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Abstract

Comparing the functional behavior of neural network models, whether it is a single network over 

time or two (or more networks) during or post-training, is an essential step in understanding 

what they are learning (and what they are not), and for identifying strategies for regularization or 

efficiency improvements. Despite recent progress, e.g., comparing vision transformers to CNNs, 

systematic comparison of function, especially across different networks, remains difficult and is 

often carried out layer by layer. Approaches such as canonical correlation analysis (CCA) are 

applicable in principle, but have been sparingly used so far. In this paper, we revisit a (less widely 

known) from statistics, called distance correlation (and its partial variant), designed to evaluate 

correlation between feature spaces of different dimensions. We describe the steps necessary to 

carry out its deployment for large scale models – this opens the door to a surprising array 

of applications ranging from conditioning one deep model w.r.t. another, learning disentangled 

representations as well as optimizing diverse models that would directly be more robust to 

adversarial attacks. Our experiments suggest a versatile regularizer (or constraint) with many 

advantages, which avoids some of the common difficulties one faces in such analyses 1.

1. Introduction

The extent to which popular architectures in computer vision even partly mimic human 

vision continues to be studied (and debated) in our community. But consider the following 

hypothetical scenario. Let us say that a fully functional computational model of the visual 

system – perhaps a modern version of the Neocognitron [20] – was somehow provided 

to us. And we wished to “compare” its behavior to modern CNN models [33,28]. To do 

so, two options appear sensible. The first – inspired by analogies between computational 

vision and biological vision – would draw a correspondence between how simple/complex 

cells in the visual cortex process scenes and their induced receptive fields with those 

of activations of units/blocks in a modern deep neural network architecture [60]. While 

this process is often difficult to carry out systematically, it is powerful and, in some 

ways, has contributed to interest in biologically inspired deep learning, see [67]. Updated 

forms of this intuition – associating different subsets of cells (or neural network units) to 

1Code is at https://github.com/zhenxingjian/Partial_Distance_Correlation

xzhen3@wisc.edu . 
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different semantic/visual concepts – remains the default approach we use in debugging and 

interpretation. The second option for tackling the hypothetical setting above is to pose it in 

an information theoretic setting. That is, for two models ΘX and ΘY , we ask the following 

question: what has ΘX learned that ΘY  has not? Or vice versa. The asymmetry is intentional 

because if we consider two random variables (r.v.) X, Y , the question simply takes the form 

of “conditioning”, i.e., compare ℙ X  versus ℙ X ∣ Y . This form suffices if our interest is 

restricted to the predictions of the two models. If we instead wish to capture the model's 

behavior more globally – when X and Y  denote the full set of feature responses – we can 

use divergence measures on high dimensional probability measures given by the two models 

(ΘX and ΘY) responses on the training samples. Importantly, notice that our description 

assumes that, at least, the probability measures are defined on the same domain.

More general use cases.

While the above discussion was cast as comparing two networks, it is representative 

of a broad basket of tasks in deep learning. (a) Consider the problem of learning fair 

representations [71,17,70,44] where the model must be invariant to one (or more) sensitive 

attributes. We seek latent representations, say Ψpred X  for the prediction task, which 

minimizes mutual information w.r.t. the latent representation relevant for predicting the 

sensitive attribute Ψsens X . Indeed, if information regarding the sensitive attribute is partially 

preserved or leaks into Ψpred X , the relative entropy will be low [49]. Observe that this 

calculation is possible partly because the latent space specifies the same probability space 
for the two distributions. (b) The setting is identical in common approaches for learning 

disentangled representations, where disentanglement is measured via various information 

theoretic measures [8,1,21,61]. If we now segue back to comparing two different networks, 

but without the convenience of a common coordinate system to measure divergence, 

the options turn out to be limited. (c) Recently, in trying to understand whether vision 

Transformers “see” similar to convolutional neural networks [56], one option utilized 

recently was a kernel-based representation similarity, in a layer-by-layer manner. What we 

may actually want is a mechanism for conditioning – for example, if one of the models is 

thought of a “nuisance variable”, we wish to check the residual in the other after the first 

has been controlled for (or marginalized out). Importantly, this should be possible without 

assuming that the probability distributions live in the same space (or networks ΘX and ΘY  are 

the same).

A direct application of CCA?

Consider two different feature spaces (X and Y), say in dimensions ℝp and ℝq, pertaining 

to feature activations from two different models. Comparison of these two feature spaces is 
possible. One natural choice is canonical correlation analysis (CCA) [5], a generalization 

of correlation, specifically suited when p ≠ q. The idea has been utilized for studying 

representation similarity in deep neural network models [48], albeit in a posttraining setting 

for reasons that will be clear shortly, as well as for identifying more efficient training 

regimes (i.e., can lower layers be sequentially frozen after a certain number of timesteps). 

