reporter construct comprised a mutant version (the putative P1BS 
element was mutated) of LOX2 promoter (promoter LOX2mut) fused to the LUC gene. Data are means ± SD from three independent biological re
plicates. F) Anthocyanin contents in 7-d-old WT, PHR1-HA-L5, JAZ1-Δ3A, and PHR1-HA-L5 JAZ1-Δ3A seedlings grown on Pi+ or Pi− media with or 
without 15 µM MeJA. Experiments were performed eight times with more than 100 seedlings for each sample per replicate. Data are means ± SD 

from eight independent experiments (n = 8 times). FW, fresh weight. G) Root length of 7-d-old WT, PHR1-HA-L5, JAZ1-Δ3A, and PHR1-HA-L5 
JAZ1-Δ3A seedlings grown on Pi+ or Pi− media with or without 15 µM MeJA. Experiments were performed four times with similar results by ana
lyzing different batches of seedlings (more than 60 seedlings for each sample per replicate). The root length of 20 representative seedlings was mea
sured for each sample per replicate. Data are means ± SD (n = 20 representative plants). H) Anthocyanin content changes in 7-d-old WT, 
PHR1-HA-L5, JAZ1-Δ3A, and PHR1-HA-L5 JAZ1-Δ3A seedlings induced by 15 µM MeJA. Data represent the anthocyanin content differences of seed
lings grown on Pi+ or Pi− media. The differences mean the anthocyanins of seedlings with 15 µM MeJA treatment minus those of seedlings without 
MeJA treatment. The data used to calculate these difference values are from panel F. Data are means ± SD from eight independent experiments (n =  
8 times). I) Percentage of root length changes in 7-d-old WT, PHR1-HA-L5, JAZ1-Δ3A, and PHR1-HA-L5 JAZ1-Δ3A seedlings induced by 15 µM MeJA. 
Data represent the percentages of root length changes of seedlings grown on Pi+ or Pi− media. The percentages mean the differences of root length 
with or without 15 µM MeJA treatment divided by root length without MeJA exposure. The data used to calculate percentage are from panel G. 
Data are means ± SD (n = 20 representative plants). Bars with different letters are significantly different from each other (P < 0.05). Data shown in 
panels D and E were analyzed by a one-way ANOVA, and others were analyzed by a two-way ANOVA using Tukey’s HSD test.
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statistical analyses of the data indicated that the overexpres
sion of PHR1 partially rescued the reduced MeJA sensitivity of 
the JAZ1-Δ3A plants (Fig. 4, H and I). Based on these findings, 
we concluded that PHR1 positively mediates jasmonate sig
naling in a process that is compromised by JAZ proteins.

MYC transcription factors physically associate with 
PHR1 and promote Pi deficiency-induced jasmonate 
signaling
The MYC transcription factors are the most extensively char
acterized JAZ-binding factors that positively regulate mul
tiple jasmonate-related processes (Dombrecht et al. 2007; 
Chen et al. 2012; Qi et al. 2015; Liu et al. 2019; You et al. 
2019). Considering that PHR1 also interacts with JAZ repres
sors, we wondered whether PHR1 physically associates with 
the MYC factors. To investigate this possibility, we con
structed prey vectors to produce full-length MYC2, MYC3, 
or MYC4 fused to the Gal4 activation domain (AD-MYC2, 
AD-MYC3, and AD-MYC4). The Y2H results showed that 
PHR1 interacts with MYC2, MYC3, and MYC4 in yeast 
(Fig. 5A). We also identified the PHR1 domain required for 
the associations with the MYC factors. More specifically, 
PHR1 was divided into the N-terminal fragment (amino 
acid residues 1 to 226), C-terminal fragment (including the 
MYB and CC domains; amino acid residues 219 to 410), 
and the fragment containing only the CC domain (amino 
acid residues 293 to 410) (Fig. 5A). The assay results indicated 
the N-terminal region of PHR1 is essential for the interactions 
with MYC (Fig. 5A). To further characterize the MYC2 do
main involved in the interaction, we divided MYC2 into 
the N-terminal fragment (including the TAD domain; amino 
acid residues 1 to 188), the mid-terminal fragment (amino 
acid residues 189 to 445), and the C-terminal fragment (in
cluding the bHLH domain; amino acid residues 396 to 924). 
The subsequent analysis demonstrated that the N-terminal 
and mid-terminal fragments of MYC2 interact with PHR1 
(Fig. 5B).

To verify the interactions between PHR1 and MYC factors 
in plant cells, we performed BiFC assays. Sequences encoding 
truncated PHR1 proteins were fused to the YFP C-terminal 
fragment and expressed under the control of Pro35S to gen
erate PHR11–226-cYFP and PHR1293–410-cYFP. Next, the full- 
length coding sequences of MYC2 and MYC3 as well as the 
sequence encoding the C-terminal fragment of MYC2 were 
ligated to the sequence encoding the N-terminal fragment 
of YFP (nYFP) to generate MYC2-nYFP, MYC3-nYFP, and 
MYC2396–624-nYFP. When PHR1-cYFP or PHR11–226-cYFP 
was co-expressed with MYC2-nYFP in N. benthamiana, 
strong YFP fluorescence was observed in the nucleus of trans
formed cells stained with DAPI (Fig. 5C; Supplemental Fig. 
S4B). The same result was obtained for N. benthamiana cells 
in which PHR1-cYFP and MYC3-nYFP were co-expressed. 
Fluorescence was undetectable in the negative controls 
(Fig. 5C; Supplemental Fig. S4B). These results reflect the in
teractions between PHR1 and MYC factors in the plant cell 

nucleus. The CoIP assays further provided in vivo evidence 
of the association between PHR1 and MYC2 in transgenic 
plants simultaneously overexpressing PHR1 and MYC2 
(PHR1-HA-L5 MYC2-4Myc; Fig. 5D), which were derived 
from a cross between the PHR1-HA-L5 with transgenic plants 
overexpressing MYC2 under the control of Pro35S 
(MYC2-4Myc; Chen et al. 2011, 2012; Zhai et al. 2013). 
Collectively, these findings show that MYC factors interact 
with PHR1 in plant cells.

Because MYC factors physically associate with PHR1, we in
vestigated whether they are involved in Pi 
deficiency-activated jasmonate signaling. We examined the 
phenotypes of MYC2-4Myc, the loss-of-function mutant 
myc2-1, and the triple mutant myc2 myc3 myc4 (myc234) 
on medium supplemented with MeJA and different concen
trations of Pi. On the medium containing MeJA, the 
jasmonate-sensitive responses of MYC2-4Myc plants were in
creased under Pi-deficient conditions. In contrast, the myc2-1 
and myc234 had lower anthocyanin levels and longer primary 
roots, regardless of the Pi concentration (Fig. 6, A to C). 
Compared with the Pi-sufficient conditions, the changes in 
the anthocyanin content and root elongation were signifi
cantly greater in the MYC2-4Myc plants under Pi-deficient 
conditions, but significantly less extensive in the myc2-1 
and myc234 mutants at all Pi concentrations (Fig. 6, D and 
E). These results indicate MYC factors promote Pi 
deficiency-induced jasmonate signaling.

