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BSTRACT 

lternative splicing is a major contributor to tran- 
criptome and proteome diversity in health and dis- 
ase. A plethora of tools have been developed for 
tudying alternative splicing in RNA-seq data. Pre- 
ious benchmarks focused on isoform quantifica- 
ion and mapping. They neglected event detection 

ools, whic h arguab ly pr o vide the most detailed 

nsights into the alternative splicing process. DI- 
AST offers a modular and extensible framework 

or analysing alternative splicing integrating eleven 

plice-aware mapping and eight event detection 

ools. We benchmark all tools e xtensivel y on sim- 
lated as well as whole blood RNA-seq data. STAR 

nd HISAT2 demonstrated the best balance between 

erformance and run time. The performance of event 
etection tools varies widely with no tool outperform- 

ng all other s. DICAST allo ws researcher s to employ 

 consensus approach to consider the most suc- 
essful tools jointly for robust event detection. Fur- 
hermore, we propose the first reporting standard to 

nify existing formats and to guide future tool devel- 
pment. 

NTRODUCTION 

lternati v e splicing (AS) affects around 95% of eukaryotic 
enes with multiple exons ( 1 , 2 ) and gi v es rise to a large num-
er of isoforms. AS is involved in cellular processes and dis- 
ase de v elopment (see r ecent r e vie ws on cancer ( 3 ), muscle
 4 ) and neuron ( 5 ) de v elopment). The most popular tech-
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ology to study AS is short-read RNA sequencing (RNA- 
eq). Possibilities for AS analysis from short-read RNA- 
eq data comprise splice-aware mapping, de novo transcrip- 
ome assembly, AS detection and / or quantification on the 
 xon, isoform, or e v ent le v el as well as differential splicing
nalysis. Each year, se v eral ne w tools are pub lished for each
f these analysis types. 
Existing benchmark studies that could guide users on 

hich tool to use for which analysis have several limita- 
ions ( 6–16 ). First, the studies use as ground truth either 
nly a small subset of well-studied genes or simulated RNA- 
eq data with randomly introduced AS e v ents and limited 

 v ent types. Second, they focused on AS detection tools that 
perate on the isoform le v el ( 6–11 ), splice-aware mapping 

ools ( 12 , 13 ), and differential splicing analysis tools ( 14– 

6 ). Howe v er, AS detection tools that operate on the e v ent
e v el ar e mor e pr ecise. Finally, benchmark studies ar e sel-
omly updated. 
To perform a standar dised benchmar k, we created a mod- 

lar pipeline called DICAST (Docker Integration for Com- 
arison of AS tools). It uses Docker to handle the instal- 

ation process and Snak emak e to handle AS analysis and 

he benchmark workflow. Its modularity allows for adding 

ew tools in the future and for quickly updating the bench- 
ark. As ground truth, we used RNA-Seq data sets that 
ere simulated genome-wide and contained a predefined 

umber and distribution of AS e v ents. The simulation with 

SimulatoR ( 17 ) allowed us to evaluate the challenges and 

imitations of the tested tools systematically across data sets 
ith varying le v els of difficulty. 
While our main focus was to benchmark AS event de- 

ection tools, we started from splice-aware mapping to pro- 
ide the best possible input to those tools. Thus, we evalu- 
ted 11 splice-aware mapping tools in addition to eight AS 
arkus.list@tum.de 
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detection tools. We demonstrate the benefits and limitations
of AS e v ent detection tools and suggest a putati v ely optimal
strategy for comprehensi v e AS analysis. 

MATERIALS AND METHODS 

DICAST 

DICAST uses Docker for full reproducibility and to
simplify deployment ( 18 , 19 ). Each docker image in
DICAST can be used individually or as part of the
benchmark / AS analysis pipeline. DICAST orches-
trates the pipeline using Snak emak e ( 20 ). The DI-
CAST source code and documentation are available
at https: // github.com / CGAT-Group / DICAST and
https://dicast.readthedocs .io/en/master/contents .html , 
respecti v ely. 

