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Abstract

The use of electronic (e)-cigarettes was initially considered a beneficial solution to conventional 

cigarette smoking cessation. However, paradoxically, e-cigarette use is rapidly growing among 

nonsmokers, including youth and young adults. In 2019, this rapid growth resulted in an epidemic 

of hospitalizations and deaths of e-cigarette users (vapers) due to acute lung injury; this novel 

disease was termed e-cigarette or vaping use-associated lung injury (EVALI). Pathophysiologic 

mechanisms of EVALI likely involve cytotoxicity and neutrophilic inflammation caused by 

inhaled chemicals, but further details remain unknown. The undiscovered mechanisms of EVALI 

are a barrier to identifying biomarkers and developing therapeutics. Furthermore, adverse effects 

of e-cigarette use have been linked to chronic lung diseases and systemic effects on multiple 

organs. In this comprehensive review, we discuss the diverse spectrum of vaping exposures, 

epidemiological and clinical reports, and experimental findings to provide a better understanding 

of EVALI and the adverse health effects of chronic e-cigarette exposure.
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1. INTRODUCTION

Electronic (e)-cigarettes represent the newest tobacco product increasingly used by the 

public (1–4). However, despite their popularity, the effect of e-cigarette use (vaping) remains 

poorly understood, and chronic e-cigarette use will likely lead to serious health effects. 

A variety of e-cigarettes have been marketed to the public over the past decade in the 

context of a lack of regulatory action. E-cigarette or vaping use-associated lung injury, or 

EVALI, is a recently described entity at the forefront of current investigations and represents 
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an epidemiologic outbreak that focused attention of clinicians and researchers on vaping 

products. Though the cause of EVALI has been linked to vitamin E acetate (VEA), which 

is added to some vaping products, aerosols generated by e-cigarettes (termed electronic 

nicotine delivery systems or ENDS) have the potential to cause numerous pulmonary 

toxicities, both acute and chronic. The pathophysiology of EVALI and the host responses 

that correlate with chronic inflammation are described in this review, as well as the general 

pulmonary toxicity and pathophysiologic profile of vaping tetrahydrocannabinol (THC) 

products and ENDS.

2. THE SPECTRUM OF VAPING EXPOSURES

Modern e-cigarettes were invented in 2003 and entered the international market in 2007 

(1–4). They have rapidly evolved from the first-generation “cig-a-like,” designed to look 

like a conventional tobacco cigarette, to the second-generation vape pens, third-generation 

box Mods, and the currently popular fourth-generation pod-based devices (5, 6). With 

the rapid evolution of the hardware of these ENDS devices, four core components have 

remained the same: a liquid reservoir (called a tank, cartridge, or pod) to hold the e-liquid, a 

power source (most commonly a lithium rechargeable battery), a heating element (atomizer), 

and a mouthpiece (7). But the voltage, wattage, temperature, metals, plastics, and other 

factors differ across devices. Some of these factors have been found to play a major role 

in the formation of toxins, such as the production of high levels of formaldehyde with the 

application of high wattage or high temperature (8, 9) and production of carbonyls with 

combinations of wick length and coil design (10). Toxic metals and other substances have 

also been detected in e-liquids and e-cigarette aerosols, which may be due to the materials 

used to make the devices (11–13, 14–19) (Figure 1).

While e-devices have gone through four generations of evolution, the composition changes 

of e-liquids are innumerable. With hundreds of chemicals added to e-liquids to produce 

flavors appealing to every man, woman, and child from every country and culture on Earth, 

there is almost an infinite combination of chemicals being used to create the e-liquids 

available on the market. Some chemical additives have been approved for ingestion via the 

gastrointestinal tract, whereas others have never been approved for human consumption. 

Approval for gastrointestinal consumption does not confer safety for inhalation of the 

chemicals, as the gastrointestinal tract has evolved to protect the body from absorbing toxins 

and being harmed by them entering the body in this manner. The lungs, however, have 

evolved to allow passage of molecules entering the airways directly into the bloodstream, 

such that adding chemicals to e-liquids for aerosolization and inhalation into the airways 

is hijacking this evolutionary process to rapidly deliver chemicals contained in e-cigarette 

aerosols into the bloodstream (20).

Another aspect of vaping exposure is puff topography, which affects coil temperature 

and thus the composition of e-cigarette emissions. While the topography of smoking 

conventional tobacco cigarettes is similar between users—rapid (1–1.5 s) puffs, spaced by 

intervals of 20–30 s until the cigarette is finished, followed by either another cigarette or 

a break in between cigarettes—vaping of e-cigarettes involves a longer inhalation (2.3–4.3 

s),with many different intervals between puffs (21–23) owing to the ability to take a puff at 
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any time throughout the day without needing to light a new one or commit to smoking a full 

cigarette. Although some e-cigarette users (vapers) are social vapers, only using e-cigarettes 

around friends or at parties, others vape continuously, with the first use before getting out 

of bed and the last use before bedtime. In addition, some people are exposed to secondhand 

e-cigarette aerosols, such that they are primarily inhaling aerosols that have entered someone 

else’s lungs first. With the lack of sidestream vapor, because e-cigarettes only generate 

aerosols while the user is actively applying negative pressure to the mouthpiece, secondhand 

exposure to e-cigarette aerosols is likely to be less intense than that seen with cigarette 

smoke (which includes both sidestream and exhaled residual smoke).However, studies to 

date have confirmed that individuals standing close to e-cigarette users or within a confined 

space (a car or room without good ventilation) undergo significant exposure to e-cigarette 

aerosols (24–26).

