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Background. Immune protection against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) can be induced by 
natural infection or vaccination or both. Interaction between vaccine-induced immunity and naturally acquired immunity at the 
population level has been understudied.

Methods. We used regression models to evaluate whether the impact of coronavirus disease 2019 (COVID-19) vaccines 
differed across states with different levels of naturally acquired immunity from March 2021 to April 2022 in the United States. 
Analysis was conducted for 3 evaluation periods separately (Alpha, Delta, and Omicron waves). As a proxy for the proportion 
of the population with naturally acquired immunity, we used either the reported seroprevalence or the estimated proportion of 
the population ever infected in each state.

Results. COVID-19 mortality decreased as coverage of ≥1 dose increased among people ≥65 years of age, and this effect did not 
vary by seroprevalence or proportion of the total population ever infected. Seroprevalence and proportion ever infected were not 
associated with COVID-19 mortality, after controlling for vaccine coverage. These findings were consistent in all evaluation periods.

Conclusions. COVID-19 vaccination was associated with a sustained reduction in mortality at state level during the Alpha, 
Delta, and Omicron periods. The effect did not vary by naturally acquired immunity.
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Immune protection against severe acute respiratory syndrome 
coronavirus 2 (SARS-CoV-2) can be induced by natural infec
tion or vaccination or both. The understanding of the relation
ship between immune responses following natural infection 
and vaccination is constantly advancing, and becomes further 
complicated as different variants of concern have caused mul
tiple waves of infection over the course of the pandemic. 
Heterogeneity in both the prevalence of infection and vaccine 
coverage has been observed over time in the United States, pro
viding an opportunity to evaluate the interaction between nat
urally acquired immunity and vaccine-induced immunity at 
the population level.

We asked whether vaccine effectiveness at the population 
level would differ across states with different proportions of 
the population with naturally acquired immunity. According 

to the Centers for Disease Control and Prevention (CDC), 
the seroprevalence was highest in Wisconsin (24.0%) and low
est in Vermont (1.4%) at the time of vaccine rollout (December 
2020) [1]. Thus, some states vaccinated a partially immune 
population, while other states vaccinated an almost completely 
immunologically naive population. We hypothesized that the 
population-level impact of vaccination would be greatest 
among states with higher rates of previous SARS-CoV-2 infec
tions for at least 2 reasons: (1) vaccinating those with prior in
fection leads to hybrid immunity, which may be more robust 
and durable; and (2) populations with higher proportions of 
naturally immune individuals may more quickly reach a level 
of herd immunity that diminishes transmission, thus limiting 
infection and disease by reducing exposure.

Since the vaccine became available to the general public in 
the United States, the coverage differed considerably across 
states. As of 24 May 2022, the percentage of the population fully 
vaccinated was highest in Rhode Island (83.1%) and lowest in 
Wyoming (51.1%) [2]. Alongside vaccine administration, the 
country continued to experience multiple waves of different 
variants, infecting many people before and/or after vaccination. 
People who received vaccination after natural infection were 
found to have higher levels of neutralizing antibodies (nAb) 
compared to vaccinated individuals without previous infection 
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[2, 3]. Those who were infected after vaccination (ie, break
through infection) were also found to have higher nAb level 
compared to those who only had vaccination [4]. This becomes 
more complicated as different variants of concern have swept 
through the world, exposing the population to heterologous 
spike proteins. Immune imprinting from initial antigen expo
sure plays an important role and alters immune response after 
vaccination or natural infection [5–7]. For example, vaccine re
sponses among people with previous infection were found to be 
less effective if the previous infection was caused by a variant 
with significantly different spike sequences [5].

While individual-level findings on the relationship between 
naturally acquired immunity and vaccine-induced immunity 
have been evolving, we do not yet know whether the 
population-level coronavirus disease 2019 (COVID-19) vaccine 
impact differs by the proportion of the population that had im
munity from natural infection, and if so, how. Therefore, we 
evaluated how the relationship between COVID-19–related 
deaths and vaccine coverage differed across states with different 
levels of naturally acquired immunity. Three periods were ana
lyzed separately: the Alpha wave, the Delta wave, and the 
Omicron wave. We used 2 approaches to define the proportion 
of a state’s population with naturally acquired immunity. First, 
we used state-level seroprevalence reported by the CDC, assum
ing that antibodies and immune protection wane at a similar 
speed [1]. Second, we estimated the proportion of the popula
tion ever infected based on serosurvey data [8], and we also 
used estimates from other studies [9, 10].

