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Summary

Background: Matricellular proteins comprising matrisome and adhesome are responsible for structure integrity and interac-
tions between cells in the tumour microenvironment of breast cancer. Changes in the gene expression of matrisome and
adhesome augment metastasis. Since inflammatory breast cancer (IBC) is characterized by high metastatic behaviour.
Herein, we compared the gene expression profile of matrisome and adhesome in non-IBC and IBC in fresh tissue and ex vivo
patient-derived explants (PDEs) and we also compared the secretory inflammatory mediators of PDEs in non-IBC and IBC to
identify secretory cytokines participate in cross-talk between cells via interactions with matrisome and adhisome.
Methods: Fifty patients (31 non-IBC and 19 IBC) were enrolled in the present study. To test their validation in clinical studies, PDEs
were cultured as an ex vivo model. Gene expression and cytokine array were used to identify candidate genes and cytokines contribu-
ting to metastasis in the examined fresh tissues and PDEs. Bioinformatics analysis was applied on identified differentially expressed
genes using GeneMANIA and Metascape gene annotation and analysis resource to identify pathways involved in IBC metastasis.
Results: Normal and cancer fresh tissues and PDEs of IBC were characterized by overexpression of CDH1 and MMP14 and
downregulation of CTNNA1 and TIMP1 compared with non-IBC. The secretome of IBC cancer PDEs is characterized by
significantly high expression of interleukin 6 and monocyte chemoattractant protein-1 (CCL2) compared with non-IBC.
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Conclusion: Genes expressed by adhisome and matrisome play a significant role in IBC metastasis and should be considered
novel target therapy.

Introduction

Breast cancer incidence is increasing globally in the past
decade with high mortality rate in low-income countries.1

Inflammatory breast cancer (IBC) is the highly aggressive and
metastatic subtype of breast cancer. The median age of patients
diagnosed with IBC is �5.25 years younger compared with non-
IBC patients with an overall survival rate less than 4 years.2

Moreover, in the Middle East and northern Africa, IBC preva-
lence reached 10% compared with other parts of the world.3

Thus, the aggressiveness of IBC warrants a collective effort to
better understand its distinctive biology, which will help in
developing novel targeted therapies.

Many genomic studies were conducted to discover novel
biological targets in IBC but have not led to the successful dis-
covery of distinct mechanisms.4 However, mechanisms of IBC
carcinogenesis, formation of tumor emboli and upregulated sig-
nalling pathways found to be linked with TME cellular interac-
tions via matrisome, adhesome and cytokinome.5,6,7

Patient-derived explants (PDEs) representing the ex vivo cul-
ture of segments for the freshly resected tumour tissue preserve
matrisome and adhesome organization that retains the histo-
logical features of original tumour. PDE models mimic the TME
without any destruction of fresh samples obtained during sur-
gery and are used now to study cancer progression and to as-
sess drug responses.8 Herein, we compared genomic profile of
matrisome and adhesome in fresh tissue and PDEs of non-IBC
and IBC patients. Furthermore, we cultured PDEs for 48 h to test
their viability and their secretory molecules, and confirm ability
to preserve phenotype and genotype similar to the excised fresh
tissue to be used as preclinical model for drug testing.

Materials and methods
Patients’ recruitment and selection

This study was approved by the ethics committee of Ain Shams
University (IRB#00006379) and all participants signed a consent
form. Diagnosis of IBC and non-IBC was performed as described
before.9,10 Fifty breast cancer patients were participated in this
study and grouped into non-IBC (n¼ 31) and IBC (n¼ 19).

Collection of fresh tissue and preparation of PDEs

Fresh tissues were divided into two parts once excised from
patients during Modified Radical Mastectomy (MRM) part pre-
served in RNAlater (ThermoFisher Scientific, MA, USA) and part
used in preparation of PDEs. The PDEs were prepared from tis-
sue as described by Sineh Sepehr et al.11 with slight modifica-
tions. In brief, excised cancer tissues were placed in the lab into
a transferring medium (Dulbecco’s Modified Eagle Medium
[DMEM] with 1% penicillin/streptomycin antibiotic solution)
(Lonza, Basel, Switzerland), and the adipose tissues, blood ves-
sels and muscular tissues surrounding the cancer mass were
removed during dissection. Normal breast tissues were homo-
genized from glandular tissues (mostly breast ducts surrounded
by connective, fibrous and adipose tissues). Subsequently, PDEs
of normal and cancer tissues were washed with DMEM/F-12
supplemented with 10% foetal bovine serum (FBS), 100 IU/ml

penicillin, 100 lg/ml streptomycin and 2% L-glutamine. Each tis-
sue sample was placed in a 700-lL growth medium (Lonza) in a
Falcon organ culture dish (BD Biosciences, NJ, USA) and incu-
bated for 48 h at 37�C in a humidified CO2 incubator for further
studies. It should be noted that the size of the excised tissue
and cell viability are appropriate for the preparation of PDEs.