CCA has also been shown to be implementable within DNN pipelines for multi-view 

training, called DeepCCA [4], although efficiency can be a bottleneck limiting its broader 
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deployment. A stochastic version of CCA suitable for DNN training with mini-batches has 

been proposed very recently, and strong experimental evidence was presented [47], also see 

[25]. Given that a stochastic CCA is now available, its extensions to the partial CCA setting 

are not yet available. If successful, this may eventually provide a scheme, suitable for deep 

learning, for controlling the influence of one model (or a set of variables) on another model.

This work.

The starting point of this work is a less widely used statistical concept to measure the 

correlation between two different feature spaces  X, Y  of different dimensions, called 

distance correlation (and the method of dissimilarities). In shallow settings, CCA and 

distance correlation offers very similar functionality – for the most part, they can be used 

interchangeably although distance correlation would also need specification of distances (or 

dissimilarities). In other words, CCA may be easier to deploy. On the other hand, deep 

variants of CCA involve specialized algorithms [4,47]. Further, deep versions of partial 

CCA have not been reported. In contrast, as long as feature distances can be calculated, 

the differences between the shallow and the deep versions of distance correlation are 

minimal at best, and adjustments needed are quite minor. These advantages carry over to 

partial distance correlation, directly enabling conditioning one model w.r.t. another (or using 

such a term as a regularizer). The main contribution of this paper is to study distance 

correlation (and partial distance correlation) as a powerful measure in a broad suite of 

tasks in vision. We review the relevant technical steps which enable its instantiation in 

deep learning settings and show its broad applications ranging from learning disentangled 

representations to understanding the differences between what two (or more) networks are 

learning to training “mutually distinct” deep models (akin to earlier works on M best 

solutions to MAP estimation in graphical models [19,69]) or training M diverse models for 

foreground-background segmentation as well as other tasks [27].

1.1. Related Works—Four distinct lines of work are related to our development, which 

we review next. Similarity between networks. Understanding the similarity between 

different networks is an active topic [38,24,50] also relevant in adversarial models 

[15,9]. Early attempts to compare neural network representations were approached via 

linear regression [58], whose applicability to nonlinear models is limited. As noted 

above, canonical correlation analysis (CCA) [3,31] is a suitable off-the-shelf method 

for model comparisons. To this end, singular vector CCA (SVCCA) [55], Projection-

Weighted CCA [48], DeepCCA [4], and stochastic CCA [23] are all potentially useful. 

Recently, [37] studied the invariance properties for a good similarity measurement and 

proposed the centered kernel alignment (CKA). CKA offers invariance to invertible linear 

transformations, orthogonal transformations, and isotropic scaling. Separately, [51,56] used 

CKA to study similarities between deep and wide neural networks and also between 

different network structures.

Information theoretic divergence measures.

Another body of related work pertains to approximately measuring the mutual information 

[12] to remove this information, mainly in the context of fair representation learning. Here, 

mutual information (MI) is measured between features and the sensitive attribute [49]. In 
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[63], another information theoretic bound for learning maximally expressive representations 

subject to the given attributes is presented. In [10], MI between prediction and the sensitive 

attributes is used to train a fair classifier whereas [2] describes the use of inverse contrastive 

loss. Group-theoretic approaches have also been described in [11,45]. The work in [41] 

gives an empirical solution to remove specific visual features from the latent variables using 

adversarial training.

Repulsion/Diversity.

If we consider the ensemble of neural networks, there are several different strategies to 

maintain functional diversity between ensemble members – we acknowledge these results 

here because they are loosely related to one of the use cases we evaluate later. SVGD 

[14] shows the benefits of choosing the kernel to measure the similarity between ensemble 

members. In [13], the authors introduce a kernelized repulsive term in the training loss, 

which endows deep ensembles with Bayesian convergence properties. The so-called quality 

diversity (QD) is interesting: [53] tries to maximize a given objective function with diversity 

to a set of pre-defined measure functions [22,57]. When both the objective and measure 

functions in QD are differentiable, [18] offers an efficient way to explore the latent space of 

the objective w.r.t. the measure functions.

Distance correlation (DC).

The central idea motivating our work is distance correlation described in [65]. It has been 

used in the analysis of nonlinear dependence in time-series [72], and feature screening in 

ultra high-dimensional data analysis tasks [42] and we will review it in detail shortly.