METHODS

Overall Study Design and Evaluation Periods

We evaluated whether the relationship between the number of 
COVID-19 deaths and COVID-19 vaccine coverage varied by 
the reported state-level seroprevalence (or the estimated pro
portion ever infected) during each of the following 3 evaluation 
periods: Alpha wave (from 1 March to 30 June 2021), Delta 
wave (from 1 July to 15 December 2021), and Omicron wave 
(from 16 December 2021 to 11 April 2022) in the United 
States. We analyzed these evaluation periods separately because 
each SARS-CoV-2 variant may exhibit unique transmissibility 
and pathogenicity.

State-Level COVID-19 Data

For state-level COVID-19 mortality data, we used the publicly 
available daily time series data downloaded from the CDC web
site on 21 April 2022 [11]. The date of death was from 22 
January 2020 to 19 April 2022. The number of COVID-19 
deaths per 1 million population was calculated using the US 
census population data for each state [12]. We calculated the 
7-day average of the daily death counts and created weekly 
time series by summing the average daily counts in each 

week. Negative weekly death counts, which were observed in 
9 weeks in 6 states, were set to zero. (Negative numbers were re
ported by the states to correct overcounting on previous days.)

For state-level seroprevalence, we used the publicly available 
CDC seroprevalence data downloaded on 17 March 2022 [13]. 
Details of this seroprevalence data can be found elsewhere [14, 
15]; briefly, the survey has collected convenience samples of de
identified residual patient sera in 10 sites from March to July 
2020 and in all 50 states from August 2020 to present. The se
rosurvey round used for each of the evaluation periods was 
round 15 (samples collected between February and early 
March) for the Alpha wave, round 24 (between late June and 
early July) for the Delta wave, and round 28 (between end of 
November and mid/late December) for the Omicron wave.

For state-level vaccine coverage, the publicly available daily 
time series data on the proportions of the population that re
ceived ≥1 dose, full doses, and a booster dose were downloaded 
from the CDC website on 22 April 2022 [11]. The data were 
stratified by age group. The date of vaccine administration 
was from 13 December 2020 to 20 April 2022.

Regression Analysis

We ran a regression analysis to evaluate the variation in the 
population-level impact of COVID-19 vaccines against mortal
ity by the proportion of the population with naturally acquired 
immunity in each state. All analyses were conducted with R 
version 4 (R Center for Statistical Computing).

For the Alpha wave, we fit a mixed-effect regression model 
with random intercepts and slopes for each state. An outcome 
variable was weekly COVID-19 death counts per 1 million pop
ulation in each state, created by summing the 7-day average 
daily counts in each week. Independent variables were the re
ported CDC seroprevalence among people ≥65 years of age 
at the beginning of the Alpha wave in each state, weekly pro
portion of people ≥65 years of age who had ≥1 dose of 
COVID-19 vaccines in each state, and an interaction term of 
these 2 variables. We used both the linear regression model 
and the negative binomial model (after rounding the outcome 
variable), using nlme [16] and glmmTMB [17] R software pack
ages, respectively. In the subanalysis for the Alpha wave, we in
corporated a lag between infection and death (3 weeks) and a 
lag between vaccination and immunity acquisition (2 weeks) 
in the regression model. For week t, weekly death counts per 
1 million population in week t + 3 was used as the outcome 
and vaccine coverage in week t − 2 was used as an independent 
variable.

For the Delta wave and Omicron wave, we fit linear regres
sion models using the total number of deaths per 1 million pop
ulation during each wave in each state as an outcome. We used 
the total number of deaths instead of the weekly counts, be
cause the relationship between the weekly number of 
COVID-19 deaths and vaccine coverage was not linear in these 
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waves. Independent variables were the state-level seropreva
lence among people ≥65 years of age at the beginning of each 
wave, the average proportion of people ≥65 years of age who 
had ≥1 dose of COVID-19 vaccines during each wave in each 
state, and an interaction of these 2 variables.

Subanalysis

We used different variables to define the proportion of the 
population with naturally acquired immunity in the subanal
ysis. For the Alpha wave, we used the proportion of the total 
population ever infected in each state before vaccine introduc
tion, which was estimated using the previously developed 
Bayesian model [8] (see the next section “Estimating the pro
portion of the population ever infected” for more informa
tion). In addition, we used estimates of the proportion of 
the total population ever infected as of December 2020 in 
each state reported by another study [9]. As our Bayesian 
model cannot estimate the proportion of the population 
ever infected after vaccine introduction, we searched esti
mates reported by other studies for the Delta and Omicron 
waves. For the Omicron wave, we used the proportion of 
the total population ever infected as of 14 November 2022 re
ported by another study [10]. We could not find any estimates 
for the Delta wave.