PHR1 functions synergistically with MYC2 in 
jasmonate signaling, whereas JAZ1 inhibits their 
transcriptional functions and physical interaction
In this study, we showed that the myc2-1 mutant accumu
lated less anthocyanins and had longer primary roots than 
the wild-type plants upon jasmonate treatment (Fig. 6, A
to E), which is in accordance with the findings of earlier stud
ies (Lorenzo et al. 2004; Niu et al. 2011). Because of the con
firmed physical interaction between PHR1 and MYC2, both 
of which mediate Pi deficiency-induced jasmonate signaling, 
we examined the possible genetic relationship between PHR1 
and MYC2 by assessing whether the overexpression of PHR1 
could rescue the phenotype of myc2-1 plants. We crossed 
PHR1-HA-L5 with myc2-1 to generate PHR1-HA-L5 myc2-1 
plants, which were then treated with MeJA for phenotypic 
analyses. Consistent with the above-mentioned results, 
PHR1-HA-L5 was more sensitive to jasmonate, whereas 
myc2-1 was less sensitive, in terms of their anthocyanin con
tents and root growth on medium with MeJA (Fig. 6, F and 
G). However, PHR1-HA-L5 myc2-1 seedlings had higher 
anthocyanin contents and more inhibited primary root 
growth than the myc2-1 mutant plants, regardless of the Pi 
concentration (Fig. 6, F and G). Further statistical analyses 
suggested that the overexpression of PHR1 compensates 
for the reduced sensitivity of myc2-1 to MeJA (Fig. 6, H and 
I). To confirm this phenotypic observation, we quantitatively 
analyzed the expression of the jasmonate-responsive LDOX, 

http://academic.oup.com/plcell/article-lookup/doi/10.1093/plcell/koad057#supplementary-data
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DFR, AOS, and LOX2 genes in MeJA-treated PHR1-HA-L5, 
myc2-1, and PHR1-HA-L5 myc2-1 seedlings. Relative transcript 
levels of these genes were lower in myc2-1 than in 
PHR1-HA-L5 myc2-1 seedlings (Supplemental Fig. S12). 
Accordingly, overaccumulation of PHR1 partially suppressed 
the phenotype of myc2-1 in response to jasmonate.

Based on the genetic association between PHR1 and MYC2, 
we speculated whether PHR1 works in concert with MYC2 in 
the jasmonate signaling pathway. We further examined the 
PHR1-HA-L5 MYC2-4Myc phenotype in response to MeJA 
treatment. As expected, at different Pi concentrations, the 
jasmonate response of PHR1-HA-L5 MYC2-4Myc plants was 
more robust than that of PHR1-HA-L5 and MYC2-4Myc 
plants (i.e. a much higher anthocyanin content and signifi
cantly inhibited primary root growth) (Fig. 7, A to C). 

Notably, the data suggested that PHR1-HA-L5 MYC2-4Myc 
plants were more responsive to jasmonate under 
Pi-deficient conditions than under Pi-sufficient conditions 
(Fig. 7, D and E). These findings support the idea that 
PHR1 works synergistically with MYC2 in the Pi deficiency- 
promoted jasmonate signaling pathway.

To elucidate the biochemical mechanism underlying the 
synergistic effects of PHR1 and MYC2, we analyzed whether 
PHR1 and MYC2 co-activate the expression of downstream 
genes. We initially conducted ChIP assays to analyze the en
richment of these two factors at the LOX2 promoter in the 
PHR1-HA-L5 MYC2-4Myc seedlings under Pi-deficient condi
tions with MeJA treatment. More PHR1 and MYC2 were en
riched at the LOX2 promoter regions (pLOX2-a and pLOX2-b, 
respectively; Supplemental Tables S1 and S2) when they were 

Figure 5. MYC transcription factors physically associate with PHR1. A) Mapping the PHR1-interacting domain of MYC2, MYC3, and MYC4 accord
ing to a Y2H assay. Interactions are indicated by the ability of cells to grow on dropout medium lacking Leu, Trp, His, and Ade and containing 20 mM 
3-aminotriazole after a 2-d incubation. pGBKT7 (BD) and pGADT7 (AD) were used as negative controls. Bars = 2.5 mm. B) Mapping the 
MYC2-interacting domain of PHR1 according to a Y2H assay. Interactions are indicated by the ability of cells to grow on dropout medium lacking 
Leu, Trp, His, and Ade and containing 20 mM 3-aminotriazole after a 2-d incubation. BD and AD were used as negative controls. Bars = 2.5 mm. C) 
BiFC analyses. The fluorescence detected in the nucleus of transformed N. benthamiana cells co-expressing MYC2-nYFP (or MYC3-nYFP) with 
PHR1-cYFP or PHR11–226-cYFP under the control of the cauliflower mosaic virus (CaMV) 35S promoter (Pro35S). No signal was observed in the 
negative controls where PHR1-cYFP (or PHR11–226-cYFP) and MYC2396–624-nYFP or PHR1293–410-cYFP and MYC2-nYFP co-expressed. Nuclei are 
indicated by DAPI staining. Bars = 15 µm. D) CoIP assays. Total proteins were extracted from 8-d-old transgenic Arabidopsis seedlings simultaneous
ly overexpressing PHR1 and MYC2 (PHR1-HA-L5 MYC2-4Myc) under the control of Pro35S. 4Myc-fused MYC2 was immunoprecipitated using an 
anti-Myc antibody (1:250) and the co-immunoprecipitated PHR1-HA protein was detected using an anti-HA antibody (1:10,000). Protein input 
for 4Myc-fused MYC2 in the immunoprecipitated complexes was also detected and is shown. Experiments were repeated three times with similar 
results. IP, immunoprecipitation.

http://academic.oup.com/plcell/article-lookup/doi/10.1093/plcell/koad057#supplementary-data
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Figure 6. MYC transcription factors are involved in Pi deficiency-promoted jasmonate signaling. A) Phenotypes of 8-d-old wild-type (WT), 
MYC2-4Myc, myc2-1, and myc2 myc3 myc4 (myc234) seedlings grown on modified half-strength Murashige and Skoog (MS) medium containing 
different concentrations of Pi with or without (Mock) 15 µM methyl jasmonate (MeJA). In the absence of MeJA (mock), an equal volume of 
10% (v/v) ethanol was added. The media with 0.65 mM and 1 µM KH2PO4 were used as the Pi-sufficient (Pi+) and Pi-deficient (Pi−) media, respect
ively. Experiments were performed four times with similar results by analyzing different batches of seedlings (more than 60 seedlings for each sample 
per replicate). Bars = 5 mm. B) Anthocyanin contents in 8-d-old WT, MYC2-4Myc, myc2-1, and myc234 seedlings grown on Pi+ or Pi− media with or 
without 15 µM MeJA. Experiments were performed eight times with more than 100 seedlings for each sample per replicate. Data are means ± SD 