2. Review: Distance (and Partial Distance) Correlation

Given two random variables X, Y ∈ ℝ (in the same domain), correlation (say, the Pearson 

correlation) helps measure their association. One can derive meaningful conclusions by 

statistical testing. As noted in §1 one generalization of correlation to a higher dimension is 

CCA, which seeks to find projection matrices such that correlation among the projected data 

is maximized, see [5].

Benefits of Distance Correlation.

In many applications, the notion of distances or dissimilarities appears quite naturally. 

Motivated by the need for a scheme that can capture both linear and non-linear correlations 

when provided with such dissimilarity information, in [65], the authors proposed a new 

measure of dependence between random vectors, called distance correlation. The key 

benefits of distance correlation are:

1. The distance correlation ℛ satisfies 0 ≤ ℛ ≤ 1, and ℛ = 0 if and only if X, Y  are 

independent.

2. ℛ X, Y  is defined for X and Y  in arbitrary dimensions, e.g., ℛ X, Y  is well-

defined when X is of dimension p while Y  is of dimension q for p ≠ q.
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We focus on empirical distance correlation for n samples drawn from the unknown joint 

distribution, and review its calculation.

For an observed random sample  x, y = Xi, Y i : i = 1, ⋯, n  from the joint distribution of 

random vectors X in ℝp and Y  in ℝq, define:

ak, l = Xk − Xl ,   ak, ⋅ = 1
n l = 1

n
ak, l,  a ⋅ , l = 1

nak, l,

a ⋅ , ⋅ = 1
n2 k, l = 1

n
ak, l,  Ak, l = ak, l − ak, ⋅ − a ⋅ , l + a . , .

(1)

where k, l ∈ 1, ⋯, n . Similarly, we can define bk, l = Y k − Y l , and Bk, l = bk, l − bk, ⋅ − b . , l + b . , . , 

and based on these quantities we have.

Definition 1.

(Distance correlation) [65]. The empirical distance correlation ℛn x, y  is the square root of

ℛn
2 x, y =

Vn
2 x, y

Vn
2 x, x Vn

2 y, y
, Vn

2 x, x Vn
2 y, y > 0

0 , Vn
2 x, x Vn

2 y, y = 0
(2)

where the empirical distance covariance (variance) Vn x, y , Vn x, x  are defined 

as Vn
2 x, y = 1

n2 ∑k, l = 1
n Ak, lBk, l, Vn

2 x, x = 1
n2 ∑k, l = 1

n Ak, l
2 , with A in (1).

Examples. We show a few simple 2D examples to contrast Pearson Correlation and 

Distance Correlation in Fig. 1. Notice that if the relationship between the two random 

variables is not linear, Pearson Correlation might be small while Distance Correlation 

remains meaningful.

Extensions to conditioning.

Given three random variables X, Y , and Z, we want to measure the correlation 

between X and Y  but “controlling for” Z (thinking of it as a nuisance variable), i.e., we 

want to estimate ℛ X Z, Y Z = ℛ* X, Y ; Z . Such a quantity is key in existing approaches 

in disentangled learning, deriving invariant representations and understanding what one 

or more networks are learning after concepts learned by another network have been 

accounted for. Consider how this task would be accomplished in linear regression We would 

project X and Y  into the space of Z, and only use the residuals to measure the correlation. 

Nonetheless, defining partial distance correlation is more involved – in [64], the authors 

introduced a new Hilbert space where we can define the projection of distance matrix. To 

do so, the authors calculate a U-centered matrix A from the distance matrix  ak, l  so that the 

inner product of the U-centered matrices will be the distance covariance.
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Definition 2.

Let A = ak, l  be a symmetric, real valued n × n matrix (n > 2) with zero diagonal. Define 

the U-centered matrix A = akl  as follows.

akl = ak, l − 1
n − 2 i = 1

n
ai, l − 1

n − 2 j = 1

n
ak, j + 1

n − 1 n − 2 i, j = 1

n
ai, j, k ≠ l

0 , k = l
(3)

Further, the inner product between A, B is defined as  A ⋅ B : = 1
n n − 3 ∑k ≠ l Ak, lBk, l, and is an 

unbiased estimator of squared population distance covariance V2 x, y .

Before defining partial distance covariance formally, we recall the definition of orthogonal 

projection on these matrices.

Definition 3.

Let A, B, C corresponding to samples x, y, z respectively, and 

let Pz⊥ x = A − A ⋅ C
C ⋅ C C, Pz⊥ y = B − B ⋅ C

C ⋅ C C denote the orthogonal projection 

of A x  onto (C z )⊥ and the orthogonal projection of B y  onto (C z )⊥.

Now, we are ready to define the partial distance covariance and the partial distance 

correlation.

Definition 4.

