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Abstract
We reviewed foundational concepts in artificial intelligence (AI) and machine learning (ML) and discussed ways in which 
these methodologies may be employed to enhance progress in clinical trials and research, with particular attention to applica-
tions in the design, conduct, and interpretation of clinical trials for neurologic diseases. We discussed ways in which ML may 
help to accelerate the pace of subject recruitment, provide realistic simulation of medical interventions, and enhance remote 
trial administration via novel digital biomarkers and therapeutics. Lastly, we provide a brief overview of the technical, admin-
istrative, and regulatory challenges that must be addressed as ML achieves greater integration into clinical trial workflows.
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Introduction

The term artificial intelligence (AI) refers to the use of 
computational methods to enable machines to perform 
tasks such as perception, reasoning, learning, and decision-
making. Advances in the technology sector are fueling the 
development of novel forms of AI, which are rapidly driving 
progress across diverse domains such as facial recognition, 
financial strategy, and self-driving vehicles [1, 2]. The field 
of medicine is no exception, with AI methods increasingly 
being applied in healthcare research, from the laboratory 
to the bedside. In clinical trials, particularly, automated 
methods similarly carry great promise to alleviate many of 
the considerable difficulties associated with planning, com-
pleting, and analyzing the results of large scale trials. The 
challenges associated with traditional trials, from recruit-
ing participants across diverse populations to the selection 
of feasible and appropriate eligibility criteria, make these 

interventions an ideal area for the application of emerging 
data science techniques.

In this article, we reviewed machine learning (ML) as a 
means of achieving AI and improving the practice of clini-
cal research. We provided a basic introduction to key ML 
concepts for clinicians, surveyed general areas of applica-
tion for ML in clinical trials, and then demonstrated how 
ML is being used to foster innovation in clinical research 
for neurologic diseases, specifically. We concluded with a 
discussion of technical challenges to automation in trials, 
highlighting potential obstacles that must be overcome to 
sustain innovation in the field.

Background

ML in Medicine: Why Now?

Efforts to standardize clinical care via advanced statistical 
models have their roots in the twentieth century [3, 4], when 
the advent of modern computers enabled researchers to begin 
simulating the process of differential diagnosis [3-8], recom-
mending antibiotic regimens [9], and identifying medication 
effects [10]. Though these early initiatives fell short of making 
widespread impact [11], a number of factors have led to an 
unprecedented rate of progress in ML since the early 2010s.

Increased access to large quantities of electronic data (in 
medicine, most notably, publicly available datasets such as 
the UK Biobank [12] and the Cancer Genome Atlas [13]), 
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advances in computer hardware (especially Graphics Pro-
cessing Units [GPUs]), and the widespread availability of 
open source software [14] have created the necessary envi-
ronment for AI to achieve significant gains. Furthermore, 
continued algorithmic developments have enabled machines 
to take on tasks of increasing complexity and nuance [15].

Recent advances in machine learning have been driven 
by the development of novel techniques that prevent overfit-
ting [16-20], and improve training processes [21-23], lead-
ing to the maturation of the field. Modern deep learning  
frameworks such as convolutional neural networks (CNNs) 
have emerged as a powerful tool for computer vision tasks 
[24], enabling the extraction of salient visual features from 
natural and medical images without the need for manual 
intervention. In addition, the development of new “trans-
former” networks has revolutionized machine learning mod-
els’ ability to make context-aware predictions [25]. Overall,  
these advances have significantly improved the performance 
and versatility of deep learning in a range of applications.  
As a result, we have seen dramatic improvements in areas  
as diverse as speech recognition, driverless cars, and pre-
cision marketing of advertisements [26]. Medical inno-
vation often follows directly from the progress made 
by software companies in non-clinical arenas [27], and 
healthcare researchers are increasingly using ML meth-
ods to augment clinician workflow, predict outcomes, 
and discover insights from medical datasets. From the 
accurate diagnosis and classification of skin cancer [28] 
to AI-based detection of diabetic retinopathy [29] to the 
potential for timely identification of Alzheimer’s disease 
using both neuroimaging and clinical data [30], medical ML  
is showing its prowess to provide high-value contributions  
to patients and clinicians.

How Machines Learn: What Clinicians Should Know

While the notion of learning implies some measure of 
human-like agency, medical ML algorithms depend on 
the transformation of patient-derived data into numerical 
formats that can be processed by computer systems. For 
instance, computed tomography (CT) scans can be under-
stood as matrices of pixel intensities, and vital sign meas-
urements may be translated into lists or vectors of discrete 
measurements. If an investigator can derive numerical 
quantities from a given data source, then the possibilities 
for which modalities can be used as input to an ML strategy 
are nearly limitless.

With the data thus translated, ML models act according 
to principles encoded within their architecture. Supervised 
learning models, as an example, are traditionally composed 
of models that can be trained by minimizing an error, via 
a loss function, between their predictions and known 

quantities within a dataset that are typically provided by a 
human labeler [1, 2]. The loss function guides the model 
by adjusting its underlying mathematical structure (i.e., the 
parameters that govern the mappings from inputs to out-
puts) [31] so that the model can ultimately provide as output 
either a probabilistic estimate of a data point belonging to 
a certain category (in the case of classification tasks) or 
direct estimates of a continuous measurement (in the case of 
regression tasks). Nevertheless, the traditional paradigm of 
minimizing loss with human-supplied labels for prediction 
is increasingly in flux. Self-supervised learning models are 
coaxed to identify common patterns in data by being trained 
to associate samples with certain characteristics, such as 
those from the same source [32] (e.g., serial ECGs from a 
single patient). These models undergo “pretext” training to 
learn these associations without requiring explicit super-
vision and can then be repurposed for other tasks down 
the line, such as prediction. Reinforcement learning (RL) 
models, on the other hand, respond to “rewards,” which 
direct the model into adjusting its parameters such that it 
increases its probability of performing certain actions [33] 
(e.g., making appropriate decisions in response to sepsis in  
intensive care settings) [34]. Additionally, generative mod-
els produce novel data products from either structured inputs 
that are then enhanced in some way (e.g., production of 
high-resolution radiologic scans from low-resolution ana-
logs) [35] or even from simply statistical noise [36].