Benchmark workflow 

Supplementary Figure S1 illustrates the workflow for
benchmarking AS analysis tools. RNA-Seq data sets were
simulated using the R package ASimulatoR ( 17 ) with a se-
quencing depth of 200 million reads (read length 76 bp)
based on the human genome hg38 and the Ensembl genome
annotation, version 99 ( 21 ). We limited the simulation to
chromosomes 1–22, X, Y and MT. 

We tuned the complexity of the simulated data sets
changing AS e v ents distribution, combinations, and se-
quencing error rate (Table 1 ). We started from the data set
S0 with equal proportions of the four main types of AS
e v ents and 0% sequencing error rate. Using this data set,
we filtered out tools that demonstrate poor performance or
long run time. Next, we added MES, ALE, and AFE to
simula te da ta set S1 and to evaluate the impact of complex
AS e v ents on tool performance. For data set S2, we raised
the sequencing error rate up to 0.1% and investigated the
impact of not-perfect sequencing. Data sets S0–S2 contain
only one e v ent per transcript which is an artificial setting
helping us to explore performance under simpler and well-
controlled conditions. As all AS e v ent types combinations
are possible, we evaluated how the AS e v ent types combi-
nations impact the perf ormance: f or data set S3 we allowed
two types of e v ents to occur within one transcript but with
dif ferent exons; for da ta set S4 w e allow ed two types of
e v ents to occur with the same exon. We also aimed to eval-
uate AS analysis tools in a biologically relevant setting but
the real RNA-Seq data sets lack the genome-wide ground
truth. We addressed this challenge and simulated a data set
S5 with realistic e v ent proportions, which were obtained by
analyzing 117 RNA-Seq samples from the SHIP cohort (the
Study of Health in Pomerania) ( 22 ). 

For each simulated data set, ASimulatoR estimated how
many genes have enough exons to create AS events and can,
hence, be used for the simulation. For the simulated set S3,
this number was the lowest –– 37 648. We used this number of
genes as a parameter for all simulated data sets to preserve
the read coverage level. 

We used seqtk (available at https://github.com/lh3/seqtk )
to downsample fastq files uniformly at random to 10 mil-
lion reads to benchmark splicing-aware mapping tools. We
then mapped these data sets to the human genome using 11
splice-aware mapping tools and calculated the proportion
of unmapped reads relati v e to the number of all simulated
reads (‘fraction of unmapped reads’) and the proportion of
correctl y ma pped r eads and junctions r elati v e to the num-
ber of all mapped r eads (‘pr ecision’). Pr ecision and fraction
of unmapped reads for splice-aware mapping tools were cal-
culated based on the resulting alignment file and the correct
coordinates provided by ASimulatoR. 

We chose the mapping tool with the best balance between
precision and fraction of unmapped reads values and used it
to produce alignments for 8 AS detection tools. We analyzed
fastq files with 200 million reads and additionaly used seqtk
to downsample them to 50 and 100 million reads. We then
calculated the proportion of correctly found e v ents relati v e
to the number of e v ents in the simulated set (‘recall’) and
relati v e to the number of e v ents found by the tool (‘preci-
sion’). Pr ecision and r ecall for AS e v ent detection tools were
calculated based on the unified output of DICAST and the
description of correct e v ents provided by ASimulatoR. 

We estimated the variability in performance of splicing-
aware mapping tools and AS detection tools by simulating
fiv e samples for the most simple data set (S0) and fiv e sam-
ples for the biolo gicall y-relevant data set (S5). 