Let  x, y, z  be a random sample observed from the joint distribution of  X, Y , Z . The sample 

partial distance covariance is defined by:

pdCov x, y; z = Pz⊥ x ⋅ Pz⊥ y = 1
n n − 3 i ≠ j

Pz⊥ x i, j Pz⊥ y i, j (4)

And the partial distance correlation is defined 

as: ℛ * 2 x, y; z : = Pz⊥ x ⋅ Pz⊥ y
Pz⊥ x Pz⊥ y  where  Pz⊥ x = Pz⊥ x ⋅ Pz⊥ x 1/2 is the norm.

Partial distance correlation enables asking various interesting questions. By projecting the 

original U-centered matrix A onto C, the correlation between the residual and B will be a 

measure of what does X learn that Z does not.

3. Optimizing Distance Correlation in Neural Networks

While distance correlation can be implemented in a differentiable way, and thereby used as 

an appropriate loss function in a neural network, we must take efficiency into account. For 

two p dimensional random variables, let the number of samples for the empirical estimate 

of DC be n. Observe that the total cost for computing   ak, l  is O n2p , and the memory to 
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store the intermediate matrices is also O n2 . So, we use a stochastic estimate of DC by 

averaging over minibatches, with each minibatch containing m samples. We describe why 

this approximation is sensible.

Notation.

We use ΘX, ΘY  to denote the parameters of the neural networks, and X, Y  as features 

extracted by the respective neural networks. Let the minibatch size be m, and the 

dataset D = DX, DY  be of size n. We use  xt, yt t = 1
T , xt ⊂ DX, yt ⊂ DY to represent the data 

samples at step t, T  is the total number of training steps. The distance matrices At, Bt are 

computed when given Xt, Y t using (1), which is of dimension m × m for each minibatch. 

Further, we use   Xt k to represent the kth element in Xt. And  At k, l is the kth row and lth 

column element in the matrix At. The inner-product between two matrices A, B is defined 

as  A, B = ∑i, j
m (A)i, j(B)i, j.

Objective function.

Consider the case where we minimize DC between two networks ΘX, ΘY. Since the 

parameters between ΘX, ΘY  are separable, we can use the block stochastic gradient iteration 

in [68] with some simple modifications.

To minimize the distance correlation, we need to solve the following problem

min
ΘX, ΘY

A ΘX; x , B ΘY; y
A ΘX; x , A ΘX; x B ΘY; y , B ΘY; y

(A)k, l = (X)k − (X)l 2, X = ΘX x , (B)k, l = (Y )k − (Y )l 2,  Y = ΘY y
(5)

We slightly abuse the notation of ΘX x  as applying the network ΘX onto data x, and 

reuse A to simplify the notation A ΘX; x  and the distance matrix. We can rewrite the 

expression (with A, B defined above) using:

min
ΘX, ΘY

A, B s .t .  max
x ⊂ DX

A, A ≤ m; max
y ⊂ DY

B, B ≤ m (6)

where  x, y  are the minibatch of samples from the data space  DX, DY .

We can rewrite the above into the following equation similar to (1) in [68].

min
ΘX, ΘY

Φ ΘX, ΘY = Ex, yf ΘX, ΘY; x, y + γ ΘX + γ ΘY (7)

where f ΘX, ΘY ; x, y  is  A, B  and γ ΘX  encodes the convex constraint of 

network ΘX : maxx ⊂ DX A, A ≤ m. Similarly, γ ΘY  encodes maxy ⊂ DY B, B ≤ m. Φ ΘX, ΘY  is 

the constrained objective function to be optimized.
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Block stochastic gradient iteration.

We adjust Alg. 1 from [68] to our case in Alg. 1. Since we will need the entire 

minibatch  xt, yt  to compute the objective function, there will be no mean term when 

computing the sample gradient gX
t . Further, since both blocks  ΘX, ΘY  are constrained, line 3, 

5 will use (5) from [68]. The detailed algorithm is presented in Alg. 1.

Algorithm1 Block Stochastic Gradient for Updating Distance Correlation
Input:  Two neural network with starting point ΘX

1 , ΘY
1 . Training data xt, yt t = 1

T ,
step size ηX, ηY , and batch size m .

Output: ΘX
T , ΘY

T

1: for t = 1,…,T do
2: Compute sample gradient for ΘX

gX
t = ∇ΘXf ΘX

t , ΘY
t ; xt, yt

3: ΘX
t + 1 = arg minΘX gX

t + ∇γX ΘX
t , ΘX − ΘX

t + 1
2ηX

ΘX − ΘX
t 2

4: Compute sample gradient for ΘY

gY
t = ∇ΘY f ΘX

t + 1, ΘY
t ; xt, yt

5: ΘY
t + 1 = arg minΘY gY

t + ∇γY ΘY
t , ΘY − ΘY

t + 1
2ηY

ΘY − ΘY
t 2

6: end for

7: ΘX
T = 1

T t = 1

T
ΘX

t

8: ΘY
T = 1

T t = 1

T
ΘY

t

Proposition 1.