Interestingly, many e-cigarette users are not committed to a single device or a single 

flavor. Thus, they expose themselves to chemicals produced by multiple e-devices, 

plus the multitude of chemicals within the flavored e-liquids they choose to use. This 

complexity of e-cigarette use makes it more challenging to track sources of lung injury and 

inflammation caused by any single device or chemical. Finally, many e-cigarette users are 

also conventional tobacco smokers, marijuana smokers, or vapers of THC. Each of these 

inhalants has its own range of host effects, known and unknown, and the consequences of 

combining the various inhalants are yet unknown.

3. EPIDEMIOLOGY OF ACUTE LUNG INJURY FROM ELECTRONICVAPING

In 2019, there were several outbreaks of acute respiratory failure of mysterious cause 

in persons who vape THC, nicotine, or both. Layden et al. (27) reported in the New 
England Journal of Medicine a cluster of cases from Illinois and Wisconsin in which patients 

presented with acute, severe respiratory distress after using e-cigarette products. Two letters 

published at the same time added further evidence of this new vaping-induced respiratory 

disease: a six-case cluster from Utah (28) and a report of imaging changes seen in a 

range of cases (29). The syndrome has been since termed EVALI by the US Centers for 

Disease Control and Prevention (CDC). As of January 9, 2020, the CDC reported a total 

of 2,602 hospitalized EVALI cases across all 50 states, the District of Columbia (DC), and 

two territories (Puerto Rico and US Virgin Islands). Fifty-seven deaths by then had been 

confirmed in 27 states and Washington, DC.

Inhalation of toxic environmental agents causes injury, both acute and subacute, to the 

airways and lung parenchyma (30–38). The pathologic outcomes of lung injuries depend 

on the dose of the inhaled toxic compound(s) and their physicochemical properties, 

including solubility and chemical composition (39–43). Much of our current knowledge 

about toxic inhalation syndromes derives from both occupational and community settings. 

In occupational settings, toxic compounds include acids, bases, metals, solvents, ozone, 

phosgene, or chlorine dioxide at high levels. In community settings, exposures occur 

during derailments of chemical-bearing train cars, factory explosions, and overexposure to 

household cleaning agents (30–38). Depending on levels and types of inhaled chemicals, 

patients may develop a wide range of symptoms, including minor respiratory tract 
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discomfort, acute airway injury and damage, parenchymal pneumonitis, alveolar edema, 

hypoxemic respiratory failure, and death (Figure 2). This constellation of damage and host 

responses is clinically called acute respiratory distress syndrome (ARDS) (44–46).

Prior to 2019, numerous vaping-associated lung diseases had been reported, with 

a heterogeneous collection of pneumonitis patterns, including acute eosinophilic 

pneumonia, organizing pneumonia, lipoid pneumonia, diffuse alveolar damage and ARDS, 

diffuse alveolar hemorrhage, hypersensitivity pneumonitis, peribronchiolar granulomatous 

pneumonitis, and the rare giant-cell interstitial pneumonitis (47–51). Though pathologic 

manifestations of respiratory injury caused by e-cigarette aerosol inhalation may be diverse, 

the recent EVALI epidemic was different in that pathologic patterns were consistent with a 

single common etiology. Most people diagnosed with EVALI reported having used products 

with THC or cannabidiol (CBD) that are formulated with other terpene oils (83%), while 

the remaining 17% reported using only nicotine-containing vaping products, which are not 

routinely mixed with terpenes, including VEA. In a report published in the New England 
Journal of Medicine, Blount and colleagues (52) found VEA in the bronchoalveolar lavage 

(BAL) fluid of 48 of 51 EVALI patients in a convenience sampling. Coconut oil and 

limonene were also found in a few patients. THC or its metabolites were found in the BAL 

of 94% of this group. In bulk samples seized by law enforcement, VEA was found in 20 of 

20 seized samples in 2019 but in 0 of 10 seized samples in 2018. Hence, the most prevalent 

culprit appeared to be the additive VEA. It remains unknown whether VEA or its pyrolysis 

products is the causal agent of EVALI (52, 53). It is believed that the non-THC/CBD vapers 

who were diagnosed with EVALI were actually suffering from disparate vaping-associated 

lung diseases caused by different toxins within the aerosols or different host responses to the 

inhalants.

Common histopathologic features in EVALI include lipid-laden alveolar macrophages that 

frequently coincide with vacuolization and vacuolated pneumocytes (27, 52). These findings 

are typically observed in patients with chemical-induced pneumonitis. Although VEA itself 

may be the key common exposure culprit for EVALI, underlying mechanisms of toxicity 

may be more complicated. Specifically, severe inflammatory responses and pulmonary 

edema may be caused by pyrolysis products of vitamin E oil rather than the parent 

compound itself. However, examining the toxicity of the pyrolysis products is difficult 

because some are gases, such as ketene, which are not easily measured in biological 

samples. Controlled studies using animal models have provided early insight into whether 

exposure to VEA alone can directly cause acute lung injury (54). In mice exposed to VEA, 

the level of albumin in BAL fluid (a surrogate marker of lung epithelial damage) and 

the total number of leukocytes in the lungs were increased to a greater extent than those 

in mice exposed to air or propylene glycol (PG) and vegetable glycerin (VG). Moreover, 

cells isolated from the BAL fluid of mice exposed to VEA contained numerous lipid-laden 

alveolar macrophages, a finding consistent with clinical observations in patients with EVALI 

(27, 52).