SHIP cohort 

The Study of Health in Pomerania (SHIP) is a longitudi-
nal population-based cohort study located in the area of
West Pomerania (Northeast Germany). For RNA-Seq anal-
ysis, total RNA was extracted from whole blood with a
mean RNA integrity of 8.5. Based on 500ng total RNA per
sample, a library was pr epar ed using the TruSeq Stranded
mRNA kits (A and B) with 24 barcodes and 117 sam-
ples were sequenced on Illumina HiSeq 4000, 2 × 101 bp
pair ed-end r eads with a sequencing depth 40 million clus-
ters per sample. Written informed consent was obtained
from SHIP-TREND study participants, and all protocols
were approved by the institutional ethical re vie w commit-
tee in adherence with the Declaration of Helsinki. We used
these 117 RNA-Seq samples from the SHIP-TREND co-
hort ( 22 ) in this study. They were mapped to the human
genome hg38 with STAR using the Ensembl genome anno-
tation, version 99, and analyzed further with MAJIQ ( 23 ).
Custom scripts in Python 3 were used to obtain the number
of AS e v ents and genes with AS. 

RESULTS 

Tools for benchmark 

We collected splice-aware mapping and AS e v ent detection
tools released between 2010 and 2021 based on a Pubmed
and Google Scholar search with the following inclusion
criteria. A tool should be (i) available, (ii) documented,
(iii) under an open-source license, (iv) available as stand-
alone software (w e b-services can usually not process a large
amount of data), (v) used in project(s) other than described
in the tool publication, (vi) able to process widely used file
formats such as fasta / fastq, gtf / gff3, and bam / sam. Since
we controlled the number of AS e v ents in a custom genome
annotation, a tool should be (vii) able to work with those as

https://dicast.readthedocs.io/en/master/contents.html
https://github.com/lh3/seqtk
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Table 1. Characteristics of the simulated data sets. ‘Transcripts per gene’ indicates the number of alternati v e transcript variants simulated for a gene; 
‘Events per transcript’ indicates the number of AS e v ents simulated within one transcript; ‘Events per exons’ indicates the number of AS e v ents which an 
exon can be sim ultaneousl y involved in (e.g., exon skipping and alternative splice site) 

Event types 

Simulated 
data set 

Transcripts 
per gene 

Events per 
transcript 

Events per 
exon ES IR A5 A3 MES ALE AFE 

Sequencing 
error rate 

S0 1 1 1 x x x x 0% 

S1 1 1 1 x x x x x x x 0% 

S2 1 1 1 x x x x x x x 0.1% 

S3 > = 1 2 1 x x x x x x x 0.1% 

S4 > = 1 2 > = 1 x x x x x x x 0.1% 

S5 > = 1 2 > = 1 x x x x 0.1% 
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ell. The final list of tools contains 11 splice-aware mapping 

ools and 8 AS detection tools (Table 2 ). 

lternative splicing analysis and benchmark pipeline 

 unified output f ormat f or AS event detection. The main 

hallenge for comparing AS e v ent detection tools is the lack 

f standard output format. For an exon skipping e v ent, AS- 
AL reports the coordinates of neighboring exons; ASpli 

eports the coordinates of a skipped exon itself; MAJIQ re- 
orts the coordinates of a neighboring exon and its junc- 
ions. We propose a unified f ormat f or all AS e v ent types
hat reports the coordinates of (i) skipped exons for exon 

kipping, multiple exon skipping, m utuall y e xclusi v e e xons; 
ii) a retained intron for intron retention; (iii) an alternati v e 
art of an exon for alternative splice sites (Supplementary 

igure S2). 
Additionally, for each e v ent, the unified output format 

ontains the gene name , chromosome , strand as well as a 

nique ID. 

ICAST: Doc k er Integrated Comparison of Alternative 
plicing Tools. The next necessity for the standardiza- 

ion of the AS analysis and benchmark process is a uni- 
ed pipeline. DICAST handles (i) the installation process 

or e v ery tool using Docker; (ii) the e xecution of tools us-
ng Snak emak e; (iii) the output forma t unifica tion; (iv) the
omparison of AS e v ents detected by different tools. 