Cell viability and proliferation assay

To test whether culturing of PDEs in growth media will affect
cell viability and proliferation, we used MTT [3-(4,5-dimethyl-2-
thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide] as we
described before.12 PDE specimens were mechanically dissoci-
ated using a scalpel, transferred to a DMEM solution containing
20 mg/ml Gibco collagenase I (ThermoFisher Scientific) and
incubated at 37�C in a humidified CO2 incubator. PDE specimens
dissociated into single cells were washed with phosphate-
buffered saline and cell pellets were collected by centrifugation
at 1500 rpm for 5 min. Isolated cells were seeded at a density of
4.0� 103 cells in 100 ll DMEM/F-12 culture medium per well (96
wells plate) and incubated for 48 h at 37�C in a humidified CO2

incubator. After that, 10 ll of 5 mg/ml MTT was added to each
well along with a serum-free medium and incubated for 4 h at
37�C. Then MTT was removed and 100 ll dimethyl sulfoxide

was added to each well. The absorbance was measured at
570 nm wavelength.

Human extracellular matrix and adhesion molecules
polymerase chain reaction array

Total RNA was purified from fresh tissue and PDEs using QIAzol
lysis reagent (Qiagen, Hilden, Germany). The total RNA concen-
tration was measured by Multiskan SkyHigh microplate spec-
trophotometer (ThermoFisher Scientific) and RNA integrity was
tested by separating the RNA on a 1% standard agarose gel and
examining the ribosomal RNA bands. One microgram of RNA
was transcribed into complementary DNA (cDNA) using a High-
Capacity cDNA Reverse Transcription Kit (ThermoFisher
Scientific). To study the gene expression profiles of the extracel-
lular matrix (ECM) and cell adhesion molecules, we used RT2

ECM and adhesion molecule polymerase chain reaction (PCR)
array (Qiagen) as we recently described.13 Amplification specifi-
city was verified using melting curve analysis. Data were ana-
lysed using the Qiagen Gene globe web tool (https://geneglobe.
qiagen.com/analyze/) after normalization to ACTB, B2M, GAPDH,

HPRT1 and RPLP0 housekeeping genes.

Human cytokine antibody array

Cytokines profiling of the secretome of IBC versus non-IBC PDEs
was characterized quantitatively using the human cytokine
array c3 kit (RayBiotech Life, GA, USA) as we described before.14

The relative density of each cytokine was analysed using densi-
tometric methods in ImageJ software National Institutes of
Health (NIH) (Bethesda, MD, USA).15,16
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Enrichment analysis of differentially expressed genes

Enrichment analysis of differentially expressed genes (DEGs)
was analysed using GeneMANIA (http://genemania.org/) and
Metascape (http://metascape.org/gp/index.html#/main/step1)
online tools. Gene expression profiling for the studied samples
was genotyped by clustering analysis and heat maps allying the
values of the expressed genes and samples were created.13

Protein–protein interactions (PPIs) among input DEGs and
neighbouring genes were extracted from the PPI data source
and formed a PPI network. The molecular complex detection
(MCODE) algorithm was then applied to this network to identify
neighbourhoods where proteins are densely connected.17–20

Statistical analysis

The statistical package of the Social Sciences software, version
22.0 was used for data analysis. The data were input as the
mean 6 SD. Shapiro–Wilk test was used to prove the normality
of data distribution. Chi-square and t-tests were used for nor-
mally distributed data, whereas the Mann–Whitney U-test was
used for data that were not normally distributed. The P-values
< 0.05 were considered statistically significant.

Results
Clinical and pathological characterization of breast
cancer patients

Table 1 describes the patients’ clinicopathological properties.
IBC patients were characterized by significantly larger tumour
size (P¼ 0.01) and increased lymph node metastasis (P¼ 0.0001)
than non-IBC patients.

Growth media supplemented with FBS do not alter cell
viability to non-IBC and IBC ex vivo normal and cancer
PDEs

The results of the MTT assay showed no significant changes in
cell viability of IBC normal and cancer PDEs seeded in growth
media supplemented with nutrients and FBS (Figure 1A and B).