While different ML algorithms carry their own sets 
of advantages and disadvantages, the choice of which to 
use may depend on the task of interest, the available data, 
access to proper computing hardware, and the investiga-
tor’s desire to elucidate mechanistic insights (i.e., inter-
pretability) from the model. As an example, CNNs per-
form excellently in determining diagnoses from radiologic 
images. However, such models often contain millions of 
parameters, and when run on standard “central process-
ing units” (CPUs), they are prohibitively slow to train and 
develop in iterative fashion. Specialized hardware, such as 
GPUs, are often needed to accelerate the pace of compu-
tation to a tractable timeline [37], but may not be as eas-
ily accessible in many environments. Logistic regression, 
on the other hand, may require little more than a desktop 
computer while yielding mathematical coefficients that can 
be intuitively interpreted in the context of the underlying 
data. Furthermore, complex models and ever-increasing 
amounts of data do not necessarily translate to higher per-
formance. Simple data distributions (e.g., finding a best-fit 
line in a unidimensional scatterplot) do not require com-
plex model architectures for adequate solutions to be dis-
covered; indeed, in certain instances, simpler models may  
be found to perform near-equivalently to complex ones after  
comparison [38].
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Lastly, the performance of medical ML models can be 
assessed according to a variety of metrics, depending on 
the specific use cases. In the case of diagnostic or prog-
nostic classification tasks, it is often standard to report 
area under the receiver operating characteristic curve 
(AUROC), obtained by plotting true positive rate versus 
false positive rate at differing probability thresholds when 
comparing predictions versus observation [39]. Area under 
the precision-recall curve (AUPR) (obtained from plot-
ting positive predictive value versus sensitivity) may also 
be reported, as AUROC may overestimate performance in 
the case of highly imbalanced datasets [40]. A variety of 
specialized metrics for tasks such as segmentation (e.g., 
dice coefficient and intersection-over-union) [41], image 
generation (e.g., structural similarity) [42], and other tasks 
may also be deployed depending on the use case. Con-
versely, in regression for continuous quantities, standard 
metrics such as the mean squared error (MSE) between 
predicted and observed values may also be used [43]. 
Regardless of the specific measure employed, however, it 
is also imperative that ML models be judged in terms of 
traditional criteria (e.g., sensitivity, specificity, accuracy) 
in order to fully contextualize their impact on patient care 
prior to deployment. An overview of essential ML ter-
minology along with definitions is provided in Table 1. 
Examples of widely used ML algorithms are illustrated in 
Fig. 1 and further elaborated in Table 2.

Learning point 1: Machine learning frameworks have 
the potential to accelerate the timeline of clinical trials by 
facilitating patient selection via mining electronic health 
records.

AI and Clinical Trials

What Can be Gained?

Despite their successes, modern clinical trials remain dif-
ficult for research teams to bring to completion. Remark-
ably, unsuccessful trials remain the norm rather than excep-
tion due to myriad difficulties in identifying, enrolling, and 
providing treatment to patients within RCTs. Indeed, it has 
been estimated that only 12% of drug development programs 
achieve clinical trial success from phase 1 to launch [59]. 
While lack of clinical efficacy makes up a large component 
of the failures, many clinical studies fall short of recruitment 
goals and timelines due to factors such as low patient par-
ticipation in clinical research and overly stringent inclusion 
criteria [60].

In what ways, then, can ML technologies help to allevi-
ate these difficulties and advance new generations of clini-
cal research? Here, we review several key areas in which 
such progress is already being demonstrated. We begin 
by discussing the power of natural language processing 
(NLP) approaches for sorting through large administrative 
databases and easing the work of identifying and screen-
ing potential participants. We next turn our attention to 
emerging methods for ML-based simulation of treatment 
interventions, which may one day challenge the supremacy 
of centralized, prospective studies. Lastly, we examine the 
possibility of medical software whose goal is not to support 
existing treatments but rather to act as the treatment in and 
of itself. These “digital therapeutics” require a rethinking of 
both the nature of medical therapy as well as the regulatory 

Table 1   Basic machine learning nomenclature

Machine learning (ML): The study of statistical models with the capacity to improve their predictive performance with exposure to data
Classification: The task of using ML models to predict categorical labels from data e.g., predicting a diagnosis of Alzheimer’s disease from an 

MRI scan
Regression: The task of using ML models to predict continuous labels from data e.g., predicting a neurocognitive test score from an MRI scan
Loss function: A metric that quantifies an ML model’s prediction error. Over the course of training, the model “learns” to improve its predic-

tions by minimizing the loss function
Training set: The dataset of examples that an ML model uses to minimize its loss function. Therefore, this is the set of all observations with 

which the model is “trained” to detect patterns in data e.g., a retrospective dataset of case and control patients was used to train a model that 
diagnoses Parkinson’s disease

Testing set: The dataset to which a fully trained ML model is applied. This dataset is used to gauge the ability of the ML model to function 
in making real-world predictions e.g., a prospective patient population in which a newly trained model will be used to diagnose Parkinson’s 
disease

Supervised learning: A subtype of ML in which models learn to make predictions by minimizing the error between their predictions and a 
set of predetermined outcomes (otherwise known as labels) e.g., teaching a model to diagnose ocular palsies by exposing it to a training set 
consisting of pre-labeled videos of cranial nerve examinations

Unsupervised learning: A subtype of ML in which models learn to infer patterns without being guided by predetermined labels. It does not 
require extensive manual labeling of data by human workers e.g., hypothesizing new subtypes of nonconvulsive status epilepticus from 
unlabeled electroencephalogram recordings

Semi-supervised learning: A hybrid approach spanning supervised and unsupervised learning. With this approach, an ML model learns to 
make predictions on large quantities of unlabeled data using a smaller labeled dataset as a “guide” e.g., teaching a computer vision model to 
highlight areas of all areas of hemorrhage in a head CT when only several axial slices have been annotated by a neuroradiologist
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processes that govern the development and approval of drugs 
and devices.