The general workflow starts with short-read RNA-Seq 

ata (optionall y sim ulated by ASimulatoR ( 17 ), Figure 1 ) 
hat serves as input for splice-aware mapping tools. The re- 
ulting alignment files then serve as input for AS event de- 
ection tools. Ne xt, DICAST conv erts the output files of 
he AS e v ent detection tools to the unified format described 

bove, compares detected events across the tools, and re- 
orts the results of the comparison. A user could run all or 
eparate steps of the workflow with their RNA-Seq reads, 
lignment and genome annotation files. 

enchmark results: splice-aware mapping tools 

plice-aware mapping tools differ in the mapping approach 

nd their use of genome annotations. Most tools use varia- 
ions of the seed-and-extend algorithm and start with align- 
ng parts of a read (seeds). ContextMap and MapSplice2 

rst align reads end-to-end and use the seed-and-extend 

lgorithm for reads that could not be aligned in the first 
tep. Some tools can use genome annotations for additional 
nformation (e.g., splice sites) (Table 2 ), while others (e.g. 
Bmap) do not need it. 
We provided a genome annotation where possible and 

sed the best mode for AS analysis (e.g. a 2-pass mode for 
TAR). We downsampled the input files to 10 million reads 
niformly at random to reduce the analysis time. For data 

ets S0 and S5 we repeated the alignment with fiv e simulated 

atastets to evaluate the robustness of the performance. 
The ma pping a pproach has a limited effect on the per- 

ormance of the tool. ContextMap and MapSplice2 show 

omparable performance metrics as the tools with the best 
erformance such as STAR and HISAT2 (Figure 2 , Sup- 
lementary Figure S3). Tools that use genome annotation 

enerally show better performance. Surprisingly, the com- 
lexity of the data sets only marginally affects the perfor- 
ance of the tools. Only DART suffers from a decrease in 

recision with an increasing sequencing error rate. Splice- 
ware mapping tools are robust in terms of precision (Fig- 
re 2 B): the standard deviation is less than 0.02. Concern- 

ng the fraction of unmapped reads we observe two cate- 
ories: BBMap, CRAC, DART, HISAT2 and STAR per- 
orm well with a low fraction of unmapped reads and a 

ow standard deviation while others perform poorly in both 

etrics. 
In summary, STAR and HISAT2 showed a balance be- 

ween precision and fraction of unmapped reads compared 

o other tools. ContextMap demonstrated the best precision 

nd could be considered for the analysis if the sequencing 

epth of samples is deep enough and a user can allow the 
oss of 10–15% of reads. Unfortunatel y, ContextMa p has 
ong run time (see run time subsection below) which might 
e inconvenient when analyzing a large number of samples. 
e chose STAR for further analysis, as it is more widely 

sed (28 433 Google Scholar citations by January 2023). 
e downsampled data sets to 200, 100 and 50 million reads 

niformly at random to investigate the effect of sequencing 

epth on performance. 

lternative splicing detection tools 

S e v ent detection tools detect e v ents from genome anno- 
a tion (ASpli, SGSeq (annota ted transcripts), IRFinder), 
NA-Seq alignment (EventPointer, SGSeq ( de novo ), MA- 

IQ), or both, i.e. by augmenting the genome annotation 

hrough alignment (ASGAL, splAdder, Whippet). As most 
ools (Table 2 ) do not detect m utuall y e xclusi v e e xons and
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Table 2. The list of AS analysis tools chosen for benchmark 

Name (version) Dependencies Reference Genome Annotation* 

A. Splice-a w ar e mapping 
tools 
BBMap (38.94) Java 7+ ( 24 ) - 
ContextMap2 (2.7.9) Java, BWA, bowtie 1, bowtie2 ( 26 ) + 