from eight independent experiments (n = 8 times). FW, fresh weight. C) Root length of 8-d-old WT, MYC2-4Myc, myc2-1, and myc234 seedlings 
grown on Pi+ or Pi− media with or without 15 µM MeJA. Experiments were performed four times with similar results by analyzing different batches 
of seedlings (more than 60 seedlings for each sample per replicate). The root length of 20 representative seedlings was measured for each sample per 
replicate. Data are means ± SD (n = 20 representative plants). D) Anthocyanin content changes in 8-d-old WT, MYC2-4Myc, myc2-1, and myc234 
seedlings induced by 15 µM MeJA. Data represent the anthocyanin content differences of seedlings grown on Pi+ or Pi− media. The differences 
mean the anthocyanins of seedlings with 15 µM MeJA treatment minus those of seedlings without MeJA treatment. The data used to calculate 
these difference values are from panel B. Data are means ± SD from eight independent experiments (n = 8 times). E) Percentage of root length 
changes in 8-d-old WT, MYC2-4Myc, myc2-1, and myc234 seedlings induced by 15 µM MeJA. Data represent the percentages of root length changes 
of seedlings grown on Pi+ or Pi− media. The percentages mean the differences of root length with or without 15 µM MeJA treatment divided by root 
length without MeJA exposure. The data used to calculate percentage are from panel C. Data are means ± SD (n = 20 representative plants). F) 
Anthocyanin contents in 8-d-old WT, PHR1-HA-L5, myc2-1, and PHR1-HA-L5 myc2-1 seedlings grown on Pi+ or Pi− media with or without 
15 µM MeJA. Experiments were performed eight times with more than 100 seedlings for each sample per replicate. Data are means ± SD from eight 
independent experiments (n = 8 times). FW, fresh weight. G) Root length of 8-d-old WT, PHR1-HA-L5, myc2-1, and PHR1-HA-L5 myc2-1 seedlings 
grown on Pi+ or Pi− media with or without 15 µM MeJA. Experiments were performed four times with similar results by analyzing different batches 
of seedlings (more than 60 seedlings for each sample per replicate). The root length of 20 representative seedlings was measured for each sample per 
replicate. Data are means ± SD (n = 20 representative plants). H) Anthocyanin content changes in 8-d-old WT, PHR1-HA-L5, myc2-1, and PHR1-HA-L5 
myc2-1 seedlings induced by 15 µM MeJA. Data represent the anthocyanin content differences of seedlings grown on Pi+ or Pi− media. The differ
ences mean the anthocyanins of seedlings with 15 µM MeJA treatment minus those of seedlings without MeJA treatment. The data used to calculate 
these difference values are from panel F. Data are means ± SD from eight independent experiments (n = 8 times). I) Percentage of root length 
changes in 8-d-old WT, PHR1-HA-L5, myc2-1, and PHR1-HA-L5 myc2-1 seedlings induced by 15 µM MeJA. Data represent the percentages of root 
length changes of seedlings grown on Pi+ or Pi− media. The percentages mean the differences of root length with or without 15 µM MeJA treatment 
divided by root length without MeJA exposure. The data used to calculate percentage are from panel G. Data are means ± SD (n = 20 representative 
plants). Bars with different letters are significantly different from each other (P < 0.05). Data were analyzed by a two-way ANOVA using Tukey’s HSD 
test.
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Figure 7. PHR1 functions synergistically with MYC2 in jasmonate signaling. A) Phenotypes of 7-d-old wild-type (WT), PHR1-HA-L5, MYC2-4Myc, and 
PHR1-HA-L5 MYC2-4Myc seedlings grown on modified half-strength Murashige and Skoog (MS) medium containing different concentrations of Pi 
with or without (Mock) 15 µM methyl jasmonate (MeJA). In the absence of MeJA (mock), an equal volume of 10% (v/v) ethanol was added. The 
media with 0.65 mM and 1 µM KH2PO4 were used as the Pi-sufficient (Pi+) and Pi-deficient (Pi−) media, respectively. Experiments were performed 
four times with similar results by analyzing different batches of seedlings (more than 60 seedlings for each sample per replicate). Bars = 5 mm. B) 
Anthocyanin contents in 7-d-old WT, PHR1-HA-L5, MYC2-4Myc, and PHR1-HA-L5 MYC2-4Myc seedlings grown on Pi+ or Pi− media with or without 
15 µM MeJA. Experiments were performed eight times with more than 100 seedlings for each sample per replicate. Data are means ± SD from eight 
independent experiments (n = 8 times). FW, fresh weight. C) Root length of 7-d-old WT, PHR1-HA-L5, MYC2-4Myc, and PHR1-HA-L5 MYC2-4Myc 
seedlings grown on Pi+ or Pi− media with or without 15 µM MeJA. Experiments were performed four times with similar results by analyzing different 
batches of seedlings (more than 60 seedlings for each sample per replicate). The root length of 20 representative seedlings was measured for each 
sample per replicate. Data are means ± SD (n = 20 representative plants). D) Anthocyanin content changes in 7-d-old WT, PHR1-HA-L5, MYC2-4Myc, 
and PHR1-HA-L5 MYC2-4Myc seedlings induced by 15 µM MeJA. Data represent the anthocyanin content differences of seedlings grown on Pi+ or Pi 
− media. The differences mean the anthocyanins of seedlings with 15 µM MeJA treatment minus those of seedlings without MeJA treatment. The 
data used to calculate these difference values are from panel B. Data are means ± SD from eight independent experiments (n = 8 times). E) 
Percentage of root length changes in 7-d-old WT, PHR1-HA-L5, MYC2-4Myc, and PHR1-HA-L5 MYC2-4Myc seedlings induced by 15 µM MeJA. 
Data represent the percentages of root length changes of seedlings grown on Pi+ or Pi− media. The percentages mean the differences of root length 
with or without 15 µM MeJA treatment divided by root length without MeJA exposure. The data used to calculate percentage are from panel C. 
Data are means ± SD (n = 20 representative plants). F) ChIP-qPCR analyses of the enrichment of PHR1 in the LOX2 (pLOX2-a) promoter after the 
enhancement by MYC2. Eight-d-old WT, PHR1-HA-L5, and PHR1-HA-L5 MYC2-4Myc seedlings grown on Pi− media after treatment with 100 µM 
MeJA for 1 h were used in ChIP assays. More than 50 seedlings for each sample were pooled for ChIP assays using an anti-HA antibody. qPCR                                                                                                                                                                                            

(continued) 
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both present than when only one was present (Fig. 7, F and 
G). To explain whether this outcome is caused by altered 
MYC2 expression level in the transgenic lines, we compared 
the MYC2 expression in MYC2-4Myc and PHR1-HA-L5 
MYC2-4Myc seedlings. As shown in Supplemental Fig. S13A, 
the expression level of MYC2 was similar in both transgenic 
lines. We also found no significant changes in MYC2 expres
sion in phr1 phl2 phl3 and PHR1-HA-L5, further supporting 
that PHR1 does not affect the expression of MYC2 
(Supplemental Fig. S13B). These results imply that PHR1 
and MYC2 reciprocally enhance each other’s enrichment 
on the promoter regions of downstream target genes.

Next, we used the dual-luciferase reporter assay to deter
mine the effects of PHR1 and MYC2 on LOX2 transcription 
in wild-type mesophyll protoplasts (Yoo et al. 2007). LUC ex
pression driven by the LOX2 promoter was much higher 
when PHR1 and MYC2 were co-expressed than when PHR1 
and GFP or MYC2 and GFP were co-expressed (Fig. 7H). To 
further investigate whether the protein interaction of 
PHR1–MYC2 is necessary for the regulation, we constructed 
effectors including a truncated PHR1 or MYC2 protein, dis
rupting the physical association of PHR1 with MYC2 
(Supplemental Fig. S11). One effector contained a mutant 
version of PHR1 with the N-terminal 149 amino acids deleted 
(PHR1150–410) (Supplemental Fig. S11). The other effector in
cluded a truncated MYC2 fragment removing N-terminal 
249 amino acids (MYC2250–624) (Supplemental Fig. S11). As 
shown in Fig. 7H, LOX2 promoter-driven LUC expression 
was much lower when co-expressing PHR1 with MYC2250–624 

or co-expressing PHR1150–410 with MYC2 than when co- 
expressing PHR1 with MYC2. These results suggest that PHR1 
and MYC2 function cooperatively to activate the transcription 
of target genes, and their physical interaction is essential for this 
regulatory relationship.