An autopsy series of 23 suspected cases showed that 21 met the EVALI definition and had 

histological evidence of acute to subacute lung injury, including diffuse alveolar damage 

or organizing pneumonia (55). Transbronchial and surgical lung biopsies from eight men 
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aged 19–61 years with respiratory symptoms following e-cigarette use showed acute lung 

injury, including organizing pneumonia and/or diffuse alveolar damage (56). This is the 

predominant pattern in the acute process we call EVALI. Additional common features 

seen in the lung biopsies were fibroblast plugs, hyaline membranes, fibrinous exudates, 

type 2 pneumocyte hyperplasia, and interstitial organization. Some cases featured a sparse 

interstitial chronic inflammatory infiltrate. Although macrophages were present within the 

airspaces in all cases, this feature was not prominent, and findings typical of exogenous 

lipoid pneumonia were not present (56). While acute features of vaping-induced lung injury 

are becoming clearer, pathological aspects of chronic lung disease due to vaping are still 

unclarified.

The epidemiologic profile of EVALI patients who were hospitalized was published in a 

large series (n = 2,558) in 2020 by Werner and colleagues (57). Most EVALI patients were 

male [32 of 60 (53%) in fatal and 1,666 of 2,498 (67%) in nonfatal cases, respectively]. 

The proportion of patients was higher among those who were non-Hispanic white [39 of 

49 (80%) in fatal and 1,104 of 1,818 (61%) in nonfatal cases, respectively] than among 

those in other race or ethnic groups.In fatal cases, the proportion was higher among those 

35 years of age or older [44 of 60 (73%)] than among those younger than 35 years. Among 

the patients who had an available medical history, a higher proportion of those with fatal 

cases than those with nonfatal cases had a history of asthma [13 of 57 (23%) versus 

102 of 1,297 (8%)], cardiac disease [26 of 55 (47%) versus 115 of 1,169 (10%)], or a 

mental health condition [32 of 49 (65%) versus 575 of 1,398 (41%)]. A total of 26 of 50 

patients (52%) with fatal cases were obese. The study highlighted that premorbid chronic 

conditions, including cardiac and respiratory diseases, as well as mental health conditions, 

were common among hospitalized patients with EVALI.

Although the numbers of EVALI cases dropped dramatically during 2020, cases are still 

occurring. Unfortunately, the onset of the coronavirus disease 2019 (COVID-19) pandemic 

and its progress in the United States have presented challenges to both clinicians and 

epidemiologists in diagnosing, treating, and accounting for disease incidence (58, 59). 

Moreover, a recent study in youth demonstrated an increased risk of COVID-19 among 

vapers,most of whom use only ENDS and not THC/VEA solutions. However, it remains 

unknown whether smoking of cigarettes and vaping e-cigarettes in youth increase risk 

of COVID-19. To address this question, in May 2020, Gaiha et al. (60) conducted a 

national online survey among adolescents and young adults aged 13–24 years (n = 4,351). 

Multivariable logistic regression was performed to determine the relationships between 

COVID-19-related symptoms, testing, and diagnosis with multiple variables, including use 

of e-cigarettes only,dual use (e-cigarettes and cigarettes),sociodemographic factors, obesity, 

and complying with shelter-in-place. COVID-19 diagnosis was five times higher among 

ever-users of e-cigarettes only, seven times higher among ever-dual-users, and seven times 

higher among past 30-day dual-users. Frequency of positive COVID-19 testing was nine 

times higher among past 30-day dual-users and 2.6 times higher among past 30-day e-

cigarette only users. Symptoms of COVID-19 were 4.7 times higher among past 30-day 

dual-users. This study revealed that while COVID-19 is less common in youth, use of e-

cigarettes only or the dual use of e-cigarettes and cigarettes increases the risk of COVID-19 

in this demographic.
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4. EPIDEMIOLOGY OF CHRONIC RESPIRATORY ILLNESS IN VAPERS

The focus of the outbreak in 2019 turned to THC vaping products, but it is important 

not to lose sight of the larger health issues around vaping. Global usage of ENDS has 

increased in the last decade, especially among youth and young adults (61). In 2019, 

the prevalence of ENDS among middle and high school studentsin the United States was 

10.5 and 27.5%,respectively (62).ENDS are noncombustible tobacco products that heat and 

aerosolize a liquid containing humectants and solvents (5–7, 63). The liquid contained in 

the tanks, cartridges, and pods used in the e-devices is commonly referred to as e-liquid, 

and commercial labels list the primary ingredients as PG and VG (also known as glycerol), 

plus flavorings and nicotine (15, 16). The e-devices heat the liquid via activation of the 

battery and conduction of the energy through a heating coil within the liquid. Application 

of negative pressure via the mouthpiece is used to pull the e-liquid through a mesh to 

create a fine aerosol. Recently, analyses of commonly used vaping fluids have shown that 

e-cigarette fluids contain at least seven groups of potentially toxic compounds: nicotine, 

carbonyls, volatile organic compounds (VOCs, such as benzene and toluene), particles, 

trace metal elements according to flavor (14, 17), and bacterial endotoxins and β-glucans 