In the current study used 
with bowtie 2 ( 25 ) 
CRAC (2.5.2) Perl, htslib ( 27 ) - 
DART (1.4.6) GCC, GNU make, libboost-all-dev, ( 28 ) - 

libbz2-dev, and liblzma-dev 
GSNAP (2020-03-12) GCC,GNU make, Perl ( 29 ) + 

HISAT2 (2.2.1) GCC, GNU make, MSYS, zlib ( 30 ) + 

MapSplice2 (2.2.1) GCC 4.3.3+, GNU make, python 2+ ( 31 ) + 

minimap2 (2.17) None (precompiled binaries) or ( 32 ) - 
GCC, GNU make, zlib 

segemehl (0.3.4) GCC, GNU make, htslib ( 33 ) - 
STAR (2.7.5) GCC, GNU make ( 34 ) + 

Subjunc (2.0.0) None (precompiled binaries) or ( 35 ) + 

GCC, GNU make 
B. Alternative splicing 
event detection tools 
Name (version) Dependencies Reference Supported e v ents 

ASGAL (1.1.6) p ython3.6+, biop ython, p ysam, gffutils, ( 36 ) ES, IR, A5, A3 
pandas , cmake , samtools , zlib 

ASpli (1.12.0) R, BiocManager ( 37 ) ES, IR, A5 A3 
EventPointer (2.4.0) R, BiocManager ( 38 ) ES, IR, A5, A3, MEE, MES 
IRFinder (1.3.1) GLIBC 2.14+, GCC 4.9.0+, Perl 5+, 

STAR 2.4.0+, samtools 1.4+, bedtools 
2.4+ 

( 39 ) IR 

MAJIQ (2.3) htsilb, python3, python packages ( 23 ) ES, IR, A5, A3 
SGSeq (1.24.0) R, BiocManager ( 40 ) ES, IR, A5, A3SS, AFE, 

ALE, AF, AL, 
MES (with two skipped exons) 

splAdder (2.4.3) p ython3, p ython packages ( 41 ) ES, IR, A5, A3, MEE, MES 
Whippet (0.11.1) julia ( 42 ) New junctions could be 

added from alignment as an option 
ES , A3SS , A5SS , IR, AFE, ALE, 
tandem transcription start, tandem 

alternati v e polyadenylation, circular 
back splicing 

* ‘-’: does not use; ‘+’ - can use as an option 
ES, exon skipping; IR, intron retention; A3, alternative 3 

′ 
-splice site, A5, alternative 5 

′ 
-splice site, MES, multiple exon skipping, MEE, m utuall y exclusive 

exons, AFE, alternative first exon, ALE, alternative last exon. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

multiple exon skipping, we treated such e v ents as e xon skip-
ping e v ents. 

Figure 3 A (upper part) shows results for data set S0. Af-
ter examining the results, we excluded EventPointer, SGSeq
( de novo ), and splAdder from the further detailed analysis
as these tools demonstrate low recall (less than 10% of re-
cov ered e v ents). We also e xcluded ASGAL because of the
long run time (a genome-wide analysis of 50 million reads
took around 3 days). Supplementary Figure S4 shows re-
sults for data sets S1-S4. The ranking of the tools differs
onl y slightl y. Whippet and SGSeq Anno (annotated tran-
scripts) show the best performance. For all tools in data sets
S0-S4, recall depends on the sequencing depth, while preci-
sion does not. 

MAJIQ was used to deri v e the proportion of AS e v ent
types and combinations from the SHIP cohort (Supplemen-
tary Figure S5). We used the proportions as a parameter
for ASimulatoR to simulate the biologically-inspired set S5.
Note that only the proportion values, but not the detected
AS e v ents were used, so MAJIQ and the other tools re-
mained unaware of exact AS events in S5. We used MAJIQ
here, since it does not depend on genome annotation and
can e xtract e v ents directly from alignments. The results for
data set S5 (Figure 3 A, lower part) demonstrate almost the
same ranking of the tools. 

Additionally, we investigated the ability of tools to detect
e v ents de novo . For this purpose, we edited a genome an-
notation file used as input for AS detection tools. Genome
annotation describes the exon composition for all tran-
scripts simulated from a gene: main and alternati v es. We
trunca ted annota tions and kept only the description of the
main transcript for each gene. We denote this data set as
S5-tr(uncated). 