Clinical Trial Execution: Patient Recruitment 
and Eligibility Criteria

A uniform problem across industry-, foundation-, and feder-
ally- funded clinical trials is their significant financial costs 
and lengthy timelines. Recent surveys of phase 3 studies, 
for instance, have demonstrated median durations of more 
than 700 days between the initial planning of a study and 
its initiation [59], while the expense of recruiting patients 
meeting eligibility criteria consumes ~ 1 billion US dollars 
in annual research spending and up to 30% of development 
timelines [61]. Indeed, identification of study participants 
rather than the conduct of the trial itself currently accounts 
for some of greatest timeline delays. Furthermore, despite 
efforts to incentivize clinical trial sites to shorten recruit-
ing timelines, identifying interested participants, ade-
quately providing informed consent, and then conduct-
ing a medical history, physical examination, laboratory, 
and other diagnostic studies to assess eligibility criteria 
is often a laborious process requiring intensive review by  
research staff.

 Moreover, the dramatic increase in the availability 
of electronic health records (EHR) due to advances in 
information technology [62] has complicated the task of 

examining available data for identifying and pre-screening 
potential research participants. Ostensibly, the growth of 
health records has created both challenges and opportuni-
ties [63]. The International Classification of Disease (ICD) 
diagnostic codes used worldwide for clinical billing, for 
instance, could potentially be used to identify patients who 
have the condition of interest. However, diagnostic codes 
may also be misapplied by treating clinicians [64, 65], 
reflecting outdated or suspected but unconfirmed diagno-
ses. This inconsistency within EHRs  not only complicates 
efforts for maintaining an accurate clinical record but also 
affects the ability of research staff to leverage large data-
bases to accurately pre-screen for clinical trials. Automated 
methods for maintaining an accurate medical history could 
be a particularly useful innovation.

Given these challenges, ML techniques capable of auto-
matically screening the EHR from prospective partici-
pants are beginning to reshape the recruitment landscape 
in clinical trials. These advances are predominantly driven  
by NLP. Though a fuller discussion of ML-driven language 
processing and its applications in medicine may be found 
beyond this paper [66], NLP is now tapping into an abil-
ity to use large amounts of “unstructured” text data, such as 
that used in clinical notes, whereas previous generations of 
ML models may have required more strictly formatted data 
inputs. Text sources such as radiology reports and physical 
examination summaries may be “featurized” in a variety 

Fig. 1   Graphical illustration of machine learning algorithms. Sche-
mata of several exemplary ML algorithms are demonstrated. a 
Logistic regression; b support vector machine (SVM); c K-nearest 

neighbors (KNN); d decision trees and random forests (RF); e neural 
network (specifically, a multilayer perceptron/MLP)
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of formats, for instance, by scoring each document by the 
number of occurrences of unique words. More advanced 
deep learning-based methods such as large language models 
(i.e., BERT [67], GPT [68]) are being developed to accu-
rately learn numerical encodings of individual words based 
on sentence context, thus endowing the next generation of 
neural networks with an ability to represent nuanced mean-
ing in text.

NLP approaches are already being employed to derive 
insights from unstructured text data in clinical trials. IBM’s 
Watson supercomputer, for instance, has been shown in 
recent work to improve the efficiency of patient-trial match-
ing, increasing monthly enrollment in clinical breast cancer 
trials by 80% using a combination of administrative patient 
records and eligibility criteria from ClinicalTrials.gov [69]. 
Similar performance has been shown in lung cancer, as well, 
where Watson recently achieved 91.6% accuracy in match-
ing eligible patients to appropriate trials [70]. Remarkably, 
Watson achieved such performance by matching > 7000 
separate patient attributes (including histologic reports, 

demographics, medical/surgical history, and genomics) 
with > 11,000 eligibility criteria across ten phase I–III trials. 
With an average runtime of 15.5 s per patient, the automated 
approach balanced remarkable accuracy with unprecedented 
speed, thus hinting at the possibility of greatly reduced time-
lines for patient recruitment.

Automated NLP tools for study recruitment are also being 
used directly by patients and clinicians, as certain research 
groups have begun to produce tools capable of translating sim-
ple queries into computer code which can be cross-referenced  
with online databases of study eligibility. Researchers at 
Columbia University, for instance, have developed open-
source tools [71] to automatically match patients with studies 
on ClinicalTrials.gov. Enabling non-technical usage of NLP 
algorithms through online search tools has the potential to 
streamline the tedious process of determining one’s eligibility 
and may also democratize the usage of AI for key stakehold-
ers. Similarly, several groups have demonstrated the viabil-
ity of integrating NLP algorithms into the EHR platforms 
used by healthcare providers in routine care. By correlating 

Table 2   Examples of machine learning algorithms

Logistic regression: Often used to quantify effect sizes in traditional statistics, logistic regression (Fig. 1a) may be used as an ML model by 
assigning each feature of a dataset to a specific parameter and then tuning these on a training set. Additional adjustments to the model design 
(i.e., parameter regularization) may be used to decrease the model’s reliance on any singular feature and augment performance [44].

Support vector machines (SVM): SVMs (Fig. 1b) learn to set a decision boundary (“hyperplane”) that maximizes the separation (“margin”) 
between different sets of observations in the data space [45]. Decision boundaries may be adjusted to be nonlinear boundaries through spe-
cialized methods [46]. The relative simplicity of an SVM’s decision often makes this model a good choice for avoiding overfitting in complex 
datasets (e.g., longitudinal neuroimaging data such as fMRI) [47].