(18, 19) (Figure 1). Additive compounds without nicotine can cause lung damage by 

eliciting cellular toxicity. For example, two flavoring chemicals alone, diacetyl and 2,3-

pentanediol, have been shown to perturb transcriptomic changes related to ciliogenesis 

and cytoskeletal structure in well-differentiated primary normal human bronchial epithelial 

(NHBE) cells (64). The literature contains many reports of acute lung disease caused by the 

vaping of nicotine-containing ENDS, including acute eosinophilic pneumonia, respiratory 

bronchiolitis-associated interstitial lung disease, and hypersensitivity pneumonitis (47, 55, 

56). The heterogeneity in the response to inhaled insults is not unexpected, given the 

numerous chemicals contained in e-cigarette aerosols and variability in how hosts respond 

to different insults due to underlying genetic and environmental factors. However, some 

commonalities in acute lung injury pathology related to THC products containing VEA 

emerged during the outbreak (55).

Population-based data on individuals who vape e-liquids chronically are sparse. There are 

a number of reports on known toxic exposures to humans generated by actual products 

on the market and growing evidence of adverse human health effects (65). As with 

cigarette smoking, the inhalation of chemicals contained within ENDS aerosols can elicit 

inflammatory responses in the lungs. Vaping has thus far been associated with asthma 

(39, 66–69), bronchiolitis (55, 56), and alteration of airway defenses (64). In the study 

including the Population Assessment of Tobacco and Health (PATH) study Wave 4 data on 

33,606 US adult participants who indicated ever using e-cigarettes, the risk of wheezing 

and other respiratory symptoms was greater in ENDS users as compared to nonusers and 

lower compared to smokers (70). Comparisons of adults who ever vaped without marijuana 

versus those who ever vaped with marijuana (at least sometimes or rarely) showed that 

self-reported respiratory symptoms over the past 12 months were significantly increased 

when vaping with marijuana, including wheezing/whistling in the chest, wheezing in the 

chest during or after exercise, and a dry cough at night (71). This study revealed that lifetime 
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use of e-cigarettes with marijuana associates with self-reported respiratory symptoms over 

the past 12 months among adults.

Studies of e-cigarette exposure in humans are limited but have demonstrated pulmonary 

and cardiac toxicities. In one study of healthy never smokers who were exposed to ENDS 

aerosols for a short time, 10 subjects were assessed at baseline with questionnaires, chest 

X-rays, lung function tests, plasma levels of endothelial microparticles, and bronchoscopy 

to obtain small airway epithelial cells and alveolar macrophages. One week later, subjects 

inhaled 10 puffs of Blu brand e-cigarettes two times. Following repeated exposure, both 

clinical and biological parameters were examined. Although no significant changes in 

clinical parameters were observed, biological changes were observed. Compared to baseline, 

inhalation of e-cigarette aerosol with nicotine caused altered transcriptomes of small 

airway epithelial cells and alveolar macrophages among all subjects and elevated plasma 

microparticle levels, providing in vivo human data demonstrating that acute inhalation of 

e-cigarette aerosols dysregulates normal human lung homeostasis in a limited cohort of 

healthy naïve individuals (72).

Human exposure studies have also generally shown increased sympathetic nerve activity, 

platelet hemostasis processes, reactive oxygen species (ROS) generation, and endothelial 

dysfunction. Studies with conflicts of interest vis-à-vis industry sponsorship were less likely 

to report such effects, whereas almost all nonconflicted studies did (20). Interestingly, 

adverse cardiac effects were also noted in a study of healthy, nonsmoking, and nonvaping 

adults who were exposed to secondhand vaping emissions (25). In this randomized, repeated 

measures cross-over study, total heart rate variability [measured by the standard deviation of 

beat-to-beat (NN) intervals (SDNN)], heart rate variability over short cycles [the average of 

SDNN (ASDNN)], and heart rate correct QT intervals (QTc) were assessed. Nicotine from 

these e-cigarette exposures were associated with a 7.8% decrease in SDNN, a 7.7% decrease 

in ASDNN, and a 3.8-ms decrease in QTc. Greater nicotine over a longer exposure (15–30 

min) was associated with greater QTc reductions. These results were the first evidence 

of short-term, secondhand e-cigarette vapor-induced cardiac autonomic effects in healthy 

nonsmokers.

In another study (26), exhaled breath was collected from 17 e-cigarette vapers and analyzed 

for nicotine, PG, VG, formaldehyde, acetaldehyde, acrolein, tobacco-specific nitrosamines, 

and heavy metals. Among the analytes in exhaled breath, levels of nicotine, PG, tobacco-

specific nitrosamines, and copper were increased. Based upon the initial assessment of 

toxicants in exhaled breath, bystander exposure was estimated for two different exposure 

scenarios. Each of the two scenarios simulated daily exposures during either a daily 

commute in a small unventilated car with two e-cigarette users or a daily office hour in an 

office-sized space with one e-cigarette user. Results showed that bystanders may experience 

irritation of the respiratory tract and systemic effects, including palpitations and increased 

systolic blood pressure. The irritation of the respiratory tract was associated with exposure to 

PG and VG, and systemic effects were associated with exposure to nicotine (26).