Then, we also analyzed the influence of the P1BS element 
on the PHR1–MYC2 co-activation of LOX2. When the P1BS 
element in the LOX2 promoter was mutated, MYC2 co- 

expression with GFP still increased LUC expression in wild- 
type protoplasts (Fig. 7I). Moreover, co-expression of MYC2 
with PHR1 also moderately upregulated LUC expression dri
ven by the LOX2mut promoter compared with co-expression 
of MYC2 with GFP in protoplasts of wild type (Fig. 7I). To as
sess whether functional defects of PHR1 would affect the 
transcriptional function of MYC2, we examined the ability 
of MYC2 to activate LOX2 transcription in phr1 phl2 phl3 
protoplasts (Fig. 7J). We observed that LOX2 promoter- 
driven LUC activity was lower in MYC2-expressing phr1 
phl2 phl3 protoplasts than in wild-type protoplasts (Fig. 7J). 
Similarly, LOX2 promoter-driven LUC activity was decreased 
in PHR1-expressing myc2-1 and myc234 protoplasts than in 
wild-type protoplasts (Fig. 7K). Collectively, these results sup
port the notion that PHR1 and MYC2 function synergistically 
to positively regulate the expression of target genes.

Considering the interactions of JAZ with PHR1 and MYC2, 
we further performed the dual-luciferase reporter assays to 
investigate the regulatory effect of JAZ1 on these two factors 
in wild-type mesophyll protoplasts (Yoo et al. 2007). As 
shown in Fig. 7L, co-expression of JAZ1 with PHR1 and/or 
MYC2 downregulated LOX2 promoter-driven LUC activity 
compared with the expression of PHR1 and/or MYC2 in pro
toplasts of wild type. These results suggest that JAZ1 inter
feres with the transcriptional functions of PHR1 and MYC2. 
To further uncover the regulatory relationship among 
JAZ1, PHR1, and MYC2, we conducted the BiFC assays to de
tect the interaction between JAZ1 and MYC2 with or with
out PHR1. When PHR1 was co-expressed with JAZ1-nYFP 
and MYC2-cYFP, the YFP fluorescence signal was dramatical
ly reduced in leaves of N. benthamiana (Fig. 7M; 
Supplemental Fig. S14). As a negative control, when 
β-glucuronidase (GUS) was co-expressed with JAZ1-nYFP 
and MYC2-cYFP, the YFP fluorescence intensity was not ob
viously changed (Fig. 7M; Supplemental Fig. S14). These ob
servations show that PHR1 competes with JAZ1 to bind 
MYC2.

Figure 7. (Continued) 
data from the ChIP assays with the ACTIN2 untranslated region sequence (pACTIN2) were used as a negative control. Data are means ± SD from three 
independent biological replicates. G) ChIP-qPCR analyses of the enrichment of MYC2 to the LOX2 (pLOX2-b) promoter after the enhancement by 
PHR1. Eight-d-old WT, MYC2-4Myc, and PHR1-HA-L5 MYC2-4Myc seedlings grown on Pi− media after treatment with 100 µM MeJA for 1 h were 
used in ChIP assays. More than 50 seedlings for each sample were pooled for ChIP assays using an anti-Myc antibody. qPCR data from the ChIP assays 
with the ACTIN2 untranslated region sequence (pACTIN2) as a negative control. Data are means ± SD from three independent biological replicates. H 
and I) Transient dual-luciferase reporter assays indicating that PHR1 acts synergistically with MYC2 to promote the transcription of LOX2. The phys
ical interaction between PHR1 and MYC2 (H) and the P1BS element of LOX2 (I) exerts effects on PHR1–MYC2 co-activation. Data are means ± SD 

from three independent biological replicates. J) Transient dual-luciferase reporter assays indicating that the activation of LOX2 promoter by MYC2 
decreases in the phr1 phl2 phl3 mutant. Data are means ± SD from three independent biological replicates. K) Transient dual-luciferase reporter 
assays indicating that the activation of LOX2 promoter by PHR1 decreases in the myc2-1 and myc234 mutants. Data are means ± SD from three 
independent biological replicates. L) Transient dual-luciferase reporter assays indicating that transcriptional activation of LOX2 by PHR1 in concert 
with MYC2 is repressed by JAZ1. Data are means ± SD from three independent biological replicates. Bars with different letters are significantly dif
ferent from each other (P < 0.05). Data shown in panels H, I, and L were analyzed by a one-way ANOVA, and others were analyzed by a two-way 
ANOVA using Tukey’s HSD test. M) BiFC analyses showing that PHR1 diminishes the interaction between JAZ1 and MYC2. As a negative control, 
GUS (β-glucuronidase) was co-expressed with JAZ1-nYFP and MYC2-cYFP. Fluorescence was detected 48 h after co-expression of JAZ1-nYFP +  
MYC2-cYFP (mock), PHR1 + JAZ1-nYFP + MYC2-cYFP (PHR1), or GUS + JAZ1-nYFP + MYC2-cYFP (GUS). Bars = 15 µm.
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Discussion
The phytohormone jasmonate is a critical signaling com
pound that regulates diverse physiological processes, such 
as root growth inhibition, anthocyanin accumulation, and 
stress responses (Wasternack and Hause 2013; Huang et al. 
2017; Zhang et al. 2017; Guo et al. 2018; Howe et al. 2018). 
The jasmonate signaling pathway is involved in a complex 
network that includes its crosstalk with other phytohormone 
signaling pathways (Spoel et al. 2003, 2007; Navarro et al. 
2008; Cheng et al. 2009; Grant and Jones 2009; Sun et al. 
2009; Zhou et al. 2019). Although the jasmonate signaling 
network has been studied, it is still largely unclear whether 
crucial environmental signals and jasmonate work together 
to modulate physiological processes in plants. P is an essen
tial macronutrient for plant growth and development 
(Marschner 1995; Raghothama 1999; Nussaume et al. 
2011). Plants exposed to Pi deficiency produce local signals 
that lead to changes in the root system architecture to en
hance Pi uptake (Péret et al. 2011; Zhang et al. 2014; 
Crombez et al. 2019). Plants have evolved complex and so
phisticated signaling cascades that mitigate the effects of Pi 
deficiency (Duan et al. 2008; Kant et al. 2011; Lin et al. 
2013; Lei et al. 2016). Numerous studies have indicated 
that phytohormones modulate the Pi-deficient responses 
of plants (Franco-Zorrilla et al. 2005; Perez-Torres et al. 
2008; Chacón-López et al. 2011; Mayzlish-Gati et al. 2012; 
Kumar et al. 2015; Liu et al. 2017). Interestingly, previous 
studies found that Pi deficiency induces jasmonate synthesis 
and signaling (Morcuende et al. 2007; Aparicio-Fabre et al. 
2013; Wang et al. 2014; Khan et al. 2016). Consistently, we 
confirmed that Pi deficiency activates jasmonate 
signaling-related responses in Arabidopsis thaliana, including 
anthocyanin accumulation, root growth inhibition, and the 
activation of genes involved in jasmonate synthesis and sig
naling (Supplemental Fig. S1, A to F). A phenotypic analysis 

revealed that the COI1 mutants coi1-2 and coi1-16 are less 
sensitive to Pi deficiency-activated jasmonate signaling, sug
gesting that the COI1-mediated endogenous pathway is cru
cial for Pi deficiency-induced jasmonate responses 
(Supplemental Fig. S2, A to E).