K-nearest neighbors (KNN): The KNN algorithm (Fig. 1c) predicts the outcome from a set of input features from the k most similar points, 
where k is a small integer chosen by the investigator [48]. In practice, KNN is often used as a data-informed strategy for imputing missing 
values in a dataset. E.g., in longitudinal cohorts, KNN can be used to estimate missing variables (e.g. neurocognitive test scores [49]) by 
training subjects for whom full data is available

Decision trees: Decision trees (Fig. 1d) are essentially flow charts that can be used to predict outcomes based on branching logic. Given input 
feature values, the model undertakes a series of binary decisions to reach the proper outcome. Over the course of training, the model learns 
to navigate each branch point with increasing accuracy [50]. These models are best used when a high degree of interpretability is sought, but 
their performance may suffer relative to more complex modeling strategies

Random forests (RF): RFs (Fig. 1d) combine many randomly generated decision trees to provide an overall prediction. The overall final 
prediction is the result of averaging the results from individual trees in the forest through procedures such as majority voting or arithmetic 
averaging [51]. So-called “boosting” algorithms [52] are often used in RFs to generate successive trees that minimize the errors of earlier 
trees and provide improved performance. Boosted RFs are often a good benchmark for non-neural network performance, with growing 
deployment in academic studies [53].

Neural networks (deep learning): Neural networks (Fig. 1e) use chains of mathematical functions (or “layers”) to make predictions. When 
many such layers are connected, the network is deep. Deep learning is a massive field that powers most of modern ML, and new “architec-
tures” for networks are constantly emerging. However, we may note some crucial categories as follows:

  • Multilayer perceptrons (MLP): These networks consist of an input layer of feature values that undergo further calculations in “hidden 
layers” before they are used to make a final prediction [54]. Such relatively simple networks may be used as standalone models or as parts of 
larger deep learning models

  • Convolutional neural networks (CNN): CNNs use a series of filters that distill data patterns to their most essential properties. This is 
particularly useful in computer vision, where complex patterns of pixels (e.g., abscesses and organ boundaries) must be learned by building 
them up from simpler shapes (e.g. lines and edges) [55]. As such, these networks are best-use standards for tasks such as visual diagnosis and 
segmentation of critical structures in radiologic scans

  • Recurrent neural networks (RNN): RNNs process sequential data using looped calculations that allow the network to form a “memory” 
of its previous processing behavior. This is highly useful for linguistic data and time series such as electrocardiograms [56] or electroenceph-
elograms

  • Transformers: Transformers are relatively new neural network models that differentially weight pieces of their input data using a concept 
known as “attention” [25]. This allows the appearance of contextual awareness in a model, such as in language tasks [58] (e.g., differing 
importance of different parts of a sentence) or computer vision [58] (e.g., differing importance of different areas of an image)
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the information contained within a patient’s medical record 
to databases of ongoing clinical trials, it is possible to create 
automated “alert systems” that flag a patient’s eligibility for 
participation in trials of interest [72, 73]. 

Work in ML-based simulation methods has also sug-
gested ways in which eligibility criteria themselves may be 
adjusted to streamline patient enrollment for clinical trials. 
A recent study by Liu and colleagues ran thousands of simu-
lations using published eligibility criteria from a database 
of > 60,000 patients participating in drug trials for advanced 
non-small cell lung cancers [60]. In order to elucidate the 
influence of individual eligibility criteria on trial outcomes, 
the authors adapted a statistical technique developed to 
quantify the influence of individual features on ML model 
predictions [74]. By systematically identifying the impor-
tance of each criterion, they were able to identify a core 
set of “data-driven” conditions that increased the number 
of eligible patients while minimally affecting the observed 
hazard ratios. Work such as this carries broad importance 
for clinical trial research by automatically highlighting cri-
teria that study organizers can relax conditions for patient 
participation. Less stringent criteria will not only help to 
lower barriers to study recruitment but are also likely to 
increase the external validity of clinical studies given that 
poorly designed exclusion criteria may result in systematic 
biases within experimental populations.

Lastly, in an age of increasing awareness of healthcare 
inequality, ML methods for patient recruitment may be 
applied to alleviate racial disparities in clinical trials. Nota-
bly, it has been estimated that nearly 90% of participants 
in these studies are White [75], while historical surveys of 
clinical trials show that they are poorly representative of 
women, ethnic minorities, and patients outside of relatively 
wealthy regions such as North America or Western Europe 
[76, 77]. There is little doubt that drug and medical device 
development poses the risk of further alienating disadvan-
taged patient populations when ML-based methods used 
to validate them in clinical trials rely on data from non-
representative groups [78, 79]. The generalizability gap, 
however, may in part be alleviated by automated methods 
for improving enrollment of historically underserved groups. 
Zhang and colleagues, for instance, have demonstrated the 
usage of ML classifiers to explicitly match pregnant women 
and persons living with HIV to oncology trials from Clini-
calTrials.gov [80]. Health systems may also use enhanced 
screening capacity for trial eligibility to match patients from 
excluded groups to ongoing studies, either by NLP methods 
that explicitly take into account patient identities or from the 
types of data-driven eligibility expansions proposed by Liu 
and colleagues [81, 82]. Electronic phenotyping of disease 
characteristics rather than demographic factors may also 
identify which patients are most appropriate for enrollment 
on the basis of their physical health, though certain clinical 

phenotypes (e.g., poor pulmonary function and high BMI) 
may retain confounding relationships with race, ethnicity, 
class, and gender [83]. To enhance diversity in clinical trials, 
a promising strategy is to use ML to identify clinical sites 
that may benefit from focused resources aimed at training 
and recruiting investigative site personnel from underrepre-
sented minority groups. These efforts can lead to a greater 
representation of diverse participants in clinical trials, 
underscoring the importance of prioritizing such initiatives.