Early life exposure to e-cigarettes/ENDS is a public health concern. There are no 

human studies, asyet, of maternal ENDS use and birth/development outcomes, but the 
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principal toxicants delivered by these devices raise considerable public health concern 

(73). Exposure of female mice to e-cigarettes in early pregnancy significantly impaired 

embryo implantation, as evidenced by the nearly complete absence of implantation sites 

in e-cigarette-exposed animals at day 5, despite exhibiting high levels of progesterone, an 

indicator of pregnancy (74). Effects of nicotine, a key substance of concern but by no means 

the only one in ENDS, on the fetus are well known (75–78). Hence, first- and second-hand 

e-cigarette aerosols may well pose significant hazards to the fetus. How these adverse fetal 

responses impair pulmonary function and disease risk in later life is a subject of ongoing 

research.

5. MODELS AND MECHANISMS OF LUNG INJURYAND INFLAMMATION

Clinical observations and epidemiological studies confirming the adverse biological effects 

of e-cigarettes on human health, and increasing cases of EVALI-related deaths, emphasize 

the urgent need to understand the pathophysiologic mechanisms of EVALI and acute and 

chronic effects of e-cigarette use. However, due to the rapid growth of e-cigarette use 

worldwide, these mechanisms and the long-term consequences of e-cigarette use remain 

unknown. Unknown pathophysiologic mechanisms result in a lack of biomarkers, which are 

needed as diagnostic tools. To identify potential biomarkers and targeted treatments and to 

prevent vaping-induced diseases including EVALI, both in vitro and in vivo approaches are 

required to understand the causes and pathophysiologic mechanisms of EVALI.

E-cigarettes elicit adverse health effects through direct contact of aerosols (also called 

e-cigarette vapor) with tissues or cells in the oral cavity and lung or through systemic effects 

on multiple organs including the heart, brain, eyes, and kidneys (65, 79, 80, 81–86) (Figure 

3). Because the most substantial toxicity of e-cigarettes is expected in the lung, and systemic 

effects may be propagated by injured lung, many studies have focused on the lung using 

both in vitro and in vivo models (Figure 2). In vitro models (82, 87) are less likely to 

replicate real-life exposure to e-cigarettes but provide mechanistic insight into molecular 

and cellular pathways impacted by specific chemicals contained in e-cigarette aerosols. 

Despite the known limitations of in vitro models, multiple studies have found similarities of 

transcriptomic profiles in airway epithelial cells from e-cigarette users and cultured NHBE 

cells exposed to e-cigarette aerosols (72, 88, 89). In the earliest in vitro studies, cells 

were exposed to e-liquids, which do not recapitulate the chemical composition of aerosols 

generated by ENDS. Recently, researchers transitioned to systems in which mammalian cells 

were directly exposed to e-cigarette aerosols, increasing the relevance of these studies to 

real-life exposures.

In vivo exposures have been done primarily in rodents, with early models also using 

e-liquids instead of aerosols (90, 91). Researchers have now universally transitioned to 

nose-only or whole-body exposures of animals to freshly generated e-cigarette aerosols. 

Use of commercially available e-cigarettes has increased the translatability of these studies 

to the general population but has made it difficult for researchers to keep up as new 

generations of devices emerge every 2–4 years. Studies focused on flavors popular in the 

vaping community also increase the relevance of results to e-cigarette users. Alternatively, 

some researchers focus on core components of e-liquids (PG, VG, and nicotine) that are 
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present in all e-liquid solutions and thus have high relevance to the entire vaping community. 

As specific chemicals have been identified as harm inducing, such as VEA as the causal 

agent of EVALI, researchers introduce these into vaping exposure systems to rapidly assess 

for lung injury and inflammation. Because inhalants can alter the immune and inflammatory 

state of the lungs and body (e.g., tobacco smoke), researchers also assess for alterations in 

the responses of e-cigarette-exposed animals to common clinical challenges using models of 

acute lung injury, bacterial and viral pneumonia, and airway reactivity.

5.1. Inflammatory Cytokines and Mediators

Overall, exposure to e-cigarettes induces secretion of proinflammatory cytokines, including 

interleukin (IL)-1β, IL-6, IL-8, and tumor necrosis factor alpha (TNF-α), from epithelial 

cells and immune cells in the upper airway and lung (80, 92–96). A particular pattern 

of neutrophil signals has been detected across studies. In the sputum of e-cigarette users, 

the neutrophilic granule proteins neutrophil elastase, proteinase 3, azurocidin 1, and 

myeloperoxidase are significantly increased (97),suggesting activation of neutrophils by 

e-cigarette exposure. Exposure of neutrophils to e-cigarette vapor extract markedly increases 

expression of CD11b and CD66b, which play a critical role in the activation of neutrophils 

(95). Furthermore, exposure to e-cigarette vapor extract leads to increased IL-8 secretion and 

protease activity, including that of neutrophil elastase and matrix metalloproteinase 9 (95). 