Jasmonate signaling involves profound transcriptional re
programming of cytogenetic programs associated with com
plex interactions between positive and negative regulators 
(e.g. COI1 receptor and JAZ repressors). Additionally, JAZ re
pressors modulate jasmonate signaling by physically interact
ing with downstream transcription factors (Fonseca et al. 
2009; Kazan and Manners 2013; Huang et al. 2017; Ju et al. 
2019; Pan et al. 2020). In the current study, the PHR1 tran
scription factor and its homologs PHL2 and PHL3 were found 
to interact with several JAZ proteins (Fig. 1, A to D; 
Supplemental Fig. S3), implying that PHR1, PHL2, and PHL3 
may be critical regulators of the jasmonate signaling path
way. PHR1 is a core modulator of the response to Pi defi
ciency (Rubio et al. 2001; Sun et al. 2016; Wang et al. 2018; 
Guo et al. 2021; Navarro et al. 2021). Several crucial transcrip
tion factors were demonstrated to mediate the expression of 
PHR1 (Liu et al. 2017; Huang et al. 2018; Sega and Pacak 2019). 
Moreover, PHR1 entry into the nucleus and its transcription
al function are mainly suppressed by SPX proteins (Lv et al. 
2014; Puga et al. 2014; Osorio et al. 2019). Nevertheless, the 
reports on the physical associations between PHR1 and other 
regulatory proteins are very limited. Because PHR1, PHL2, 
and PHL3 interact with JAZ repressors (Fig. 1, A to D), we fur
ther analyzed their functions related to jasmonate signaling. 
Based on the phenotypic results (Figs. 2, A to F and 3, A to F; 
Supplemental Fig. S10), we concluded that PHR1, PHL2, and 
PHL3 positively regulate jasmonate-induced anthocyanin ac
cumulation and root growth inhibition. Biochemical analyses 
showed that PHR1 binds the promoters of several 
jasmonate-responsive genes to increase their transcription 
(Fig. 4, A to E). Furthermore, we revealed that JAZ proteins 
repress the transcriptional functions of PHR1 in the jasmo
nate signaling pathway (Fig. 4, C to E). By examining the phe
notypes of transgenic plants simultaneously overexpressing 
PHR1 and JAZ1, we detected that the reduced sensitivity of 
JAZ1-Δ3A plants to jasmonate was partially attenuated by 
the PHR1 protein (Fig. 4, F to I). These results show that 
PHR1 acts together with JAZ repressors to integrate jasmo
nate signaling and Pi signaling pathways through direct pro
tein–protein interactions.

Although PHR1-HA-L5 mimicked the phenotypes of 
PHL2-HA-L3 and PHL3-HA-L7 upon MeJA treatment, the per
formances of PHR1-HA-L5 and PHL2-HA-L3 or PHL3-HA-L7 
were significantly different (Fig. 3, A to F). One possible ex
planation for the phenotypic discrepancies is that the 
PHR1 levels were higher in PHR1-HA-L5 than those of PHL2 
and PHL3 in PHL2-HA-L3 and PHL3-HA-L7, respectively 
(Supplemental Fig. S15A). It is also possible that PHR1 exerts 
relatively greater regulatory effects on downstream genes 
compared with PHL2 and PHL3. Consistent with this notion, 
LOX2 promoter-driven LUC expression was higher in 

Figure 8. Working model for Pi deficiency-activated jasmonate signal
ing. Under Pi-deficient conditions, PHR1 is expressed and the encoding 
protein is modified and activated. When the jasmonate concentration 
increases, the receptor COI1 perceives jasmonate and targets JAZ pro
teins for degradation via the SCFCOI1–26S proteasome pathway. The 
degradation of JAZ repressors enables MYC2 and PHR1 to form a pro
tein complex that positively regulates jasmonate-induced anthocyanin 
accumulation and root growth inhibition.
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PHR1-expressing wild-type protoplasts than in PHL2- or 
PHL3-expressing protoplasts (Supplemental Fig. S15B). The 
expression of PHR1 and its close homologs (PHL1 to PHL4) 
was upregulated in wild-type seedlings by exogenous applica
tion of MeJA (Supplemental Fig. S3). Considering the direct 
linkage between the JAZ repressors and PHR1 protein, jasmo
nate signaling may have a dual regulatory function on PHR1. 
Similarly, recent research has revealed that the root hair- 
related bHLH genes ROOT HAIR DEFECTIVE 6 (RHD6), 
RHD6 LIKE1 (RSL1), RSL2, RSL4, and RSL5 were upregulated 
in MeJA-treated wild-type plants (Han et al. 2020). 
Meanwhile, JAZ repressors bind to and interfere with 
RHD6 and RSL1 transcription factors, thereby mediating 
root hair development (Han et al. 2020).

Earlier studies have shown that jasmonate triggers the 
transcription of MYC2 and that the JAZ repressors directly 
target MYC2 involved in a variety of jasmonate-mediated 
physiological processes (Chung et al. 2008; Katsir et al. 
2008; Wang et al. 2017; Liu et al. 2019). In addition, Qi 
et al. (2011) demonstrated that JAZ interact with transcrip
tion factors such as MYB75, GLABLA1 (GL1), 
TRANSPARENT TESTA8 (TT8), and GLABLA3 (GL3) to regu
late anthocyanin accumulation and trichome initiation. 
Moreover, the transcriptional levels of those factors are in
duced by jasmonate (Qi et al. 2011). Based on the findings, 
we hypothesize that jasmonate’s dual regulatory function 
on downstream transcription factors is an adaptive approach 
for maintaining proper jasmonate signaling and ensuring op
timal plant survival in specific physiological contexts like Pi 
deficiency.

Previous works confirmed that PHR1 is a central modula
tor of Pi signaling and mediates the expression of PSI genes 
including PHT1, PHF1, and RNS1, which encode Pi transpor
ters (Rubio et al. 2001; Guo et al. 2015; Sun et al. 2016; 
Wang et al. 2018). Among them, PHT1 is the most intensively 
studied Pi transporter, which transports Pi from the endo
plasmic reticulum through vesicles to the plasma membrane, 
and this process is required for the function of PHF1 (Mudge 
et al. 2002; Shin et al. 2004; González et al. 2005; Bayle et al. 
2011; Nussaume et al. 2011). The ribonuclease RNS1 has 
been reported to be involved in the recirculation and reacti
vation of Pi (Bariola et al. 1994; Duan et al. 2008). We further 
analyzed whether these Pi transporters are also involved in 
regulating jasmonate signaling. By observing the jasmonate 
responses of loss-of-function phf1-1, rns1, and pht1;1 pht1;5 
mutants, we found that the above-mentioned transporters 
are not involved in the jasmonate signaling pathway 
(Supplemental Fig. S7, A and B). Interestingly, it has been de
monstrated that PHO1, a transporter involved in Pi transfer 
from root to shoot, contributes to jasmonate synthesis and 
signal transduction (Hamburger et al. 2002; Stefanovic et al. 
2007; Arpat et al. 2012; Khan et al. 2016; Wege et al. 2016). 
In the Pi-deficient mutant pho1, jasmonate synthesis was en
hanced and jasmonate signaling pathway was activated, as 
well as plants accumulated more anthocyanins, compared 
with the wild-type control (Khan et al. 2016). Ribot et al. 