Learning point 2: Machine learning techniques may help 
improve the efficiency of clinical trials by increasing the 
ease of recruiting research participants.

Learning point 3: Natural language processing tech-
niques can help identify eligibility criteria from large quanti-
ties of electronic health records and then automatically con-
nect an individual to ongoing studies. Simulation work in 
this area has also shown ways in which to relax overly strin-
gent eligibility criteria without impacting study outcomes.

Learning point 4: Natural language processing tech-
niques can identify participants from large databases and 
may help alleviate racial inequities in clinical trials.

Going Beyond In‑Person Trials: ML and Simulation

Given the time and expense associated with completing clini-
cal trials, many investigators have turned their attention to 
alternative study designs for validating new therapies and 
diagnostics. With the increasing availability of large-scale 
health databases, novel strategies are now emerging to iden-
tify effective interventions for patients without the need to 
organize prospective trials. In addition, regulatory bodies are 
increasingly recognizing the value of such real-world evidence 
(RWE) as complementary to clinical trial-based evidence to 
support substantiation of a drug’s efficacy [84]. Nevertheless, 
ML models are subject to the same systematic issues in data 
collection that plague traditional statistical analyses, such as 
confounding, selection bias, and inconsistent data quality [85-
87]. Therefore, without carefully controlled randomization, in 
what ways might a new generation of predictive algorithms 
enable the completion of simulated clinical trials to robustly 
compare healthcare interventions? Could ML spur the devel-
opment of a new generation of virtual or simulated trials still 
capable of producing trustworthy results?

Already, there is widespread interest in using external 
datasets to augment the statistical power of traditional clini-
cal studies, especially in rare diseases where parallel-arm, 
placebo-controlled studies may be limited by the number of 
trial participants available [88-90], including significant sup-
port from regulatory bodies in the USA, Canada, and Europe 
[91]. ML technologies such as NLP may help to advance 
these efforts by identifying cohorts in retrospective datasets 
who match the eligibility criteria of patients being treated in 
target trials [92]. Though additional efforts are likely required 
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to ensure the comparability between the live and simulated 
study groups [93], synthetic cohorts may help to strengthen 
inferences in clinical studies where control groups cannot 
feasibly be recruited due to trial logistics for a low number 
of participants, such as in rare diseases [94].

Promising results are also being reported at the nexus 
of ML and causal inference (CI), a subfield of statistics 
dedicated to the identification of cause and effect in obser-
vational data [85, 86]. The fundamental challenge of CI is 
to quantify the difference between two separate outcomes: 
one that was observed (i.e., factual) and one that was not 
observed (i.e., counterfactual). Such a hypothetical inference 
may be estimated by scoring the likelihood of an individual 
receiving treatment (the so-called propensity score [95]) and 
then comparing clinical outcomes between similarly scored 
groups of treated and control patients [96]. Yet while such 
matching strategies have been shown to recapitulate the 
results of RCTs from observational data [97], calculating 
propensity scores by traditional methods may become dif-
ficult as the number of clinical variables collected from each 
patient becomes large [98]. Thus, ML models may also be 
used to derive enhanced estimates of these metrics by learn-
ing to predict treatment assignments from large quantities of 
data. Deep learning may even be used to provide simulated 
patients with propensity score matching, thus enabling the 
expansion of observational datasets with semisynthetic com-
parison groups to estimate treatment effects [99].

Lastly, a variety of research groups have now shown 
the capability of neural networks to learn shared patterns 
of characteristics (i.e., representations) between subjects 
receiving different forms of treatment [100]. After optimiz-
ing the identification of commonalities between patients in 
different treatment arms, these networks may then be used 
to quantify the effects of different interventions by simulat-
ing clinical outcomes in the presence or absence of a given 
treatment [100-102]. Such approaches essentially create 
“digital twins,” or virtual avatars, of individual patients that 
may then safely be subjected to experimental therapeutics 
[103-105]. Still early in development, these systems may one 
day provide accurate, unbiased estimates of treatment effects 
from readily available retrospective datasets. Though time 
will tell, the ability to draw causal inferences by ML-driven 
simulations could help prioritize or modify the design of 
interventional RCTs by simulating the prior probability of 
success of an intervention without the need to even enroll 
a single patient.

 Learning point 5: Combining machine learning with 
causal inference techniques can help investigators to assess 
cause-and-effect from observational data. This synergy can 
facilitate investigators in assessing the impacts of medical 
treatments without the need to organize large prospective 
studies.

Innovating Trial Design: Remote Monitoring, Digital 
Biomarkers, and Therapeutic Software

ML may also be used to improve the efficiency of clinical 
trials by alleviating many of the burdens associated with tra-
ditional, centralized study designs. In the era of COVID-19, 
for instance, researchers have discovered that many of the 
tasks previously required of patients may be completed via 
remote telemedicine, including the processes of obtaining 
informed consent [106], administering experimental drugs 
[107], and completing study questionnaires [72]. Given that 
factors such as severe illness and travel burden may contrib-
ute to patient dropout in clinical trials, remotely conducted 
trial visits may help investigators to retain study participants 
and increase the odds of a successful trial. However, when 
study visits are not being overseen in the clinic by research 
personnel, automated methods may also be able to provide 
quality control and ease administrative tasks.

There are myriad ways in which ML can aid remote trial 
administration. The US Food and Drug Administration 
(FDA), for instance, recently developed a mobile applica-
tion (MyStudies) to support informed consent during the 
coronavirus pandemic [108]; the security of such systems 
may conceivably be improved by training image classifica-
tion algorithms to confirm the veracity of patient signatures. 
Similar approaches have been adopted to confirm adherence 
to medication regimens in patient populations such as those 
experiencing mental illness or substance use disorders. As 
an example, AiCure, an analytics company specializing in 
remote clinical trial support, has employed facial recognition 
technology to confirm whether patients with opioid addic-
tion are adhering to assigned medication regimens [109]. 
Tokyo-based Otsuka Pharmaceuticals has also piloted the 
usage of ingestible sensors in order to monitor the ingestion 
of antipsychotic drugs in patients with schizophrenia [110].