After T  iterations of Algorithm 1 with step size ηX = ηY = η
T < 1

L , for some positive 

constant η < 1
L , where L is the Lipschitz constant of the partial gradient of f, by Theorem. 6 

in [68], we know there exists an index subsequence T such that:

lim
t ∞, t ∈ T

E dist 0, ∇Φ ΘX
t , ΘY

t = 0 (8)

where dist y, X = minx ∈ X ∥ x − y ∥.

But empirically, we find that simply applying Stochastic Gradient Decent (SGD) is 

sufficient, but this choice is available to the user.

4. Independent Features Help Robustness

Goal.

We show how distance correlation can help us train multiple deep networks that learn 

mutually independent features, roughly similar to finding diverse M-best solutions in 

structured SVM models [59]. We describe how such an approach can lead to better 

robustness against adversarial attacks.
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Rationale.

Recently, several efforts have explored generating of adversarial examples that can transfer 

to different networks and how to defend against such attacks [15,62,6]. It is often observed 

that an adversarial sample for one trained network is relatively easy to transfer to another 

network with the same architecture [15]. Here, we show that even for as few as two networks 

(same architecture; trained on the same data), we can, to some extent, prevent adversarial 

examples from transferring between them by seeking independent features.

Setup.

We formulate the problem considering a classification task as an example. Given two deep 

neural networks with the same architecture denoted as f1 ⋅ , f2 ⋅ , we train them using 

image-label pairs  x, y  using the cross-entropy loss LossCE. If we train f1 and f2 using 

only the cross-entropy loss, the adversarial examples generated on f1 can relatively easily 

transfer to f2 (see the performance of “Baseline” in Table 1). To enforce f1 and f2 to learn 

independent features, let the extracted feature of x in some intermediate layer of f be 

given as g x  (in this section we use the feature before the last fully connected layer as an 

example). We can still train f1 using LossCE, and then, we train f2 using,

Losstotal  = LossCE f2 x , y + α ⋅ LossDC g1 x , g2 x (9)

where α is a constant scalar and LossDC is the distance correlation from Def. 1 Note that we 

do not require g1 x  and g2 x  to be in the same dimension, so in principle we could easily use 

features from different layers for these two networks.

Experimental settings.

We first conduct experiments on CIFAR10 [39] using Resnet 18 [28]. We then use 

four different architectures (mobilenet-v3-small [32] , efficientnet-B0 [66], Resnet 34, and 

Resnet152) and train them on ImageNet [40]. For each network architecture, we first train 

two networks using only LossCE. Next, we train a network using only LossCE before training 

a second network using the loss in (9). On CIFAR10, we utilize the SGD optimizer with 

momentum 0.9 and train for 200 epochs using an initial learning rate 0.1 with a cosine 

learning rate scheduler [52]. The mini-batch size is set to 128. On ImageNet [40], we train 

for 40 epochs using an initial learning rate 0.1, which decays by 0.1 every 10 epochs. The 

mini-batch size is 512 . Our α in (9) is set to 0.05 for all cases. For each combination of 

the dataset and the network architecture, we train two networks f1 and f2, after which we 

generate adversarial examples on f1 and use them to attack f2 and measure its classification 

accuracy. We construct a baseline by training f1 and f2 Baseline  without constraints. And 

train f2 Our  using (9) to learn independent features w.r.t. f1. We report performance under two 

widely used attack methods: fast gradient sign method (FGM) [26] and projected gradient 

descent method (PGD) [46], where the latter is considered among the strongest attacks. The 

scale ϵ of the adversarial perturbation is chosen from {0.03, 0.05, 0.1} and the maximum 

number of iterations of PGD is set to 40.
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Results.

The results are shown in Table 1. We see that we get significant improvement in accuracy 

over the baseline under adversarial attacks, with comparable performance on clean inputs. 

Notably, our method achieves more than 10% absolute improvement in accuracy under PGD 

attack on Resnet-18 and Mobilenet-v3-small. This provides evidence supporting the benefits 

of enforcing the networks to learn independent features using our distance correlation loss.