In addition, for vaccine coverage, we used the average pro
portions of people ≥65 years of age who were fully vaccinated 
and who received a booster dose in each state in the subanalysis, 
instead of the proportion with ≥1 dose that was used in the 
main analysis.

Estimating the Proportion of the Population Ever Infected

We estimated the proportion of the population ever infect
ed in 50 states as of December 2020 (around the time of 
COVID-19 vaccine introduction in the United States) based 
on state-level cross-sectional seroprevalence [8]. We adjust
ed seroprevalence for the timeline of antibody waning, giv
en the considerable evidence that antibodies against 
SARS-CoV-2 wane below a detectable level over time 
[18–21]. We first determined the timing of symptom onset 
for fatal COVID-19 cases based on empirical data on the 

number of days between symptom onset and death [8]. 
We then used a Markov chain Monte Carlo model to esti
mate the mean of the Weibull distribution for time of sero
positivity (ie, time from acquisition to loss of the detectable 
level of antibodies) and infection fatality ratio (IFR) based 
on daily time series data for COVID-19 mortality and re
peated cross-sectional seroprevalence data in each state 
(see section “State-level COVID-19 data”). The estimated 
number of infections on each day was calculated by adjust
ing the number of reported deaths for the estimated IFR 
and the lag between infection and death. North Dakota 
was excluded due to the limited seroprevalence data to fit 
the model.

RESULTS

Seroprevalence and Vaccine Coverage

The median seroprevalence among people aged ≥65 years at 
the beginning of each evaluation period was 12.9%, 11.3%, 
and 19.6% in the Alpha wave, the Delta wave, and the 
Omicron wave in the United States, respectively (Table 1). A 
great variation in the reported seroprevalence was observed 
among this age group in each wave. The reported seropreva
lence was lowest in Hawaii (1.0%) and highest in Wisconsin 
(26.4%) in the Alpha wave, lowest in Vermont (0%) and highest 
in Utah (24.4%) during the Delta wave, and lowest in Hawaii 
(5.8%) and highest in Wisconsin (29.1%) during the Omicron 
wave.

The coverage of ≥1 dose of COVID-19 vaccines among peo
ple who are ≥65 years of age increased over time, with more 
variability closer to the time of vaccine introduction. The cov
erage of ≥1 dose reached a high level (>90%) in all states by the 
Omicron wave. The average coverage of the booster dose in this 
age group had a large variation in the Omicron wave; New 
Hampshire had the lowest (29.5%) and Minnesota had the 
highest (79.7%).

Regression Analysis

Our regression analysis found 3 trends in the relationship of 
COVID-19 mortality with vaccine coverage and the proportion 

Table 1. Descriptive Statistics of the State-Level SARS-CoV-2 Seroprevalence, COVID-19 Vaccine Coverage, and COVID-19 Mortality During the Alpha, 
Delta, and Omicron Waves

Statistic Alpha Wave Delta Wave Omicron Wave

CDC seroprevalence among people ≥65 y of age at the beginning of each evaluation period, % 12.9 (1.0, 26.4) 11.3 (0, 24.4) 19.6 (5.8, 29.1)

Average percentage of people ≥65 y of age that received at least 1 dose of COVID-19 vaccines 77.4 (67.6, 88.9) 91.9 (82.1, 99.6) 95.0 (90.7, 95.0)

Average percentage of people ≥65 y of age that received full doses of COVID-19 vaccines 62.6 (49.6, 72.7) 83.5 (72.4, 95.8) 89.2 (79.2, 95.0)

Average percentage of people ≥65 y of age that received a booster dose of COVID-19 vaccines Not available 14.4 (3.3, 19.3) 65.2 (29.5, 79.7)

Total deaths per 1 million, all ages 192.2 (56.2, 443.2) 568.1 (91.7, 1314.4) 520.1 (180.2, 973.6)

Data are median (minimum, maximum).