Remote monitoring of factors such as vital signs and 
blood chemistry could also provide early detection of adverse 
events in clinical trials by automatically flagging dangerous 
fluctuations in a participant’s state of health [72]. Given the 
power of ML systems to detect anomalies in continuous sig-
nals [111], software programs that learn a patient’s unique 
physiologic patterns from wearable or implantable sensors 
may lead the way for personalized warning systems dur-
ing experimental drug trials. Additionally, ML models can 
learn entirely new patterns from standardly collected data, 
giving rise to a new generation of digital biomarkers [112, 
113], to monitor treatment responses. Automated systems 
may learn to detect these biomarkers from a singular data 
source (e.g., electrocardiogram) or from combinations of 
multiple modalities (e.g., pulse oximetry, skin conductance, 
and blood glucose) to maximize the amount of information 
used for decision-making. In addition, physiological signals 
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or digital markers of real-world function, such as the use of 
wearable sensors to quantify mobility, may ultimately serve 
as clinical efficacy outcomes themselves [114, 115]. Regard-
less, ML may enhance the ability of the clinicians to ensure 
the safety of a clinical trial participant who is taking part 
from home and is not in the clinic.

Finally, evidence is emerging that new digital technolo-
gies may act as treatments themselves rather than simply 
supporting the development of traditional drugs and devices. 
Such “digital therapeutics” [116], including prescription 
video games and mobile applications, are now in the pipeline 
to treat conditions as diverse as ADHD, addiction, psycho-
sis, and multiple sclerosis (MS) [117]. Though not all digital 
therapeutics use ML algorithms to carry out treatment, there 
is increasing consensus that ML technology will be required 
for these products to achieve future standards of precision 
medicine [118], and developers of these technologies are 
actively partnering with AI researchers to personalize and 
improve their delivery [119]. FDA approval and the granting 
of specialized “pre-certification” pathways for developers 
of digital therapeutics are encouraging many companies to 
break into this space, including both traditional pharmaceu-
tical firms and software startups [120]. The digital revolu-
tion, with ML at its core, may bring new players to medical 
innovation, inevitably bringing changes to the clinical trial 
landscape as they seek to validate entirely novel concepts of 
disease therapies.

Learning point 6: Machine learning may help to allevi-
ate obstacles to remote participation in clinical trials by 
enabling more effective offsite monitoring of patient well-
being and adherence to medication regimens. Algorithms 
can help to make sense of standard data streams (e.g., vital 
signs) or may be trained to derive novel digital biomarkers 
that can provide improved prediction for outcomes of inter-
est. Machine learning may also accelerate development of 
digital therapeutics, in which software itself acts as a treat-
ment for disease.

Case Study of AI in Clinical Trials: 
Applications to Neurology

The great degree of variability in the presenting symptoms 
of neurologic disease often renders the identification of 
eligible patients, monitoring of progress, and evaluation of 
treatment endpoints in clinical trials difficult, even when 
performed by experienced clinicians [121]. Indeed, the com-
plexity of neurologic disease is a likely contributor to low 
rates of success in clinical trials relative to other domains 
of medicine [122], and projected shortages in the neurolo-
gist workforce over coming decades [123, 124] threaten to 
exacerbate this trend. In this context, AI methodologies offer 

considerable benefits for clinical trials in neurology moving 
forward.

With respect to eligibility and recruitment, NLP offers 
promise across a range of clinical trials encompassing both 
acute and chronic conditions. In vascular neurology, for 
instance, NLP has been demonstrated to successfully char-
acterize ischemic stroke from neuroradiology reports, auto-
matically identifying TOAST [125] subtypes [126], location 
and acuity [127], and critical sequelae such as hemorrhagic 
conversion [128]. Given that shortened treatment windows 
after stroke onset have been shown to dramatically reduce 
recruitment rates in stroke trials [129], the possibility of 
linking AI-tagged findings to clinical trial coordinators 
offers a potential avenue for screening eligible patients. 
Moreover, enhanced electronic phenotyping is likely to 
improve the power of downstream data analyses, as prior 
work has suggested that the heterogeneous nature of stroke 
subtypes may contribute to mistaken conclusions from clini-
cal trial data [130].

In neurodegenerative disorders, as well, language pro-
cessing practitioners have begun to look beyond text data 
and are taking advantage of the potential for voice to act 
as an early biomarker [131] of disease that may enhance 
recruitment. In Alzheimer’s disease (AD), the usage of voice 
recordings to flag likely cases of AD has been reported 
using neural networks [132], thus introducing the prospect 
of identifying potentially afflicted patients without the need 
for extensive neuropsychological testing [133]. Such efforts 
build on non-AI-based efforts to recruit patients for AD tri-
als via analysis of vocal features gleaned from mobile appli-
cations [134]. Similar studies have been reported in Parkin-
son’s disease (PD), where machine learning methods have 
been trained to differentiate PD patients from healthy con-
trols [135, 57]. These methods will require careful planning, 
including informing participants that their data may result in 
the detection of potential clinical diagnoses. Subsequently, 
close integration with clinical care services to provide coun-
seling and adequate treatment to those participants will be 
required of clinical trial teams, regardless of whether these 
individuals choose voluntarily to participate in clinical trials.