Increased proteases can damage lung basement membrane and extracellular matrix, leading 

to emphysema (98, 99). In one of the first studies of VEA using alveolar type II epithelial 

cells cultured in an air-liquid interface, VEA was incorporated into the cells with subsequent 

release of monocyte and neutrophil chemokines, demonstrating the direct role of VEA in 

inducing inflammatory responses (96).

Across in vivo exposures, the main cells found to be recruited to the lungs in response 

to e-cigarette aerosol inhalation include macrophages (94, 100, 101), neutrophils (102), 

eosinophils, and T cells (101, 103). As evidence of the importance of both e-device type 

and the composition of the heating element, Kleinman et al.’s (102) histologic analysis 

found acute lung injury in rats exposed to e-cigarette aerosols generated by a heating 

element made of nickel-chromium alloy (at 70 W) but not one with a stainless-steel 

atomizer. To assess how e-cigarette exposure alters airway inflammation, two distinct mouse 

models of allergic asthma had been used: house dust mite and ovalbumin (104–106). In a 

mouse model of allergic asthma using house dust mite, which induces type 2-low airway 

inflammation, exposure to e-cigarette aerosols containing 12 mg/mL nicotine suppressed 

allergic inflammatory responses (105).In a mouse model of allergic asthma using ovalbumin, 

which induces type 2-high airway inflammation, exposure to e-cigarette aerosols containing 

18 mg/mL nicotine increased allergic inflammatory responses (106).Because these two 

groups used two different asthma models (type 2-low inflammation versus type-2 high 

inflammation), it is possible that e-cigarette aerosol effects vary based on asthma phenotype. 

Alternatively, differences could also be due to different e-devices and wattage applied 

(Joyetech eVic-VT e-cigarette with a maximum of 45 W versus the Kanger Mini ProTank 2 

with 5.76 W). As mentioned above, much work has focused on the e-cigarette effects on the 

inflammatory state of the lungs. Investigators have identified changes in numerous cytokines 

within the airways and lung parenchyma of e-cigarette-exposed rodents, but consistent 
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patterns have not been identified, likely owing to the heterogeneity of exposure models, 

e-devices, and e-liquids used (65).

5.2. Cellular Damage

Vaping results in the generation of increased reactive aldehyde species (13, 107) causing 

the cellular accumulation of 4-hydroxynonenal, which induces apoptosis, mitochondria 

dysfunction, and protein inactivation (108–110).E-cigarette exposure also directly induces 

cellular damage by driving increased ROS generation during oxidative burst (92,111,112) 

and DNA damage (80,88,113). In multiple epithelial cell lines, e-cigarette exposure 

increases comet tail length and the accumulation of gamma H2AX (γH2AX) foci, 

suggesting single-strand and double-strand DNA breaks caused by e-cigarettes (113). E-

cigarette-exposed cells also show increased rates of apoptosis and necrosis, regardless of 

nicotine content (113). Higher levels of apoptosis in lung cells of mice exposed to e-cigarette 

aerosols daily have also been observed, which suggests an increased risk of developing 

emphysema (94), as well as apoptosis within cardiac tissue (114). Finally, Canistro et 

al. (115) demonstrated the comutagenic and cancer-initiating effects of e-cigarette aerosol 

exposures in a rat model. They found that e-cigarette aerosol inhalation caused a boost 

in phase I carcinogen-bioactivating enzymes, including activators of polycyclic aromatic 

hydrocarbons, and increased oxygen free radical production and DNA oxidation to 8-

hydroxy-2′-deoxyguanosine.

Inflammation and DNA damage are also associated with compromised oral health 

(80).In both human periodontal ligament fibroblasts and human gingival epithelium 

progenitors, exposure to e-cigarettes increases secretion of inflammatory mediators 

[IL-8 and prostaglandin E2 (PGE2)] and DNA damage as marked by γH2AX 

(80). E-cigarette exposure increases generation of ROS that induces inflammatory 

responses in both human epithelial cells and mouse models (116). In H292 

cells maintained in air-liquid interface culture, exposure to flavored e-cigarette 

aerosols induces cellular toxicity and ROS generation (111). In primary NHBE 

cells differentiated in air-liquid interface culture, exposure to e-cigarette aerosols 

induces a marker of ROS, 8-isoprostane, in a dose-dependent manner (88). Gene 

ontology analysis suggests that cellular regeneration and differentiation are impaired, 

while DNA damage and ROS generation are increased in NHBE cells. In small 

airway epithelial cells, exposure to e-cigarette emissions generates eight times more 

ROSthanincontrolcells(117).Murineexposuresarealsoassociatedwithgeneexpressionchanges 

consistent with increased oxidative burst and apoptosis in cardiac tissue in particular, raising 

concern for the development of cardiomyopathy (114), and e-cigarette exposures lead to 

increased lipid peroxidation, which is evidence of oxidative stress (118).