Alteration in the expression of matrisome and adhisome
genes of fresh cancer tissues compared with cancer ex
vivo PDEs in non-IBC and IBC patients

Quantitative PCR array results showed nonsignificant altera-
tions in the level of expression of matrisome and adhisome
genes between fresh normal and cancer tissues and their au-
tologous PDEs after 48 h in both non-IBC and IBC patients
(Figure 1C and J).

Profiling of cytokines secreted by non-IBC and IBC
cancer PDEs

Culture media containing PDEs secretome was profiled by cyto-
kine array. Results showed that the secretome of IBC cancer
PDEs (n¼ 19) compared with non-IBC (n¼ 31) is characterized by
significantly high expression levels of interleukin 6 (IL-6)
(P¼ 0.01) and monocyte chemoattractant protein-1 (MCP-1/
CCL2) (P¼ 0.04) (Figure 2).

Differential expression of matrisome and adhesome
genes in normal and cancer IBC PDEs compared with
non-IBC PDEs

Considering genes showing fold change more than 3, the IBC-
PDEs of normal tissues showed overexpression of 7 matrisome
and 17 adhesome genes compared with non-IBC. Conversely,
three matrisome and four adhisome genes were downregulated
in IBC compared with non-IBC PDEs of normal tissues
(Figure 3A–C). Cancer tissues of IBC-PDEs were characterized by
overexpression of four matrisome and two adhesomes genes
compared with non-IBC. The down-regulated genes were 11
matrisomes and 6 adhisomes in IBC compared with non-IBC
PDEs of cancer tissues (Figure 3D–F). Comparing non-IBC with
IBC DEGs, significantly upregulated genes in IBC were CDH1 and
MMP14 (Figure 3G) and downregulated genes were CTNNA1 and
TIMP1 (Figure 3H).

Functional enrichment analysis and PPI network
construction

Through GeneMANIA analysis, we identified the top 25 neigh-
bouring genes with the highest frequency association with dif-
ferential expressed matrisome- and adhisome-related genes in
IBC normal and cancer PDEs compared with non-IBC.
GeneMANIA Network for IBC normal PDEs was based on 40.6%
co-expression, 23.97% physical interactions and 15.74% shared
protein domains, while for IBC cancer PDEs was based on
44.44% physical interactions, 34.33% co-expression and 7.96%

Table 1. Clinical and pathological characterization of non-IBC versus
IBC patients

Characteristic Non-IBC IBC P-value
(N ¼ 31) (N ¼ 19)

Age (year)
Range 29–80 39–69 0.384a

Mean 6 SD 49.8 6 11.3 54.3 6 10.3
Tumour size (cm)

Mean 6 SD 3.7 6 1.9 4.5 6 2.9 0.01*b

�4 21 (67.7%) 6 (31.6%)
>4 10 (32.3%) 13 (68.4%)

Tumour grade
G1 1 (3.2%) 1 (5.3%) 0.413b

G2 22 (71%) 16 (84.2%)
G3 8 (25.8%) 2 (10.2%)

Axillary lymph node metastasis
Negative 21 (67.7%) 1 (5.3%) 0.0001*b

Positive 10 (32.3%) 18 (94.7%)
Lymphovascular invasion

Negative 19 (61.3%) 10 (52.6%) 0.378b

Positive 12 (38.7%) 9 (47.4%)
ER

Negative 8 (25.8%) 5 (26.3%) 0.731b

Positive 23 (74.2%) 14 (73.7%)
PR

Negative 9 (29%) 11 (57.9%) 0.111b

Positive 22 (71%) 8 (42.1%)
Her-2

Negative 23 (74.2%) 13 (68.4%) 0.726b

Positive 8 (25.8%) 6 (31.6%)

Data are reported as means 6 SD.
aStudent’s t-test.
bChi-square test.

*Significant P-values (P<0.05).
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shared protein domains (Figure 4A and B). The functions of
these matrisome- and adhisome-related genes and their neigh-
bouring genes were predicted using Metascape. The top path-
way enrichment analysis for normal IBC-PDEs represented

pathways including ECM organization, integrin cell surface
interactions, cell–cell adhesion and matrix metalloproteinases
(Figure 4C). The top pathway enrichment analysis for IBC-PDEs
represented pathways associated with IBC progression and

Figure 1. Morphological and gene expression comparison between fresh normal and cancer tissues and their autologous PDEs collected from non-IBC and IBC patients.