(2008) found that application of the jasmonate precursor 
12-oxo-phytodienoic acid (OPDA), but not MeJA, increased 
the expression of AtPHO1;H10. These observations suggest 
that the linkage of Pi transport and jasmonate signaling is so
phisticated and complex, and that the precise regulatory re
lationship needs to be further investigated in depth. In 
addition to the Pi transporters, SPX proteins are widely re
ported to be the main repressors of PHR1 and its homologs 
(Lv et al. 2014; Wang et al. 2014, 2018). In recent years, SPX 
proteins have been reported to integrate signaling pathways 
for more efficient utilization of N and Pi in plants (Medici 
et al. 2019; Hu et al. 2019, 2020; Ueda et al. 2020; Yang 
et al. 2022). However, it is currently unknown whether SPX 
help the jasmonate signaling pathway in modulating plant 
growth and development.

The MYC transcription factors MYC2, MYC3, and MYC4 
are the most comprehensively studied JAZ-interacting pro
teins that mediate a subset of jasmonate processes (e.g. in
hibition of root elongation and defense responses) 
(Lorenzo et al. 2004; Dombrecht et al. 2007; Qi et al. 2015; 
Liu et al. 2019; Wang et al. 2019a). In this study, we found 
that PHR1 physically associated with MYC transcription fac
tors to form protein complexes in plant cells (Fig. 5, A to D). 
Further phenotypic analyses revealed that MYC transcription 
factors are likely essential for Pi deficiency-activated jasmo
nate signaling (Fig. 6, A to E). Considering that both PHR1 
and MYC positively regulate the jasmonate signaling path
way, we clarified their genetic and biochemical regulatory re
lationships (Figs. 6, F to I and 7, A to M). We found that PHR1 
and MYC2 synergistically upregulate the expression of sev
eral downstream jasmonate-responsive genes, thereby 
co-activating Pi deficiency-mediated jasmonate signaling 
(Fig. 7, A to K). Nevertheless, PHR1 may also be involved in 
mediating jasmonate signaling through other key regulators, 
such as the close homologs of MYC2. Consistently, overex
pression of PHR1 partially rescued the less sensitive pheno
type of myc2-1 in response to MeJA (Fig. 6, F to I; 
Supplemental Fig. S12). Transient transactivation assays re
vealed that LOX2 promoter-driven LUC expression was lower 
in PHR1-expressing protoplasts of the myc234 triple mutant 
than in protoplasts of the myc2-1 single mutant (Fig. 7K). 
Moreover, other transcription factors downstream of JAZ, 
such as the bHLH subgroup IIId factors MYB75, EIN3, and 
CONSTANS (CO), are also engaged in jasmonate-mediated 
anthocyanin accumulation and primary root growth inhib
ition (Song et al. 2013, 2014; Nakata et al. 2013; 
Sasaki-Sekimoto et al. 2013; Han et al. 2023b; Fonseca et al. 
2014; Serrano-Bueno et al. 2022). The possible connections 
between PHR1 and those transcription factors also need to 
be clarified in future investigations.

In the agricultural production, plants (crops) are less effi
cient in their uptake of Pi fertilizers (Raghothama 1999; 
Veneklaas et al. 2012; López-Arredondo et al. 2014). Plants 
have evolved a range of physiological or developmental strat
egies to synchronize internal biological processes with sur
rounding environmental Pi deficiency (Zhang et al. 2014; 
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Castrillo et al. 2017; Crombez et al. 2019). The finding that Pi 
deficiency amplifies jasmonate signaling suggests that envir
onmental and phytohormonal signals coordinate to establish 
an appropriate balance among development or stress signal
ing pathways so that growth and stress tolerance are opti
mized for the prevailing conditions (Jia et al. 2022). 
Specifically, plants accumulate more anthocyanins under 
low Pi conditions in the presence of jasmonate 
(Supplemental Fig. S1; He et al. 2020; Liu et al. 2022; Song 
et al. 2022). The accumulation of anthocyanins prevents 
overexcitation and photosynthetic damage associated with 
Pi starvation (Gould et al. 2018; Liu et al. 2022). In addition, 
anthocyanins scavenge reactive oxygen species produced un
der stressful conditions (Zhang et al. 2013; Yan et al. 2020), 
which also allows plants to adapt to Pi-limiting conditions 
and survive.

Another co-regulation of Pi signaling pathway and jasmo
nate signaling pathway is to remodel the root structure of 
plants, such as total root length, root branching, and root 
hairs (Jiang et al. 2007; López-Arredondo et al. 2014; 
Crombez et al. 2019). This strategy is a way for plants to es
tablish a specific developmental program in response to per
ceived environmental stimuli that maximize an organ’s 
expansion and elongation capacity. Remodeling of root 
structure may facilitate nutrient (i.e. Pi) acquisition with min
imal energy cost. In addition, Pi deficiency stimulates jasmo
nate signaling to enhance resistance of plants against 
pathogens and insect herbivory (Khan et al. 2016; Wang 
et al. 2019b; Kong et al. 2021; Li et al. 2021b; Tang et al. 
2022). The integration of Pi signaling pathway and jasmonate 
signaling pathway also provides profound insights into the 
regulation of trade-offs between plant growth and defense. 
Plant genetic engineering should appreciate this regulatory 
crosstalk and the exact molecular mechanisms that underpin 
it to improve the efficiency of Pi utilization.

To further elucidate the molecular basis of the Pi 
deficiency-activated jasmonate signaling in Arabidopsis, we 
propose the following simplified model involving JAZ– 
PHR1–MYC2 (Fig. 8). Under Pi-deficient conditions, PHR1 
is expressed and the encoding protein is modified and acti
vated (Miura et al. 2005; Bari et al. 2006; Nilsson et al. 2007; 
Lei et al. 2016; Sun et al. 2016; He et al. 2020). When the jas
monate concentration increases, the receptor COI1 perceives 
jasmonate and targets JAZ proteins for degradation via the 
SCFCOI1–26S proteasome pathway (Chini et al. 2007; Thines 
et al. 2007; Sheard et al. 2010; Yan et al. 2013). The degrad
ation of JAZ repressors enables MYC2 and PHR1 to form a 
protein complex that positively regulates jasmonate-induced 
anthocyanin accumulation and root growth inhibition 
(Fig. 8). PHR1 may also modulate jasmonate signaling 
through other critical regulators, such as two MYC2 homo
logs (MYC3 and MYC4). Our results reveal critical roles of 
PHR1 in modulating jasmonate responses and provide mech
anistic insights into how jasmonate signaling is fine-tuned 
under Pi-deficient conditions.