The tested tools differ significantly in their abilities to de-
tect de novo e v ents based on truncated genome annotation.
ASpli and SGSeq (annotated transcripts) did not detect any
nov el e v ents. For other tools, we compared precision and
recall for S5 and S5-tr for each AS e v ent type indi vidually
(Figure 3 B). Whippet did not find any de novo intron re-
tention e v ents. The recov ery ra te of alterna ti v e splice sites
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Figure 1. DICAST frame wor k: 1) sim ulated (ASim ula toR) or user-provided fastq files 2) bam files could be genera ted by any of 11 supported splice-aware 
mapping tools; 3) AS e v ents detected by any of 8 AS e v ent detection tools based on files generated in the pre vious steps; 4) the output files of the AS 
detection tools are unified by DICAST. Created with BioRender.com. 
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lso dropped for all tools: for MAJIQ., precision decreased 

r om ar ound 0.9 to 0.5; recall decreased from 0.4 to 0.1; for
hippet, pr ecision decr eased fr om ar ound 0.7 to 0.4; recall 

ecreased from 0.8 to 0.2 (evaluated for 50M reads). 
For data sets S0 and S5 we repeated the AS detection with 

he full genome annotation fiv e times to evaluate the robust- 
ess of the performance. All evaluated AS detection tools 
emonstrated robust performance (Figure 3 C). On data set 
5 with the most complex combinations of AS events, the 

ncreasing sequencing depth leads to incr easing r ecall but 
lightly decreasing precision. 

Notably, the results of different tools show comparably 

ittle overlap (Figure 4 ). Most events are detected exclu- 
i v ely by one tool (e.g., Whippet), suggesting that an in- 
egrati v e approach is needed for the comprehensi v e anal- 
sis of AS e v ents from short-read RNA-Seq data: (i) de- 
ect known e v ents using tools based on genome annotation 

e.g. ASpli, Whippet); (ii) detect intron retention de novo 

sing IRFinder; (iii) detect de novo e v ents using Whippet 
nd / or MAJIQ. 

un time 

sing the data set S0, we estimated the run time of the tools 
ested on Intel ® Xeon ® Gold 6148 Processor with 27.5M 

ache, 2.40 GHz (Figure 5 ). For the mapping tools, we 
sed the downsampled data set with 10 million reads from 

he benchmark. Most tools perform indexing and mapping 

ithin an hour. ContextMap is the slowest tool with a run 

ime of around 11 h. minimap2 and BBmap are the fastest 
ools with a run time of only se v eral minutes. We also es-
imated the run time of AS detection tools depending on 

he sequencing depth (Figure 5 ). The run time of MAJIQ 

oes not depend on the sequencing depth and is in the range 
f minutes. Most other tools run within se v eral hours, with 

plAdder taking up to 10 hours for 200 million reads. AS- 
AL was only evaluated with 50 million r eads, alr eady run- 

ing longer than 72 h to complete. 

ISCUSSION 

e investigated the performance of AS e v ent detection tools 
n a comprehensi v e benchmar k. We started with splice- 
ware mapping tools to obtain the best possible input for 
 v ent detection. Among splice-aware mapping tools, STAR 

nd HISAT2 present the best balance between the precision 

alue, fraction of unmapped reads values, and the run time, 
hich is in concordance with previous findings ( 12 ). 
Concerning AS e v ent detection, we still find much room 

or improvement since tools with high recall values (Whip- 
et, SGSeq (annotated transcripts), ASpli) can not detect 
 v ents de novo . Vice versa, tools that can identify e v ents
e novo demonstrate poor recall values. We suggest using a 

ombination of existing tools for a comprehensi v e AS anal- 
sis on the e v ent le v el using short-read RNA-Seq data. 