E-cigarette aerosols also impact mitochondria, cilia, and fibrosis. E-cigarette exposure 

induces mitochondria dysfunction, resulting in reduced ATP production, which is linked 

to compromised ciliary functions (119). Mitochondrial dysfunction may be due to increased 

ROS within mitochondria and may lead to insufficient energy production in cells. Chronic 

exposure to e-cigarette aerosols can be associated with the development of organ fibrosis, 

with increases in both profibrotic and oxidative stress markers (93).
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5.3. Transcriptional and Proteomic Modifications

E-cigarette aerosols induce transcriptional alterations in both oral and airway epithelial cells 

(64, 80, 88, 89, 94, 120–122). As identified by RNA sequencing analysis and confirmed 

by quantitative polymerase chain reaction (qPCR), two tumor suppressor genes (NOTCH1 
and HERC2) are downregulated in e-cigarette users (120). Transcriptional analysis of oral 

epithelial cells from e-cigarette users suggests that cancer risk is increased. E-cigarette 

exposure reduces the ciliated-cell marker gene (FOXJ1) while increasing expression of 

the genes involved in xenobiotic metabolism (CYP1A1 and CYP1B1) and oxidative stress 

(DNAH10) (88).

Proteomic analysis of airway epithelial cells from biopsies revealed unique protein 

expression profiles in vapers compared to analysis in nonsmokers (89). In airway epithelial 

cells from vapers, expressions of MUC5AC, MUC4, and CYP1B1 proteins were higher 

than in those from nonsmokers. These findings from human tissues were further validated 

in NHBE cells after exposure to aerosolized PG/VG. Exposure to PG/VG for four days 

induced MUC5AC protein in well-differentiated NHBE cells. These data suggest that 

e-cigarette exposure may cause airway obstruction by increased secretion of gel-forming 

mucin in vapers (89).Interestingly, e-cigarette exposure reduces ribosomal proteins and 

subsequent protein biogenesis in NHBE cells (121), indicating the potential detrimental 

effect of e-cigarette smoke on ribosomes and the associated protein synthesis in the airway 

epithelium. In NHBE cells, the phospholipid and fatty acid triacylglycerol metabolism 

pathways are found among the cellular pathways with the most significantly enriched 

gene expression following e-cigarette exposure (122). These data suggest that alterations 

in cellular glycerophospholipid biosynthesis are an important consequence of e-cigarette 

exposure.

5.4. Impaired Host Defense: Barrier Dysfunctions, Mucociliary Clearance,Bacterial 
Clearance, and Viral Defense

Epithelial integrity is the first line of lung defense. However, exposure to e-cigarette aerosols 

not only causes sloughing of epithelial cells, but it also disrupts epithelial barrier integrity 

(88, 93, 96, 111, 112). In mice, VEA inhalation leads to lung damage similar to that seen 

in humans (54). Specifically, VEA inhalation causes lung edema, neutrophilia, epithelial 

cell death, and lymphocyte-predominant perivascular inflammation (96) and also reduces the 

production of surfactant protein A (96, 112).

Mucociliary clearance is critical for protection of the respiratory tract against inhaled 

toxic substances (123). Impaired mucociliary clearance results in chronic inflammation by 

establishing a favorable environment for pathogenic bacterial colonization and growth (123, 

124). In both in vitro and in vivo models, e-cigarette exposures compromise mucociliary 

clearance by reducing ciliary beating frequency (94, 119, 125, 126). In NHBE cells, 

e-cigarette exposure reduces not only the number of ciliated cells (64, 94) but also 

ciliary beating frequency (94, 119, 125, 126). Exposure to aerosolized, nicotine-containing 

e-cigarette fluids reduces ion conductance and mucociliary function in human bronchial 

epithelial cells and induces airway hyperreactivity and air space enlargement in exposed 

mice (note that e-liquids were aerosolized with a medication nebulizer, not an e-device) 
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(94). A transient reduction of ciliary beating frequency was also observed after exposure 

to cinnamaldehyde-containing e-liquid, vaped aerosol, or cinnamaldehyde alone (119). 

Reduced ciliary beating frequency occurred secondary to reduced ATP production, which 

resulted from dysregulated mitochondria (119). In well-differentiated NHBE cells, exposure 

to e-cigarette vapor reduced airway surface liquid hydration and increased mucus viscosity 

in a nicotine-dependent manner (126). Impaired mucociliary clearance appears to be 

mediated by TRPA1, an ion channel, and not nicotinic acetylcholine receptors.

Multiple cells in the lungs contribute to host defense through direct antimicrobial activities. 

E-cigarette vapor exposure has been found to inhibit antibacterial function of epithelial cells, 

macrophages, and neutrophils (63, 93, 127). Inhibition of phagocytosis in macrophages (92, 

128) is one mechanism by which vaping impacts bacterial clearance. The other impaired 

host defense mechanism is inhibition of neutrophil extracellular trap formation (NETosis) 

(127). Exposure of NHBE cells to e-liquids reduces the expression of SPLUNC1,a host 

defense molecule,providing further evidence of the impaired bacterial host defenses in 

e-cigarette users (129). In particular, NHBE cells were isolated from young healthy donors 

aged 8–10 years. Thus, these in vitro studies support epidemiological studies demonstrating 

the increased rates of chronic bronchitis symptoms in adolescent e-cigarette users compared 

to nonsmokers (130). Finally, e-cigarette aerosol exposure has been found to promote 

biofilm formation and virulence of common bacterial colonizers and pathogens (63, 131), 

which indicates that vapers, like conventional tobacco smokers before them, may develop 

higher rates of invasive bacterial infections.