In Fig. 2, we show correlation results using Picasso [29,7] to lower the dimension of 

features for each network. The embedding dimension is 2 for visualization. In Fig. 2(a), 

we show the embedding of different networks. f1 represents the network to generate 

the adversarial examples. f2 Baseline  denotes the baseline network, trained without distance 

correlation constraint. Also, f2Ours is the same network trained to be independent to f1. In 

Fig. 2(b), we visualize the correlation between f1 and f2Baseline  for each dimension, and the 

correlation between f1 and f2Ours. If the scatter plot looks circle-like, we can infer that the 

two models are independent. We see that in different networks, the use of DC shows stronger 

independence. From Fig. 2/Tab. 1, we also see that the more independent the models are, the 

better is the gain for transferred attack robustness.

5. Informative Comparisons between Networks

Overview.

As discussed in §1, there is much interest in understanding whether two different models 

learn similar concepts from the data – for example, whether vision Transformers “see” 

similar to convolutional neural networks [56]. Here, we first follow [56] and discuss 

similarities between different layers of ViT and ResNets using distance correlation. Next, 

we investigate that after taking out the influence of Resnets from ViT (or vice versa), what 

are the residual learned concepts remaining in the network.

5.1. Measure Similarity between Neural Networks

Goal.: We first want to understand whether ViTs represent features across all layers 

differently from CNNs (such as Resnets). However, analyzing the features in the hidden 

layers can be challenging, because the features are spread across neurons. Also, different 

layers have different numbers of neurons. Recently, [56] applied the Centered Kernel 

Alignment (CKA) for this task. CKA is effective because it involves no constraint on 

the number of neurons. It is also independent to the orthogonal transformations of 

representations. Here, we want to demonstrate that distance correlation is a reasonable 

alternative for CKA in these settings.

Experimental settings.: First, as described in [56], we show that similarity between layers 

within a single neural network can be assessed using distance correlation (see Fig. 3(a) ). We 

pick ViT Base with patch 16, and three commonly used Resnets. All networks are pretrained 

on ImageNet. For ViT, we pick the embedding layer and all the normalization, attention, and 

fully connected layers within each block. The total number of layers is 63. For Resnets, we 
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use all convolutional layers and the last fully connected layer, which is the same counting 

method to build Resnet models.

Results (a).: Our findings add to those from [56]. Using distance correlation, we find that 

the ViT layers can be split into small blocks and the similarity between different blocks from 

shallow layers to the deeper layers is higher. For most Resnets, the feature similarity shows 

that there are a few large blocks in the network, which contains more than 30 layers each, 

and the last few layers share minimal similarity with the shallow layers.

Results (b).: After within-model distance correlation, we perform across-model distance 

correlation comparisons between ViT and Resnets, see Fig. 3(b). We notice that in the initial 

1/6 layers, the two networks share high similarities. But later, the similarity spreads across 

all different layers between ViT and Resnets. Notably, the last few layers share the least 

similarity between two networks.

By using the distance correlation to calculate the heatmap of the similarity matrices, we 

can qualitatively describe the difference between the patterns of the features in different 

layers from different networks. What is even more interesting is to quantitatively show the 

difference, for example, to answer which network contains more information for the ground 

truth classes. We discuss this next.

5.2. What Remains When “Taking out” Y  from X
Goal.: Even measuring information contained in one neural network is challenging, and 

often tackled by measuring the accuracy on the test dataset. But the association between 

accuracy and the information contained in a network may be weak. Based on existing 

literature, conditioning one network w.r.t. another remains unresolved. Despite the above 

challenges, we can indeed measure the similarity between the features of the network X and 

the ground truth labels. If the similarity is higher, we can say that the feature space 

of X contains more information regarding the true labels. Distance correlation enables this. 

Interestingly, partial distance correlation extends this idea to multiple networks allowing us 

to approach the “conditioning” question posed above.

Rationale/setup.: Here, we choose the last layer before the final fully-connected layer as 

the feature layer similar to the setup in §4. Our first attempt involved directly applying the 

distance correlation measurement to feature X and the one-hot ground truth embedding. 

However, the one-hot embedding for the label contains very little information, e.g., it does 

not show the difference between “cat” vs. “dog” and “cat” vs. “airplane”. So, we use the 

pretrained BERT [16] to linguistically embed the class labels into the hidden space. We 

then measure the distance correlation between the feature space of X and the pretrained 

hidden space GT .   ℛ2 X, GT = m
n ∑t = 1

n/m dCor xt, gtt  where xt is the feature for one minibatch, 

and gtt is the BERT embedding vector of the corresponding label. To further extend this 

metric to measure the “remaining” or residual information, we apply the partial distance 

correlation calculation by removing Y  out of X, or say X conditioned on Y . Then, we 
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have ℛ2 X ∣ Y , GT = m
n ∑t = 1

n/m dCor xt ∣ yt , gtt  using (4). This capability has not been shown 

before.