While we aimed for a comprehensi v e, objecti v e, and stan- 
ar dized benchmar k, we faced some limitations. First, the 
imula ted da ta sets might not reach the same le v el of com-
lexity as real biological data sets. We mitigated this by 

imicking the proportions of AS e v ent types as observed 

n the SHIP cohort. Second, for run time r easons, we r e- 
rained from a tool-specific parameter tuning and relied on 

art/lqad044_f1.eps
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Figure 2. ( A ) The plots for precision and fraction of unmapped reads plots for splice-aware mapping tools for the data sets S0 and S5. The results for S1–S4 
ar e pr esented in Supplementary Figur e S3. The values ar e taken from the analysis of one out of fiv e simula ted da tasets as an example. ( B ) The boxplots 
for precision and fraction of unmapped reads for splicing-aware mapping tools calculated for S0 (repeated 5 times) and S5 (repeated 5 times) 
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NAR Genomics and Bioinformatics, 2023, Vol. 5, No. 2 7 

Figure 3. ( A ) Pr ecision / r ecall plots for AS e v ent detection tools for data sets S1 and S5. The values are taken from the analysis of one out of fiv e simulated 
datasets as an example. ( B ) Tool performance on S5 (bigger markers) and S5-tr (smaller markers) sets by AS e v ent type for the sequencing depth of 50M 

r eads.( C ) Pr ecision / r ecall boxplots for AS e v ent detection tools for the S0 (r epeated 5 times) and S5 (r epeated 5 times) 
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Figure 4. The UpSet plot shows the intersection of results from evaluated AS detection tools. 

Figure 5. The run time in minutes of the splice-aware mapping tools and AS e v ent detection tools. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

the default parameters, which should ideally lead to optimal
results in typical settings. Additionally, we did not want to
favor tools with higher flexibility simply due to an increased
number of parameters to tune. Finally, we did not explore
the performance of the machine and deep learning-based
tools (e.g. DARTS ( 43 ), IRFinder-S ( 44 )). The simulated
AS e v ents were added randomly and do not account for,
e.g., regula tory sequences tha t are used in machine learn-
ing a pproaches. Finall y, our benchmark is based on a hu-
man genome annotation. The results might differ for organ-
isms with dissimilar AS patterns (e.g. for plants). Howe v er,
Baruzzo et al. ( 12 )showed that at least the performance of
RN A-Seq ma pping tools does not differ dramatically be-
tween human and Plasmodium falciparum genomes. 

Many challenges in AS analysis have yet to be ad-
dressed, including general difficulties for tool de v elopment
such as the lack of ef ficient paralleliza tion and substantial
run time. We found that the standard format for aligned
reads –– bam / sam / cram –– differs between tools and might
not be compatible with some AS event detection tools. For
instance, onl y few ma pping tools add an XS tag that indi-
cates the strand orientation of an intron which is needed by
tools such as SGSeq. We gathered the information about
tools compatibility her e: https://dicast.r eadthedocs.io/en/
master/tools/tools.html . This incompatibility limits the us-
ability of many splice-aware alignment tools for AS analysis.
While DICAST introduces a unifying standard for AS event
reporting, AS e v ent detection tools utilize inherently differ-
ent approaches and lead to inconsistent results. To mitigate
this, DICAST allows users to execute any combination of
tools and facilitates adding newly published tools. By stan-
dardizing the output of AS event detection tools, DICAST
significantly simplifies downstream analysis. In summary,
DICAST offers a unified interface for existing methods and
boosts method de v elopment by offering an easily extensi-
b le frame wor k for benchmar king of e xisting and nov el AS
anal ysis a pproaches. 

DA T A A V AILABILITY 

Access to the SHIP data for r esear ch purposes may
be requested at https://www.fvcm.med.uni-greifswald.de/
dd service/data use intro.php . The description of simulated
data sets and the corresponding R scripts are available at
https://doi.org/10.5281/zenodo.7573144 . 
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