Immunity From Vaccine and Infection • JID 2023:227 (15 March) • 775



of the population with naturally acquired immunity, which 
were consistently found in all 3 evaluation periods. First, 
COVID-19 mortality decreased as vaccine coverage among 
people aged 65 years and older increased, after controlling for 
the seroprevalence. In the Alpha wave, the average weekly 
death count was 9.2 per 1 million. Per 10% increase in weekly 
coverage of ≥1 dose among people ≥65 years of age, the weekly 
death count decreased by 2.9 per 1 million population (95% 
confidence interval [CI], 2.2–3.7) during this evaluation period 
(Supplementary Table 1). The same trend was observed with 
the negative binomial model and after incorporating the lag be
tween infection and death and the lag between vaccine admin
istration and immunity acquisition (Supplementary Tables 1 
and 2). Per 10% increase in the coverage of ≥1 dose among peo
ple ≥65 years of age, total COVID-19 deaths during each wave 
was associated with a decrease of 420 (95% CI, 273–567; 
Supplementary Table 3) and 443 (95% CI, 5–882; 
Supplementary Table 4) per 1 million population in the Delta 
wave and Omicron wave, respectively.

Second, the seroprevalence among people ≥65 years of age 
was not associated with changes in COVID-19 mortality, after 
controlling for vaccine coverage among people ≥65 years of age 
(Supplementary Tables 1–4). Third, the degree of decrease in 
COVID-19 mortality per unit increase in vaccine coverage 
among people ≥65 years of age did not vary by state-level sero
prevalence among people aged ≥65 years in all evaluation peri
ods. In all models, 95% CIs for the interaction terms between 
the vaccine coverage and seroprevalence included the null val
ue (Supplementary Tables 1–4).

Subanalysis Using the Estimated Proportion of the Population Ever 
Infected

To define the proportion of the population with naturally ac
quired immunity differently, we estimated the proportion of 
the total population ever infected and IFR by December 2020 
in each state by adjusting the state-level seroprevalence for 
the timeline of waning antibodies (Table 2). The average dura
tion of seropositivity (as an indicator of waning) at the popula
tion level was estimated to be 160 days for New York and 
192 days for Pennsylvania. We could not estimate the average 
duration of seropositivity in other states, either because a 
peak in the seroprevalence likely happened before the begin
ning of national serosurveillance in August 2020 or a decline 
in seroprevalence was not observed. In these remaining states, 
we ran the model using the average of the estimated duration of 
seropositivity in New York and Pennsylvania. The model did 
not fit the observed seroprevalence data in 5 states 
(Connecticut, the District of Columbia, Massachusetts, New 
Jersey, and Rhode Island), which were excluded from the fol
lowing analysis.

When using the estimated proportions of the total popula
tion ever infected as of December 2020 instead of the 

seroprevalence to define the proportion of the population 
with naturally acquired immunity for the Alpha wave, the over
all findings remained the same (Supplementary Table 5). The 

Table 2. Estimated State-Level Proportions of the Population Ever 
Infected and Infection Fatality Ratios as of December 2020 in the United 
States

State

Estimated Average 
IFR (95% credible 

interval)

Percent Ever Infected as of 31 
Dec 2020 (95% credible 

interval)

Alaska 0.27 (0.25–0.29) 12.1 (11.1–13.2)

Alabama 0.55 (0.52–0.58) 24.1 (22.9–25.3)

Arkansas 0.87 (0.82–0.92) 16.6 (15.7–17.6)

Arizona 0.87 (0.83–0.92) 18.8 (17.8–19.7)

California 0.54 (0.51–0.58) 16.2 (15.3–17.3)

Colorado 0.6 (0.54–0.66) 16 (14.4–17.6)

Delaware 0.66 (0.62–0.7) 16.9 (15.9–17.9)

Florida 0.73 (0.69–0.77) 16.6 (15.7–17.5)

Georgia 0.55 (0.53–0.58) 22.6 (21.5–23.7)

Hawaii 0.52 (0.41–0.67) 4.6 (3.6–5.8)

Iowa 0.45 (0.43–0.48) 31 (29.5–32.5)

Idaho 0.56 (0.5–0.64) 16.7 (14.8–18.9)

Illinois 0.48 (0.46–0.5) 32 (30.8–33.3)

Indiana 1.36 (1.13–1.65) 10.7 (8.8–12.9)

Kansas 0.64 (0.6–0.68) 18.7 (17.5–19.9)

Kentucky 0.48 (0.45–0.51) 15.5 (14.6–16.5)

Louisiana 0.86 (0.82–0.91) 20.5 (19.5–21.6)

Maryland 0.49 (0.47–0.52) 22.3 (21.1–23.5)

Maine 1.2 (0.98–1.51) 3 (2.4–3.7)