Experimental settings.: In order to measure the information remaining when conditioning 

network ΘY  out of ΘX, we first use pretrained networks on ImageNet. We use the validation 

set of the ImageNet for evaluation. We want to evaluate which network contains the 

richest information regarding linguistic embedding. Interestingly, we can go beyond such 

an evaluation, instead, asking the network ΘX to learn concepts above and beyond what the 

network ΘY  has learned. To do so, we include the partial distance correlation into the loss. 

Unlike the experiment discussed above (minimizing distance correlation), in this setup, we 

seek to maximize partial distance correlation. The Losstotal is

LossCE f1 x , y − α ⋅ LossPDC g1 x ∣ g2 x , gt (10)

We take pretrained networks ΘX, ΘY  and then finetune ΘX using (10). The learning rate 

is set to be 1e − 5 and α in the loss term is 1. To check the benefits of partial DC, we 

use Grad-CAM [60] to highlight the areas that each network is looking at, together with 

what ΘX conditioned on ΘY  sees then.

Results (a).: We first show information comparison between two networks. The details of 

DC and partial DC are shown in Table. 2. The reader will notice that since ViT achieves 

the best test accuracy, it also contains the most information. Additionally, although better 

test accuracy normally coincides with more information, this is not always true. Resnet 

50 contains more linguistic information than the much deeper Resnet 152, perhaps a 

compensation mechanism. For Resnet 152, the network is deep enough to focus on local 

structures that overwhelm the linguistic information (or this information is unnecessary). 

This experiment suggests a new strategy to compare two networks beyond test accuracy.

Results (b).: After using a pretrained network, we can also check that by including the 

partial distance correlation in the loss, which regions does the model pay attention to, using 

Grad-CAM. We replace the loss term of Grad-CAM with the partial distance correlation. 

The results are shown in Fig. 4. We see that the pretrained ViT sees across the whole 

image in different locations, while the Resnet (VGG) tends to focus on only one area of 

the image. After training, ViT (conditioned on Resnet) pays more attention to the subjects, 

especially locations outside the Resnet focus. Such experiments help understand how ViT 

learns beyond Resnets (CNNs).

6. Disentanglement

Overview.

This experiment studies disentanglement [30,36,8,43,21]. It is believed that the image data 

are generated from low dimensional latent variables – but isolating and disentangling the 

latent variables is challenging. A key in disentangled latent variable learning is to make the 

factors in the latent variables independent [2]. Distance correlation fits perfectly and can 
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handle a variety of dimensions for the latent variables. When the distance correlation is 0, 

we know that the two variables are independent.

Experimental settings.

We follow [21] which focuses on semi-supervised disentanglement to generate high-

resolution images. In [21], one divides the latent variables into two categories: (a) attributes 

of interest – a set of semantic and interpretable attributes, e.g. hair color and age; (b) residual 

attributes – the remaining information. Formally, xi = G fi
1, …, fi

k, ri , where G is the generator 

that uses the factors of interest fi
l and the residual to generate image xi.

In order to enforce the condition that the information regarding the attributes of interest 

is not leaking into the residual representations, the authors of [21] introduced the 

loss Lres = ∑i = 1
n ri  2  to limit the residual information. This is sub-optimal as there can 

be cases where ri is not 0 but still independent to the factors of interest  fi
l

l = 1
k . Thus, we use 

distance correlation to replace this loss:

Lres = dCor f1; f2; …; fk , r (11)

We use the same structure proposed in [21], while the generator architecture is adopted 

from StyleGAN2 [35]. The dataset is the human face dataset FFHQ [34], and the attributes 

are: age, gender, etc. We use CLIP [54] to partially label the attributes to generate the semi-

supervised dataset for training. All losses from [21] are used, except that Lres  is replaced by 

(11).

Results.

(Shown in Fig. 5) Our model shows the ability to change specific attributes without affecting 

residual features, such as posture (also see supplement).

7. Conclusions

In this paper, we studied how distance correlation (and partial distance correlation) has a 

wide variety of uses in deep learning tasks in vision. The measure offers various properties 

that are often enforced using alternative means, that are often far more involved. Further, it is 

extremely simple to incorporate in contrast to various divergence-based measures often used 

in invariant representation learning. Notably, the use of partial distance correlation offers the 

ability of conditioning, which is underexplored in the community. We showcase three very 

different settings, ranging from network comparison to training distinct/different models to 

disentanglement where the idea is immediately beneficial, and expect that numerous other 

applications will emerge in short order.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1: 
Examples of Pearson Correlation and Distance Correlation in different 

settings. (a): y = 0.5x2 + 0.75n, n ∼ N 0, 1 ; (b): y = 0.15x3 + 0.75n + 2.5, n ∼ N 0, 1 ; 

(c): 
x
y ∼ N 0

2.5 , 1 0.75
0.75 1.25 ; (d): 

x
y ∼ N 0

2.5 , 1 0
0 1.25
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Fig. 2: 
Picasso visualization of features space and the correlation between different models. 