At the nexus of deep learning and epileptology, work 
is also being done to adjust enrollment protocols to 
maximize the chances of success in clinical trials. Work 
by Romero and Goldenholz has proposed a deep learn-
ing model that estimated the contributions of individual 
patients to a study’s statistical power in epilepsy trials 
[136]. After simulating placebo and treatment arms with 
digitally generated cohorts, the authors demonstrated that 
a neural network could be trained to efficiently compute 
the “signal to noise ratio” offered by enrolling patients 
with differing seizure frequencies in randomized trials of 
a novel antiepileptic agent. The result of this work led to 
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easily interpretable “heatmaps” demonstrating which sei-
zure parameters in newly enrolled patients might maximize 
the probability of detecting a treatment effect. Notably, 
their conclusions suggested common patterns of patient 
characteristics (seizure frequency and variability) that 
may optimize a trial’s success at the time of enrollment, 
regardless of the outcome metric used to assess medica-
tion response [136]. Even these measures themselves may 
be rethought with emerging deep learning techniques: the 
same research group has also shown the ability of a neural 
network-based scoring system to discriminate drugs from 
placebo using 21–22% fewer patients than required with 
the current gold-standard metric for assessing medication 
response [38].

Moreover, as in other fields, ML is being used to transi-
tion from strictly centralized trial designs in neurology as 
well. Derivation of digital biomarkers of neurologic disease 
via AI-driven pattern recognition from multimodal data 
(e.g., wearable devices and sensors) may enable accurate 
monitoring of patients in neurologic diseases with fluctuat-
ing symptomology, such as PD [137, 138], AD [134, 139, 
140], and various neuromuscular disorders [141]. The ability 
to collect such data in an automated fashion may also allow 
digital biomarkers to avoid many of the imprecisions brought 
about by basing trial endpoints on subjective behavioral 
and neuropsychological testing of trial participants [114, 
115]. Empatica’s “Embrace2” watch, for instance, is part 
of a growing list of FDA-approved technologies employing 
AI as a core feature of its design [142]. The device uses a 
proprietary ML classifier for seizure monitoring using data 
from embedded accelerometry and electrodermal activity 
sensors. The underlying algorithm, which was trained using 
video EEG labeling by board-certified neurophysiologists 
surveying > 5000 h of data [143] achieved a sensitivity in 
prospective trials > 90% for real-time detection of convulsive 
activity and postictal autonomic dysfunction [144], thus ena-
bling enhanced remote monitoring of patients suffering from 
seizure disorders. Digital biomarkers based on ML may also 
help to achieve insights in trials for rare neurologic diseases 
such as Duchenne muscular dystrophy, where the relative 
precision of machine-quantified metrics derived from wear-
able sensors has been suggested as a means of increasing 
power from small sample sizes and shortening time to end-
point [114]. Additionally, remote monitoring of AI-derived 
digital biomarkers may elevate patient safety for those who 
are frail or otherwise unable to be transported directly to 
clinical trial sites, thus promoting healthier “aging in place” 
strategies [145] for elderly participants.

In the realm of digital therapeutics, ML may also soon 
reinvigorate trials that use such technologies as virtual real-
ity (VR) and immersive video games to treat neurologic 
diseases. Already, there is extensive literature regarding the 
usage of digital therapeutics in neurology [146], spanning 

sensorimotor rehabilitation following stroke [147-152] and 
MS [150], chronic pain [151, 152], depression, and epilepsy 
management [153]. While the majority of these platforms do 
not utilize ML as a core feature of their design, potential ave-
nues do exist for its integration. Certain commercial produc-
ers of VR for neuropsychiatric applications have begun to 
integrate AI-driven assistants (i.e., chatbots) into the design 
of therapeutic video games, helping users with depression 
to navigate cognitive reframing tasks over the course of their 
treatment [119]. As interactive language models based on 
massive “foundation” neural networks evolve (e.g., Ope-
nAI’s ChatGPT platform [154]), the usage of such technolo-
gies is slated to increase remarkably in both commercial and 
research applications over the coming years [105], opening 
avenues by which to improve the user experience of digital 
therapeutics in neurology and beyond.

Lastly, given sufficiently large retrospective databases, 
ML technologies may be trained to recapitulate individual 
patient outcomes across a range of neurologic conditions, 
and, once calibrated, they may be used to simulate treat-
ments or forecast progression to select suitable candidates 
for therapeutic interventions. Neurologic disease often fol-
lows highly individualized courses influenced by individual-
level and environmental factors, as well as latent disease 
subtypes that may be unknown at the time of trial enrollment 
or yet undiscovered [155, 156]. Low success rates in antie-
pileptic therapy [157], for example, have often been linked 
to the considerable variability in seizure patterns observed 
between individual patients. Moreover, such heterogeneity, 
in combination with well-known placebo effects in epilepsy 
trials [158, 159] has historically complicated trials of novel 
antiepileptics [160]. Nevertheless, recent simulation work 
from Goldenholz and colleagues has exemplified the ability 
to model approaches to recapitulate complex phenomena 
such as seizure cycles and clustering from large databases 
of self-reported seizure data [161]. The deployment of more 
realistic simulated datasets for longitudinal seizure trajecto-
ries may be used in ML-based strategies [136] to identify 
which study designs and patient characteristics are most 
likely to yield successful trials. In MS, as well, ML-based 
digital twins generated through techniques such as represen-
tation learning [162] may represent a useful clinical tool to 
predict disease progression and choice of treatment options 
given the disease’s relapsing–remitting nature [163, 164]. 
Notably, in a study reported by the company Unlearn.AI, a 
neural network trained from subjects enrolled in the placebo 
arms of 3 MS clinical trials, was able to create a virtual 
cohort of digital twins that recapitulated longitudinal dis-
ease trajectories from the original patient dataset. This work 
raises the possibility of shortening clinical trial timelines 
given the ability to quickly and arbitrarily create accurately 
matched control groups for retrospective cohorts undergoing 
a variety of experimental MS treatments. The same group 
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has also reported statistical indistinguishability of digital 
twins created from retrospective MS cohorts [162], suggest-
ing applicability of their approach across many different 
neurologic disease entities. In addition to simulating control 
groups, clinical simulations may also be employed to ensure 
generalizability of trial findings to populations with different 
demographic compositions. As an example, Chen and col-
leagues (using a propensity scoring method incorporating 
the K-nearest neighbors algorithm) recently concluded that 
rates of serious adverse effects reported in a phase III trial of 
donepezil would be much higher had the original study been 
composed of a majority of nonwhite participants [165]. Such 
conclusions, drawn with the need to organize a physical trial 
in a separate population, provided useful nuance regarding 
the drug’s safety profile [166].