Materials and methods
Materials and plant growth conditions
The phytohormone MeJA was purchased from 
Sigma-Aldrich. Common chemicals were obtained from 
Shanghai Sangon (Shanghai, China), and Taq DNA poly
merases were purchased from Takara Biotechnology 
(Dalian, China). The anti-Myc (Sigma-Aldrich, catalog no. 
M4439) and anti-HA (Sigma-Aldrich, catalog no. H9658) 
antibodies used in this study were purchased from 
Sigma-Aldrich. The wild-type and mutant Arabidopsis thali
ana plants are in the Columbia (Col-0) genetic background. 
The mutant or transgenic plants coi1-2 (Xu et al. 2002), 
coi1-16 (Pan et al. 2020), jazQ (Campos et al. 2016), myc2-1, 
myc2 myc3 myc4 (Fernández-Calvo et al. 2011), JAZ1-Δ3A 
(Han et al. 2018), and MYC2-4Myc (Chen et al. 2012) were de
scribed previously. The phr1 (SALK_067629C), phl2 
(SALK_114420C), phl3 (SALK_113627C), phf1-1 (SALK_ 
037068C), rns1 (SALK_087165C), pht1;1 (SALK_088586C), 
and pht1;5 (SALK_138009C) mutants were obtained from 
The Arabidopsis Biological Resource Center at Ohio State 
University (http://abrc.osu.edu). The double mutants phr1 
phl2, phr1 phl3, phl2 phl3, and pht1;1 pht1;5 as well as the tri
ple mutant phr1 phl2 phl3 were generated via genetic crosses 
using standard techniques. To generate PHR1-HA, PHL2-HA, 
and PHL3-HA transgenic plants, the full-length PHR1, PHL2, 
and PHL3 cDNA sequences were inserted into the binary vec
tor pOCA30 in the sense orientation for the subsequent ex
pression under the control of Pro35S (Hu et al. 2013).

Arabidopsis seeds were surface-sterilized for 12 min in 20% 
(v/v) bleach and then sown on modified half-strength MS 
medium and kept at 4 °C for 3 d pre-germination. The media 
containing 0.65 mM or 1 µM KH2PO4 were used as the 
Pi-sufficient (Pi+) and Pi-deficient (Pi−) media, respectively. 
For the MeJA treatment, MeJA was dissolved in ethanol to 
produce a 10 mM stock solution. In the absence of MeJA 
(mock), an equal volume of 10% (v/v) ethanol was added. 
Arabidopsis seedlings were grown on medium with or with
out different concentrations of MeJA. Arabidopsis and N. 
benthamiana plants were incubated in an artificial growth 
chamber at 22 °C with a 16-h light (100 µE m−2 s−1, white 
fluorescent bulbs, full wavelength)/8-h dark photoperiod.

Anthocyanin content and primary root length 
measurements
To measure the anthocyanin content, Arabidopsis seedlings 
were grown on modified half-strength MS (Pi+, Pi−, MeJA+, 
or MeJA−) medium before measuring the anthocyanin con
tent as previously described (Qi et al. 2011). The anthocyanin 
content was expressed as (A535 − A650) per gram fresh weight. 
All experiments were performed eight times with more than 
100 seedlings for each sample per replicate. Data are means  
± standard deviation (SD) from eight independent experi
ments (n = 8 replicates).

http://academic.oup.com/plcell/article-lookup/doi/10.1093/plcell/koad057#supplementary-data
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To measure the primary root length, seedlings were grown 
vertically on modified half-strength MS (Pi+, Pi−, MeJA+, or 
MeJA−) medium before measuring the root length. All ex
periments were performed four times with similar results 
by analyzing different batches of seedlings (more than 60 
seedlings for each sample per replicate). The root length of 
20 representative seedlings was measured for each sample 
per replicate by using a vernier caliper (Supplemental Data 
Set S1). Data are means ± SD (n = 20 representative plants).

RNA extraction and RT-qPCR
Total RNA was extracted from seedlings (more than 60 seed
lings for each sample) treated with different concentrations 
of Pi and MeJA using the TRIzol reagent (Invitrogen). The 
RT-qPCR analysis was conducted as described by Han et al. 
(2018). Briefly, 1.0 μg DNase-treated RNA was reverse tran
scribed in a 20-μL reaction volume containing oligo-(dT)19 

primer and Moloney murine leukemia virus reverse tran
scriptase (Fermentas, Hanover, MD, USA). The cDNA was di
luted 1:1 prior to use. A 1.0-μL aliquot of the cDNA solution 
was used for the RT-qPCR analysis, which was performed 
using the SYBR Premix Ex Taq kit (Takara Biotechnology) 
and the LightCycler 480 real-time PCR system (Roche). The 
RT-qPCR analyses were completed using five biological repli
cates by analyzing different batches of seedlings (more than 
60 seedlings for each sample per replicate), each with three 
technical replicates. Changes in the expression of the target 
gene were calculated using the 2–ΔΔCt method relative to 
the expression of ACTIN2 (AT3G18780). The gene-specific 
RT-qPCR primers are listed in Supplemental Table S3.

Y2H assays
To analyze the physical interactions of PHR1 and its homo
logs with JAZ proteins or MYC transcription factors, the full- 
length PHR1 and PHL coding sequences were cloned into 
pGBKT7 to produce the bait constructs (BD-PHR1 and 
BD-PHL), whereas the full-length JAZ and MYC coding se
quences were inserted into pGADT7 to generate the prey 
constructs (AD-JAZ and AD-MYC). To identify the specific 
protein regions responsible for the interactions, multiple se
quences encoding truncated forms of PHR1 were inserted 
into pGBKT7, whereas sequences encoding truncated forms 
of JAZ1 or MYC2 were incorporated into pGADT7. Y2H as
says were performed as previously described (Yang et al. 
2021). Briefly, yeast (Saccharomyces cerevisiae) strain 
AH109 cells were co-transformed with the bait and prey con
structs. Protein interactions were indicated by the ability of 
the transformed cells to grow on a dropout medium 
lacking Leucine (Leu), Tryptophan (Trp), Histidine (His), 
and Adenine (Ade) and containing 20 mM 3-aminotriazole 
after a 2-d incubation. The primers used for cloning are listed 
in Supplemental Data Set S2.

BiFC assays
The cDNA sequences encoding the N-terminus (173 amino 
acids) of YFP (nYFP) and the C-terminus (64 amino acids) 

of YFP (cYFP) were amplified by PCR and inserted into sep
arate pFGC5941 plasmids to produce pFGC-nYFP and 
pFGC-cYFP, respectively (Kim et al. 2008). The sequences en
coding full-length or truncated PHR1 and full-length PHL1 
and MYC2 were inserted into pFGC-cYFP to produce the fol
lowing fusion proteins: PHR1-cYFP, PHR11–226-cYFP, 
PHR1293–410-cYFP, PHL1-cYFP, and MYC2-cYFP. Similarly, se
quences encoding full-length JAZ1, JAZ7, or JAZ9 were in
serted into pFGC-nYFP to produce the following fusion 
proteins: JAZ1-nYFP, JAZ7-nYFP, and JAZ9-nYFP. Sequences 
encoding full-length or truncated MYC2 and full-length 
MYC3 were fused with the sequence encoding nYFP to gen
erate the following proteins: MYC2-nYFP, MYC2396–624- 
nYFP, and MYC3-nYFP. The resulting recombinant plasmids 
were inserted into Agrobacterium tumefaciens (strain 
EHA105) cells for the infiltration of N. benthamiana leaves 
as previously described (Hu et al. 2019). The experiments 
were performed at least three times using different batches 
of plants. For each biological replicate, more than 12 N. 
benthamiana plants were infiltrated and more than 600 cells 
were examined. The leaves were analyzed at 48 h post- 
infiltration. Specifically, YFP and DAPI fluorescent signals 
were detected using a confocal laser scanning microscope 
(Olympus Fluoview FV1000, Tokyo, Japan). For DAPI staining, 
infected leaves were stained with DAPI solution (10 mM) for 
5 min before observation. The YFP signals were imaged with 
excitation at 488 nm (the intensity was 24%, and the gains 
were 1), and the emission signal was collected between 510 
and 530 nm. The DAPI signals were imaged with excitation 
at 405 nm (the intensity was 15%, and the gains were 1), 
and the emission signal was collected between 420 and 
440 nm. The primers used for cloning are listed in 
Supplemental Data Set S2.