(a) Feature space distribution. (b) Cross-correlation between the feature space 

of f1 and f2 trained with/without DC. We get better independence. (c) By increasing the 

balance parameter α of DC loss, Mobilenet is more independent to f1.
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Fig. 3: 
(a) Left 4: Similarity between layers within one single model. ViT can be split into small 

blocks and the similarity from shallow layers to the deeper layers is higher. Most Resnet 

models show few large blocks in the network, and the last few layers share minimal 

similarity with the shallow layers. (b) Right 3: Similarity between layers across ViT 

and Resnets. In the initial 1/6 layers (highlighted in green), the two networks share high 

similarity. And the last few layers share the least similarity
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Fig. 4: 
Grad-CAM results on ImageNet using ViT, Resnet18 and VGG16. After using Partial DC 

to remove the information learned by another network, ViT can focus on detail places and 

Resnet can only look in major spots. Similar issue happens to VGG.
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Fig. 5: 
Representative generated images using our training on FFHQ. Note that these results only 

use semi-supervised dataset by CLIP. Our methods shows the ability to disentangle the 

attributes of interest and the remaining information.
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Table 1:

The test accuracy (%) of a model f2 on the adversarial examples generated using f1 with the same architecture. 

“Baseline”: train without constraint. “Ours”: f2 is independent to f1. “Clean”: test accuracy without adversarial 

examples.

Dataset Network Method Clean FGMϵ = 0.03 PGDϵ = 0.03 FGMϵ = 0.05 PGDϵ = 0.05 FGMϵ = 0.1 PGDϵ = 0.1

CIFAR10 Resnet 18 Baseline 89.14 72.10 x66.34 62.00 49.42 48.23 27.41

CIFAR10 Resnet 18 Ours 87.61 74.76 72.85 65.56 59.33 50.24 36.11

ImageNet Mobilenet-v3-small Baseline 47.16 29.64 30.00 23.52 24.81 13.90 17.15

ImageNet Mobilenet-v3-small Ours 42.34 34.47 36.98 29.53 33.77 19.53 28.04

ImageNet Efficientnet-B0 Baseline 57.85 26.72 28.22 18.96 19.45 12.04 11.17

ImageNet Efficientnet-B0 Ours 55.82 30.42 35.99 22.05 27.56 14.16 17.62

ImageNet Resnet 34 Baseline 64.01 52.62 56.61 45.45 51.11 33.75 41.70

ImageNet Resnet 34 Ours 63.77 53.19 57.18 46.50 52.28 35.00 43.35

ImageNet Resnet 152 Baseline 66.88 56.56 59.19 50.61 53.49 40.50 44.49

ImageNet Resnet 152 Ours 68.04 58.34 61.33 52.59 56.05 42.61 47.17
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Table 2:

Partial DC between the network ΘX conditioned on the network ΘY , and the ImageNet class name embedding. 

The higher value indicates the more information.

Network ΘX Network ΘY ℛ2 X, GT ℛ2 Y , GT ℛ2 X ∣ Y , GT ℛ2 Y ∣ X , GT
ViT1 Resnet 182 0.042 0.025 0.035 0.007

ViT Resnet 503 0.043 0.036 0.028 0.017

ViT Resnet 1524 0.044 0.020 0.040 0.009

ViT VGG 19 BN5 0.042 0.037 0.026 0.015

ViT Densenet1216 0.043 0.026 0.035 0.007

ViT large7 Resnet 18 0.046 0.027 0.038 0.007

ViT large Resnet 50 0.046 0.037 0.031 0.016

ViT large Resnet 152 0.046 0.021 0.042 0.010

ViT large ViT 0.045 0.043 0.019 0.013

ViT+Resnet 508 Resnet 18 0.044 0.024 0.037 0.005

Resnet 152 Resnet 18 0.019 0.025 0.013 0.020

Resnet 152 Resnet 50 0.021 0.037 0.003 0.030

Resnet 50 Resnet 18 0.036 0.025 0.027 0.008

Resnet 50 VGG 19 BN 0.036 0.036 0.020 0.019

Accuracy: 1.84.40%; 2. 69.76%; 3. 79.02%; 4. 82.54%; 5. 74.22%; 6. 75.57%; 7. 85.68%; 8. 84.13%
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