(A and B) Microscopic imaging and bars showed no significant changes in cell viability of fresh normal and cancer tissues and their autologous PDEs collected

from non-IBC and IBC patients. (C–J) Heat maps and volcano diagrams showed no significant differences in the expression level of matrisome and adhisome genes in

non-IBC and IBC fresh normal and cancer versus their autologous PDEs collected from non-IBC and IBC patients. P-values were calculated using Student’s t-test, where

(P<0.05) represented significance.
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Figure 2. Profiling of cytokines in the secretome of non-IBC and IBC cancer PDEs. (A) Cytokine array detected differently expressed cytokines in the conditioned media

of non-IBC and IBC cancer PDEs. (B) The heat map showed differently expressed cytokines in the conditioned media of non-IBC and IBC cancer PDEs. P-values were cal-

culated using Student’s t-test, where (P<0.05) represented significance.
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Figure 3. Differentially expressed matrisome and adhisome genes in normal and cancer PDEs of IBC compared with non-IBC. (A and B) Heat map and volcano diagram

showing significantly upregulated DEGs in IBC compared with non-IBC normal PDEs. (C) The table showing the Log2 mRNA fold change and P-values of significantly

up- and downregulated DEGs in IBC compared with non-IBC normal PDEs. (D and E) Heat map and volcano diagram showing significantly upregulated DEGs in IBC

compared with non-IBC cancer PDEs. (F) The table showing the Log2 mRNA fold change and P-values of significantly up- and downregulated DEGs in IBC compared

with non-IBC cancer PDEs. (G and H) Venn diagrams show the overlap between up- and downregulated DEGs in normal and cancer IBC compared with non-IBC PDEs.

Data are plotted as the mean 6 SD. P-values were calculated using a t-test, with significance set at P<0.05.
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Figure 4. Gene enrichment analysis for the differentially expressed matrisome and adhisome genes in normal and cancer PDEs of IBC compared with non-IBC. (A and

B) Gene–gene interaction network of upregulated and downregulated cell adhesion and ECM DEGs and their neighbouring genes in normal and cancer PDEs, respective-

ly. Each node represents a gene and the size of which represents the strength of the interaction. (C and D) Bar graphs of enriched terms across input gene lists, coloured

by P-values. (E and F) Network of enriched terms coloured by P-values, where terms containing more genes tend to have a more significant P-values. (G–J) Protein–pro-

tein interaction networks and MCODE components identified in the gene lists. (K and L) The tables showed the functional analysis of MCODEs components.
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metastasis including degradation of the ECM, assembly of colla-
gen fibrils and other multimeric structures, IL-18 signalling
pathway and cell junction organization (Figure 4D). Moreover,
to better understand the relationship between Cell Adhesion
and ECM-related genes and their neighbouring genes, and IBC,
we then performed a Metascape PPI enrichment analysis. The
PPI network and MCODE components are shown in (Figure 4E–
L). Data showed that the biological functions of matrisome- and
adhisome-related genes and their neighbouring genes in nor-
mal IBC PDEs are mainly enriched in PID integrin CS pathway,
cell adhesion mediated by integrin, integrin cell surface interac-
tions matrix metalloproteinases (MMPs) and collagen catabolic
process, while for cancer IBC-PDEs are mainly enriched in colla-
gen chain trimerization, degradation of the ECM, cell junction
organization, cell–cell communication, activation of MMPs and
NABA ECM regulators.

Discussion

Matricellular proteins composed of matrisome and adhisome
are key regulatory partners in cancer development playing es-
sential role in the tissue remodelling and metastasis.21 In breast
cancer development, matrisome and adhisome contribute to
cell growth, biological turn over, cell division, differentiation,
epithelial mesenchymal transition, motility, migration and me-
tastasis.22 Tumour bed cavity and wound healing after tumour
excision are hubs of tremendous changes in the gene expres-
sion of matrisome, adhisome and inflammatory mediators trig-
gering recurrence and metastasis.23 Although there are
different studies discussing the role of matrisome and adhi-
some in non-IBC poor prognosis, their role in IBC progression is
poorly understood. In the present study, we first compared the
genomic profile of matrisome and adhisome in fresh normal
and carcinoma tissues of non-IBC and IBC patients. Since ex vivo
PDEs represent a culture model that resembles in vivo patients’
anatomy preserved by the expression of matrisome and adhi-
some proteins, we also tested whether the tissue preparation
and culture of PDEs will preserve its phenotype and genotype
properties via compering matrisome and adhisome gene ex-
pression of PDEs cultured for 48 h with their autologous primary
patients’ fresh tissue. Indeed, the cross talk between cells in the
TME is governed to great extent by cytokines; herein, we also
profiled PDEs-secreted cytokines, chemokines and growth fac-
tors to identify candidate molecules that might modulate the
expression of matrisome and adhisome proteins. Using inte-
grated bioinformatic approaches, we analysed the results and
identified the key matrisome, adhisome and secretory cytokines
that are crucial for IBC cancer development, matrix remodelling,
disease recurrence and metastasis compared with non-IBC.