Michigan 0.73 (0.68–0.77) 20 (18.8–21.5)

Minnesota 0.47 (0.45–0.5) 22.3 (21.2–23.5)

Missouri 0.52 (0.49–0.55) 20.1 (19.1–21.1)

Mississippi 0.78 (0.74–0.81) 23.7 (22.6–24.9)

Montana 0.67 (0.6–0.74) 16 (14.4–17.7)

North Carolina 0.58 (0.54–0.62) 14.1 (13.2–15)

Nebraska 0.31 (0.3–0.33) 30.5 (29.2–31.9)

New 
Hampshire

1.69 (1.5–1.93) 4.1 (3.6–4.6)

New Mexico 0.69 (0.65–0.73) 20.4 (19.3–21.6)

Nevada 0.55 (0.52–0.58) 23.6 (22.5–24.7)

New York 0.44 (0.43–0.46) 37.9 (36.4–39.5)

Ohio 0.54 (0.52–0.57) 25 (23.8–26.3)

Oklahoma 0.5 (0.47–0.53) 16 (14.9–17)

Oregon 0.55 (0.5–0.61) 7.7 (7–8.5)

Pennsylvania 0.6 (0.57–0.63) 25.1 (23.9–26.3)

South 
Carolina

0.75 (0.71–0.79) 17.1 (16.2–18.1)

South Dakota 0.75 (0.61–0.99) 25.1 (19.1–31.1)

Tennessee 0.5 (0.48–0.53) 25.6 (24.4–26.9)

Texas 0.51 (0.48–0.53) 23.1 (22–24.2)

Utah 0.21 (0.19–0.23) 23.9 (21.8–25.9)

Virginia 0.74 (0.68–0.8) 9.7 (9–10.5)

Vermont 1.07 (0.78–1.52) 2.4 (1.7–3.3)

Washington 0.69 (0.63–0.76) 7.8 (7.1–8.6)

Wisconsin 0.35 (0.33–0.37) 29.2 (27.8–30.7)

West Virginia 0.92 (0.84–1.02) 10.3 (9.3–11.3)

Wyoming 0.4 (0.35–0.45) 22.9 (20–26.2)

Five states (Connecticut, District of Columbia, Massachusetts, New Jersey, Rhode Island) 
were excluded because of the bad fit to the data. One state (North Dakota) was excluded 
due to the limited seroprevalence data to fit the model.  

Abbreviation: IFR, infection fatality ratio.
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coverage of ≥1 dose of COVID-19 vaccines was associated with 
a decline in COVID-19 mortality at the state level, while the ef
fect did not vary by the estimated proportion of the population 
ever infected in the Alpha wave. We also used other estimates of 
the proportion of the population ever infected for the Alpha 
wave [9] and Omicron wave [10] and found the same trends 
(Supplementary Tables 6 and 7).

Subanalysis Using Other Measures of Vaccine Coverage

In the Delta wave, we found the same results after using the 
proportion of people aged ≥65 years that were fully vaccinated, 
instead of ≥1 dose; total COVID-19 deaths decreased as the 
coverage increased, while the seroprevalence or the proportion 
ever infected did not affect COVID-19 mortality, after control
ling for vaccine coverage. For the Omicron wave, the results re
mained consistent when using the proportion fully vaccinated 
instead of the proportion with ≥1 dose. However, when we 
used the proportion of people ≥65 years of age that received 
a booster to define the vaccine coverage, there was no associa
tion between COVID-19 mortality and booster coverage.

DISCUSSION

We assessed the relationship between vaccine-induced immu
nity and naturally acquired immunity against COVID-19 mor
tality at the population level in the United States in 2021–2022. 
COVID-19 death counts decreased as the coverage of ≥1 dose 
increased among ≥65 years of age, and this effect did not vary 
by seroprevalence or the proportion of the population ever in
fected. Seroprevalence and the proportion ever infected were 
not associated with COVID-19 mortality, after controlling for 
vaccine coverage. These findings were consistent in all 3 evalu
ation periods. These results indicate that vaccine coverage is as
sociated with protection against deaths that is visible at the 
population level, compared to naturally acquired immunity. 
This suggests that we should encourage people to receive vac
cination, especially primary doses, to prevent severe outcomes, 
instead of relying on immunity from natural infection.