In vitro e-cigarette aerosol exposure causes apoptosis, secondary necrosis, and necrosis 

in lung epithelial cells and apoptosis and inflammatory caspase–mediated cell death in 

macrophages (132). Exposure to e-cigarette aerosols containing nicotine inhibits phagocytic 

and efferocytic abilities of primary macrophages, leading to decreased bacterial clearance 

when challenged with a bacterial pathogen (118). Exposure of neutrophils, which are the 

first cells recruited to the site of infection, to e-cigarette aerosols with and without nicotine 

leads to decreased phagocytosis and decreased bactericidal activity (63, 127). Suppression of 

antimicrobial functions of both macrophages and neutrophils by e-cigarette aerosols in vitro 

and ex vivo supports the concept that e-cigarette use damages host defenses and will lead to 

increased susceptibility to pulmonary infections.

Alveolar macrophages cultured with either e-liquid or e-cigarette vapor condensate result 

in a dose-dependent reduction in cell viability (92). E-cigarette vapor condensate is 

significantly more toxic to alveolar macrophages than nonvaped e-liquid. Excessive 

production of ROS, inflammatory cytokines, and chemokines induced by e-cigarette 

aerosols may induce an inflammatory state in alveolar macrophages within the lung that is 

partly dependent on nicotine. Inhibition of phagocytosis also suggests that users may suffer 

from impaired bacterial clearance. The two primary chemicals found in e-liquids are PG 

and VG. These additives act as vehicles and carriers for nicotine, which is highly insoluble 

in water, as well as for flavorings. Although some researchers view these chemicals as 

unimportant, both have been found to have toxic effects at both the cellular and host levels. 

PG and VG reduce glucose uptake in NHBE cells in an air-liquid interface culture (133). 

This is relevant in that glucose transports move extracellular glucose into airway cells to 
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maintain luminal surface with a low concentration of glucose in which bacterial growth is 

prohibited. Thus, reduced glucose uptake by PG/VG suggests compromised innate immunity 

against bacterial infections in e-cigarette users (134). In NHBE cells in vitro, PG/VG also 

reduce membrane fluidity and impaired protein diffusion, suggesting that PG/VG could alter 

cellular endocytosis and exocytosis (89).

In terms of viral immunity, airway epithelial cells from vapers were 

found to have decreased expression of Toll-like receptor 3, suggesting 

that viral immunity is impaired by e-cigarette use (89).Infectionofe-cigarette-

exposedmicewithinfluenzaleadstoincreasedlunginflammationand injury, consistent with an 

inability to control the viral infection and the potential to develop an immunomodulated 

state leading to excessive lung inflammation in response to viral infection (118, 135). Due 

to the COVID-19 pandemic, some groups have assessed specifically for the effects of vaping 

on molecules that play a role in SARS-CoV-2 infections, finding that female (but not 

male) mice exposed to e-cigarette aerosols containing nicotine had increased angiotensin-

converting enzyme 2 (ACE2) levels in the lung (101).

6. CONCLUSION

Since the appearance of ENDS on the market, the prevalence of e-cigarette use has become 

a growing public health concern. Despite the expected toxicity of inhaled nicotine and 

various chemical additives (Figure1), the impact on human health has been controversial. 

To date, a growing body of evidence indicates that e-cigarettes cause lung inflammation 

and injury (Figure 2) as well as systemic adverse effects in multiple organs (Figure 3). 

However, the pathophysiological mechanisms by which the lung and various organs are 

damaged remain unknown. Thus far, most evidence was collected in observational studies, 

some of which showed contradictory outcomes. Incongruous outcomes may be attributable 

to multiple factors, including frequency of vaping, e-device type, e-liquid composition, age, 

sex, and underlying health conditions. Henceforth, we should prioritize our efforts toward 

controlled studies to elucidate the pathophysiologic mechanisms behind the adverse health 

effects caused by e-cigarettes. Advanced knowledge will allow us to develop biomarkers and 

treatments of vaping-related diseases.
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Glossary

E-cigarette electronic cigarette

EVALI electronic cigarette or vaping use-associated lung injury

VEA vitamin E acetate

ENDS electronic nicotine delivery systems

THC tetrahydrocannabinol
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CBD cannabidiol

BAL bronchoalveolar lavage

PG propylene glycol (propane-1,2-diol)

VG vegetable glycerine (propane-1,2,3-triol)

NHBE cells normal human bronchial epithelial cells

ROS reactive oxygen species
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Figure 1. 
Toxic substances detected in e-cigarette aerosols and e-liquids. Toxic substances detected 

in e-cigarettes include toxicants (chemicals, nanoparticles, and heavy metals) and toxins 

(endotoxin and β-glucans). Figure adapted from images created with BioRender.com.
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Figure 2. 
Mechanistic overview of the adverse effects of electronic cigarettes on the lung. As a 

primary organ, the lung is damaged and impaired by electronic cigarette use. Figure adapted 

from images created with BioRender.com. Abbreviations: γH2AX, gamma H2AX; ROS, 

reactive oxygen species.
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Figure 3. 
Adverse effects of electronic cigarettes on human health. As the site of the contact with 

inhaled toxic chemicals, the lungs are directly damaged by electronic cigarette use, but 

multiple organs are damaged by systemic adverse effects. Figure adapted from images 

created with BioRender.com.
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