CoIP assays
To verify the PHR1–JAZ1 and PHR1–MYC2 interactions, we 
extracted proteins from 8-d-old transgenic Arabidopsis 
plants simultaneously overexpressing PHR1 and JAZ1 
(PHR1-HA-L5 JAZ1-Δ3A) or PHR1 and MYC2 (PHR1-HA-L5 
MYC2-4Myc) under the control of Pro35S. The protein ex
traction was performed using extraction buffer containing 
50 mM Tris–HCl (pH 7.4), 1 mM EDTA, 150 mM NaCl, 10% 
(v/v) glycerol, 0.1% (v/v) Triton X-100, 1 mM PMSF, and 
1× Roche Protease Inhibitor Cocktail. Immunoprecipitation 
experiments were performed using Protein A/G Plus agarose 
beads (Santa Cruz Biotechnology, catalog no. D1217) following 
the manufacturer’s protocol. Briefly, cell lysates were pre- 
cleared using the Protein A/G Plus agarose beads and then in
cubated with the anti-Myc antibody (1:250) and the Protein 
A/G Plus agarose beads at 4 °C overnight in the extraction buf
fer. The agarose beads were washed three times with the ex
traction buffer and then the co-immunoprecipitated protein 
was detected by immunoblotting using an anti-HA antibody 
(1:10,000). The primers used for cloning are listed in 
Supplemental Data Set S2.
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Y1H assays
Y1H assays were performed using the Matchmaker Yeast 
One-Hybrid System Kit (Clontech) according to the manu
facturer’s instructions. The full-length PHR1 coding sequence 
was inserted into pGADT7 to produce the AD-PHR1 con
struct. The putative promoter fragments of AOS, LOX2, 
LOX3, and AOC2 were cloned into the pAbAi vector to gen
erate pAbAi-pAOS.1, pAbAi-pLOX2.1, pAbAi-pLOX3.1, and 
pAbAi-pAOC2.1, respectively, which were linearized using 
BstBI and then inserted into Y1HGold yeast cells. The trans
formed cells were grown on the SD/−Ura medium in plates 
for 3 d. Next, AD-PHR1 was then inserted into the cells 
harboring pAbAi-pAOS.1, pAbAi-pLOX2.1, pAbAi-pLOX3.1, 
and pAbAi-pAOC2.1 and then selected on the SD/−Leu 
medium in plates. Co-transformed cells were cultured on 
the SD/−Leu medium containing aureobasidin A (AbA: 
300 µg/L) in plates for 3 d. Positive clones were obtained 
for several yeast cell concentrations from the dilutions 100 

(OD600 = 0.8) to 10−3. The primers used for cloning are listed 
in Supplemental Data Set S2.

ChIP assays
The ChIP assays were performed essentially as previously de
scribed (Mukhopadhyay et al. 2008; Jiang et al. 2014). Briefly, 
the wild-type, PHR1-HA-L5, PHR1-HA-L5 JAZ1-Δ3A, 
MYC2-4Myc, and PHR1-HA-L5 MYC2-4Myc seedlings were 
treated with 1% formaldehyde (cross-linking treatment) 
and then their chromatin was isolated. The anti-HA and 
anti-Myc antibodies (1:1,000) were used to immunoprecipi
tate the protein–DNA complexes. The precipitated DNA 
was purified using a commercial PCR purification kit 
(Qiagen). To quantitatively analyze the PHR1–DNA (target 
promoters) and MYC2–DNA binding, the RT-qPCR analysis 
was performed as previously described (Mukhopadhyay 
et al. 2008), with the ACTIN2 3′ untranslated region sequence 
as the endogenous control. Relative enrichment was calcu
lated in terms of the DNA binding rate. The analyses were 
completed using data of three biological replicates by analyz
ing different batches of seedlings (more than 50 seedlings for 
each sample per replicate). The primers used for the ChIP as
says are listed in Supplemental Tables S1 and S2.

Transient transcriptional activation assays
Full-length PHR1, JAZ1, JAZ9, PHL2, PHL3, MYC2, and GFP, and 
truncated PHR1150–410 and MYC2250–624 coding sequences 
were amplified by PCR and cloned into separate pGreenII 
62-SK vectors for the subsequent expression under the con
trol of the CaMV 35S promoter (i.e. as effectors) (Fig. 6A). 
The putative promoter sequences of LOX2 and LOX2mut 

(the putative PHR1-recognized P1BS element “GTATATAC” 
of the LOX2 promoter was mutated to “TCCGCGGA”) 
were amplified by PCR and inserted into separate pGreenII 
0800-LUC vectors (i.e. as reporters) (Hellens et al. 2005). 
Different combinations of the recombinant plasmids were 
used to transform Arabidopsis leaf mesophyll protoplasts 

as previously described (Sheen 2001). Transfected cells 
were cultured for 16 to 18 h before the relative LUC activity 
was analyzed using the Dual-Luciferase Reporter Assay sys
tem (Promega, Madison, WI, USA), which measures the activ
ities of firefly LUC and the internal control Renilla reniformis 
LUC (REN). The primers used for cloning are listed in 
Supplemental Data Set S2.

Statistical analysis
The effects of interactions between Pi and MeJA on antho
cyanin accumulation, primary root elongation, and expres
sion levels of several jasmonate-induced genes in seedlings 
were tested. All analyses of multifactorial variance were per
formed using the generalized linear model procedure in SPSS 
for Windows. The model results showed that the interactive 
effect between Pi and MeJA was significant (P < 0.05) or 
highly significant (P < 0.01) (Supplemental Data Set S3). 
Based on the experiments, statistical analysis was further per
formed by Student’s t test or one-way or two-way ANOVA 
using Tukey’s honest significant difference (HSD) as a post 
hoc test. The results are shown in Supplemental Data Set S4.

Accession numbers
Arabidopsis Genome Initiative numbers for the genes dis
cussed in this article are as follows: COI1, AT2G39940; JAZ1, 
AT1G19180; JAZ2, AT1G74950; JAZ3, AT3G17860; JAZ4, 
AT1G48500; JAZ5, AT1G17380; JAZ6, AT1G72450; JAZ7, AT2 
G34600; JAZ8, AT1G30135; JAZ9, AT1G70700; JAZ10, 
AT5G13220; JAZ11, AT3G43440; JAZ12, AT5G20900; MYC2, 
AT1G32640; MYC3, AT5G46760; MYC4, AT4G17880; PHR1, 
AT4G28610; PHL1, AT5G29000; PHL2, AT3G24120; PHL3, 
AT4G13640; PHL4, AT2G20400; AOC2, AT3G25770; AOS, 
AT5G42650; LOX2, AT3G45140; LOX3, AT1G17420; PHF1, 
AT3G52190; RNS1, AT2G02990; PHT1;1, AT5G43350; 
PHT1;5, AT2G32830; and ACTIN2, AT3G18780.
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