The population-level impact of COVID-19 vaccines did not 
vary by the seroprevalence and the estimated proportion of the 
population ever infected in all evaluation periods. This might 
be because the people who got infected and the people who re
ceived vaccines were different, especially in the Alpha period, 
making it hard to see a combined effect. In the Delta and 
Omicron waves, both the vaccine coverage and seroprevalence 
reached high levels, so there was likely a large overlap between 
these 2 groups. However, we still did not see a varied effect of 
vaccines by the proportion of the population with naturally ac
quired immunity. Possible reasons are that the most vulnerable 
population that may have benefitted from synergistic protec
tion may have already died before these waves or that they 

were least likely to get infected but most likely to get vaccinated 
as time went on, boosters included.

In the Omicron wave, the proportion of the population aged 
65 years and over that received a booster did not affect 
COVID-19 death counts, after accounting for seroprevalence 
in this age group. This suggests that booster doses did not im
prove upon the effectiveness of the primary vaccine series in pre
venting severe outcomes, a phenomenon potentially explained 
by robust cellular immunity elicited by the primary vaccine se
ries. A measurable impact of boosters may have been more likely 
were variants more closely related to vaccine prototypes circulat
ing during this wave. The interaction between naturally acquired 
immunity and protection conferred by newly licensed bivalent 
boosters should be evaluated in a future study once sufficient 
population-level outcomes data are available.

Previously, we developed a model to estimate the proportion 
of the population ever infected based on serology data in 
New York City and Connecticut [8]. Here, we expanded on 
our previous study and estimated the duration of seropositivity, 
IFR, and cumulative incidence of SARS-CoV-2 infection as of 
December 2020 in all 50 states. The average duration of seropo
sitivity could not be estimated in the majority of the states due 
to either (1) the peak in the seroprevalence in 2020 likely hap
pened before the national serosurveillance started in August 
2020, and thus the complete picture of the timeline of serore
version was not captured; or (2) a decline in seroprevalence 
was never observed. The model we developed works best 
when there was a single peak in case counts, followed by few in
fections [8]. New York City and Connecticut were the perfect 
examples where a single large peak was observed in the spring 
of 2020 and almost no cases in the summer and early fall of 
2020. There were other states that had a similar trend in case 
counts in 2020, but as the national serosurveillance started in 
August 2020, the peak in the seroprevalence in many states 
was missed. Another reason was that the reported seropreva
lence never declined in many states, in which case the model 
estimated that people never returned to seronegative status. 
The estimated duration of seropositivity in 2020 in New York 
and Pennsylvania was consistent with other reports [22]. The es
timated duration of seropositivity in this study was longer than 
the original estimate [8], which is because we had longer dura
tion of seroprevalence data and mortality data, allowing us to ob
serve a longer trajectory of the timeline of antibody waning. We 
should also note that the average duration of seropositivity was 
estimated for 2020 based on the seroprevalence data and mortal
ity data in 2020. During this period, reinfection was less common 
and vaccines were not yet available for the general population. 
The adjustment of seroprevalence for the timeline of serorever
sion at the population level was more important for this reason, 
compared to the later period of the pandemic where the antibody 
level was consistently boosted by multiple exposures. The model 
did not fit the reported seroprevalence data in 5 states, likely 
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because the assumptions of the model (constant IFR over time) 
did not hold for these states.

Our study had limitations. The samples collected for the 
CDC seroprevalence data may not be representative of the ge
neral population [14]. We did not have access to individual- 
level data on infection and vaccine administration, so we could 
not distinguish groups of people who were infected, vaccinated, 
and both. We could not stratify the COVID-19 mortality data 
by age as it was not available in the CDC database as well as 
the state government websites in most of the states. All of our 
data were at the state level. As vaccine coverage varied across 
geographic area, data at a finer geographic scale might be help
ful to identify associations between naturally acquired immuni
ty and vaccine-induced immunity at the population level.

In conclusion, vaccination with the primary series was 
strongly associated with reduction in COVID-19 mortality at 
state level, which was sustained through the Alpha wave, 
Delta wave, and Omicron wave. This effect did not vary by 
the state-level seroprevalence or estimated proportion of the 
population ever infected. The understanding of the relationship 
between vaccine-induced immunity and naturally acquired im
munity is critical for postlicensure vaccine evaluation. Ongoing 
evaluations to monitor mortality in vaccinated populations can 
guide future policies on boosters and strain changes in the 
vaccine.

Supplementary Data

Supplementary materials are available at The Journal of 
Infectious Diseases online. Consisting of data provided by the 
authors to benefit the reader, the posted materials are not copy
edited and are the sole responsibility of the authors, so ques
tions or comments should be addressed to the corresponding 
author.
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