Technical Challenges

Despite its many promises, significant technical, prag-
matic, and regulatory hurdles remain before AI technolo-
gies become a standard component of clinical trials. The 
inability of ML models to adequately “explain” their out-
puts, the potential for AI approaches to fail in prospective 
validation, and a regulatory environment that must adapt 
to rapidly evolving developments in computational science 
pose challenges to implementation.

Interpretability of ML models is of central importance 
in earning the trust of healthcare providers and clinical trial 
administrators, who are at the helm of high-stakes patient 
care. Yet, complex models such as large neural networks 
often produce outputs (e.g., diagnoses, simulated patients) 
according to internal mathematical rules that defy the causal, 
mechanistic explanations that are of highest importance in 
human reasoning [86]. ML models are often regarded as 
“black boxes,” [167] whose usage requires leaps of faith that 
exceed the traditional ethical boundaries of medicine. This 
does not mean that frameworks for enhanced ML explain-
ability have not begun to emerge. A particularly promis-
ing development, for instance, has been the development 
of “Shapley Additive Explanations” or SHAP values [74, 
168]. These metrics, along with alternative explainability 
metrics developed for the same purpose [169-172], provide 
a means by which to assess the importance of individual fea-
tures to a model’s ultimate product. Such an approach may 
be used to probe ML’s reliance on individual features (e.g., 
socioeconomic status, race) or even on individual pixels in 
computer vision tasks [49], thereby contextualizing model 
predictions in recognizable fashion. Even still, post hoc 
interpretation typically requires the involvement of a human 
subject matter expert to verify that a computer’s attributions 
make mechanistic sense and are free of concerning biases 

[167]. Solutions to the interpretability gap remain, at least 
in part, a matter of ethical debate [173]. But from a purely 
technical perspective, an early solution may involve link-
ing explainability metrics to validated clinical markers. Our 
group’s previous work in brain MRI, for instance, has shown 
the ability of various neural network-derived risk scores to 
closely track the deposition of amyloid plaques and neu-
rofibrillary tangles in AD patients and produce mechanistic 
“disease process maps” [30, 49]. We note that these results 
have potential applications in the noninvasive monitoring 
of drug response in novel trials of AD therapies. Neverthe-
less, adapting general explainability tools to disease-specific 
benchmarks defies a one-size-fits-all approach, and imple-
menting these strategies across the full spectrum of human 
disease—both neurologic and non-neurologic—will require 
sustained efforts and interdisciplinary collaborations.

There is also the difficulty of implementing AI in clinical 
trial sites, which requires them to adapt their organizational 
infrastructure to accommodate the use of ML. At present, 
the vast majority of published AI models are developed as 
proofs of principle from retrospective datasets [174], and 
establishing access to these algorithms requires that clini-
cal support staff receive adequate training in their usage, 
development, and access to manageable user interfaces 
(e.g., mobile apps, websites), and integrated into existing 
operational workflows such as electronic health record sys-
tems [175, 176]. Furthermore, even following the organiza-
tional and information technology realignments necessary 
to translate ML models to the point implementation, pro-
spective scrutiny remains a critical factor in ensuring that 
they are used properly over the course of a clinical trial. 
Human–computer interactions often differ substantially from 
a model’s intended usage [177], and regular audits must be 
performed to ensure that AI implementation is indeed facili-
tating a clinical trial’s administration rather than hampering 
it. It is essential that any discordance between preclinical 
performance and prospective usage (particularly in models 
developed using synthetic or single-institution datasets) 
[178] be recognized in real time and that standards for early 
termination of clinical trials be followed in the case of seri-
ous mismatches.

Lastly, regulatory and reporting practices for AI are in 
flux as governing agencies adapt to a landscape of unprec-
edented progress. The academic community has begun to 
develop reporting and protocol development guidelines for 
clinical trials involving AI [82, 179, 180], thus contribut-
ing to a culture of accountability surrounding medical 
ML among researchers. Moreover, the FDA has moved to 
define the new category of “Software as Medical Device” 
(SaMD) and has outlined an updated regulatory approach 
via its Digital Health Innovation Action Plan [177]. As part 
of this shift, the agency has outlined a specific Software 
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Precertification Program alongside existing review path-
ways [177, 181] in order to facilitate streamlined approval 
of products employing ML in their design. Further work, 
however, is likely needed in order to ensure consistent qual-
ity standards in approvals such as requirements for multi-site 
algorithm development, dataset auditing, and prospective 
validation [182]. Conversely, in the EU, uniform pathways 
for approval of AI-based medical devices have not been 
developed; instead, accredited “notified bodies” in various 
member states are given regulatory power to issue “Con-
formité Éuropéen” (CE [European Conformity]) certifica-
tions prior to usage with patients, which are then mutually 
recognized by member states. The European Parliament, 
however, has passed the General Data Protection and Regu-
lation (GPDR) law, a stringent set of guidelines that notably 
requires a strong degree of explainability for algorithms to 
be deployed in patient care [174]. The requirement to go 
beyond black-box models is likely to strongly impact the 
regulatory and innovation environment across the EU for 
medical AI, despite the lack of a centralized review process.

Conclusion

As medicine matures in the information age, efforts to 
derive actionable insights from healthcare data will advance 
the traditional boundaries of clinical trials. The application 
of machine learning technologies will require attention to 
data security as well as privacy and must integrate with the 
wealth of knowledge found in established medical practice. 
Responsible development in this arena has the potential to 
advance the pace of scientific discovery with lasting ben-
efits for patients, clinicians, and society at large.
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