In continuity to our previous research,13,24 herein we utilized
quantitative real-time PCR array to demonstrate the differences
between matrisome and adhisome of fresh normal and cancer
tissues and PDEs in non-IBC and IBC patients. The DEGs ana-
lysis showed that IBC normal, cancer tissues and PDEs are char-
acterized by upregulation of CDH1 and MMP-14 and
downregulation of CTNNA1 and TIMP1 compared with non-IBC
normal and cancer PDEs. CDH1 or N-cadherin is associated with
EMT, cancer metastasis and poor prognosis in different malig-
nancies including breast cancer.25 The transmembrane pro-
teases MMP-14 is considered as target therapy since it plays
significant role in the degradation of ECM proteins, breast can-
cer motility invasion and metastasis of triple-negative breast
cancer.26 Our previous study showed that IBC tissues overex-
pressed MMP-14 and correlated with MMP-2 and -9 suggesting

MMPs role in IBC progression.27 Thus, both CDH1 and MMP-14

play significant role in cancer metastasis. In addition, bioinfor-
matic analysis employing MCODE identified the module of col-
lagen chain trimerization that implies collagen solubility and
degradation of ECM proteins in PPI as main properties of IBC
cancer fresh tissue and PDEs (Figure 4L). Indeed, solubility of
collagen and degradation of ECM proteins are essential for can-
cer cell motility, invasion and metastasis.

Herein, PDEs of IBC are characterized by high secretion of IL-

6 and MCP-1. The IL-6 stimulates cancer cell proliferation via
antiapoptotic response.28,29 Also, IL-6 induces expression of
MMP-14 which in turn enhances motility, invasion and metas-
tasis of cancer cells. This mechanism modulated by IL-6 down
regulation to p5330 IL-6 also increases metastatic properties of
melanoma via phosphorylation of STAT3 which in turn upregu-
lates TWIST and CDH1 (N-cadherin).31 Similarly, MCP-1 which is
secreted by IBC-PDEs found to induce expression of MMPs fam-
ily.32 MCP-1 expression within the TME by the non-tumour stro-
mal cells promotes the lung metastasis in T41 murine breast
cancer cells.33 In addition, IL-6, like MCP-1, is expressed by mes-
enchymal stem cells which help to promote the migration and
metastasis of breast cancer cells, and considered as one of the
factors of tumour progression and metastasis.34

In contrast, gene expression arrays showed that CTNNA1

and TIMP1 were downregulated in IBC cancer tissue and PDEs.
CTNNA1 induces the expression of E-cadherin,35 which is a hall
mark of IBC highly expressed in IBC tumour emboli and associ-
ated with IBC poor prognosis.36 Down regulated TIMP1 detected
in IBC known to enhance metastatic potential of cancer cells.37

Bioinformatic results using gene enrichment analysis identi-
fied the neighbouring genes, function and pathways of matri-

some and adhisome DEGs. The pathway enrichment and PPI
network analysis of DEGs and their neighbouring genes
(Figure 4K) showed strong association mainly with PID integrin
CS pathway, cell adhesion mediated by integrin, integrin cell
surface interactions, MMPs and collagen catabolic process in
IBC normal PDEs, while for cancer IBC PDEs are mainly enriched
in collagen chain trimerization, degradation of the ECM, cell
junction organization, cell–cell communication, MMPs and
NABA ECM regulators (Figure 4L). Our results agree with previ-
ous studies,21,38–40 that used bioinformatic analysis to identify
involvement of matrisome and adhisome in IBC progression;
however, herein we used freshly resected tissues from breast
cancer patients cultured as ex vivo model that retains biological,
histological and anatomical features of the original tissues to
identify key adhisome and matrisome and cytokinome proteins
that may contribute to IBC metastasis.

Conclusion

Genes expressed by adhisome and matrisome play a significant
role in IBC metastasis. The result of the present study highlights
the complexity of matricellular gene expression in IBC carcin-
oma tissues and their implications for clinical trial. We also pre-
sented PDEs ex vivo model to be used for studying live cell
interactions and identify therapeutic targets. Further studies
with large samples size are warranted to validate PDEs in
understanding pathobiology of breast cancer disease (non-IBC
and IBC) and investigate the mechanisms that undergo disease
recurrence and metastatic potential after therapeutic
intervention.
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