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Abstract

Objective: The rectal mucosa is a critical site of HIV vulnerability. We sought to identify 

transcriptomic features of rectal mucosal tissue prior to exposure associated with support or 

restriction of HIV replication.

Design: Rectal tissue from HIV-negative cisgender men (n=57) underwent concurrent i) RNAseq 

transcriptomic analyses (2 biopsies/participant) and ii) challenge with HIV in the ex vivo explant 

model of infection (3 biopsies challenged/participant) as part of a larger cohort study to understand 

the rectal mucosal immune environment among men who have sex with men.

Methods: P24 was quantified in the explant supernatants over a culture period of 18 days via 

ELISA. Participant median p24 log Area Under the Curve was correlated with bulk transcriptomic 

data (Illumina HiSeq3000) to identify associations between gene expression and p24 production. 

Significant differentially expressed genes (DEG) were identified via DESeq2 analysis, and 

analyzed with Reactome to identify pathways of interest.

Results: 183 DEG (181 upregulated, 2 downregulated) were associated with higher p24 

accumulation in the ex vivo challenge model, including T cell activation, B cell function, and 

chemokine DEG. Reactome analysis of the upregulated genes identified ‘Adaptive Immune 

System’, ‘Cytokine Signaling in Immune System’, and ‘Innate Immune System’ as significant 

upregulated pathways.

Conclusions: For the first time, we identified rectal tissue transcriptomic signatures associated 

with increased p24 production utilizing an ex vivo model. Our findings are highly relevant to 

HIV transmission and the early establishment of HIV reservoirs in humans, and future studies 

should examine the identified pathways as targets for new or improved biomedical prevention or 

treatment interventions.

*S. Abigail Smith, ssmit40@emory.edu, 500 Irvin Ct Suite 200, Decatur, GA 30030. 
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Introduction

Among sexual exposure routes, the highest risk of HIV acquisition is through receptive anal 

intercourse,[1] contributing to a substantial number of new HIV diagnoses in men who have 

sex with men (MSM), as well as an unknown percentage of heterosexual individuals.[2–6] 

During rectal HIV transmission, mucosal microtears or transcytosis through the epithelial 

barrier facilitates HIV access to an abundance of target CD4+ T cells within the gut.
[7] However, the gut is a diverse ecosystem of molecules, cells, and microbes, each of 

which could influence HIV replication within this tissue compartment. While a vaccine to 

prevent HIV transmission remains a top priority, a better understanding of the biological 

signatures contributing to or restricting HIV replication within gut tissue at the time of 

HIV exposure could provide critical complementary information for ongoing vaccination 

efforts.[8] Additionally, defining relevant factors contributing to HIV replication within 

the gut could identify new targets for the development of novel non-vaccine biomedical 

interventions for HIV prevention and treatment and may result in data highly relevant to the 

establishment of gut HIV reservoirs.

Longitudinal cohorts following HIV negative individuals at high risk of HIV acquisition 

have provided profound insight into the earliest systemic immune events post-HIV infection, 

relative to pre-exposure time-points.[9, 10] However, similar analyses of gut tissue in human 

cohorts have not been performed. As an alternative strategy to identify signatures within 

the rectal mucosa associated with support or restriction of HIV replication, we utilized 

the ex vivo human rectal explant model of HIV infection. This system was developed to 

interrogate the earliest immune responses within rectal mucosal tissues after HIV exposure, 

to evaluate novel anti-HIV therapeutics, and, within our lab, to identify immune cell subsets 

associated with support or suppression of HIV production.[11–17] Here, we performed bulk 

RNAseq transcriptomic analyses on rectal biopsies donated by HIV negative men (Fig 1A). 

In parallel, biopsies were challenged with HIV ex vivo. By associating these two data sets, 

we then identified transcriptomic features of rectal mucosal tissues capable of supporting 

higher levels of HIV replication prior to exposure.

Methods

This study obtained approval from Emory University Institutional Review Board (IRB) and 

is a subanalysis of a larger cohort study designed to better understand the unique rectal 

mucosal immune environment among cisgender MSM. Thus, cisgender men who did and 

did not engage in receptive anal intercourse (RAI) were included. Informed consent was 

obtained from all participants. Participants were aged 18–65 years (Fig 1A, n=57, median 

40 years), from the Atlanta metropolitan area, and tested negative for rectal gonorrhea, 

chlamydia, and syphilis at the time of mucosal sampling. Rectal biopsies were collected via 

rigid sigmoidoscopy with no prior bowel preparation.

At the time of sampling, two biopsies from each participant were placed in RNALater 

(Invitrogen, #AM7021) and stored at −80°C. Both biopsies were homogenized in 350 

μL Buffer RLT and extracted (Qiagen, RNeasy Micro kit) with on-column DNase 

digestion. RNA quality was assessed (Agilent, Bioanalyzer) and 10 ng of total RNA 
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was used for cDNA synthesis (Takara Bio, Clontech SMART-Seq v4 Ultra Low Input 

RNA kit). Amplified cDNA was fragmented and appended with dual-indexed bar codes 

(Illumina, NexteraXT DNA Library Preparation kit). Libraries were validated by capillary 

electrophoresis (Agilent, TapeStation 4200), pooled at equimolar concentrations, and 

sequenced (Illumina HiSeq3000 at 100SR), yielding ~18 million reads/sample. Alignment 

was performed using STAR version 2.5.2b[15] and transcripts were annotated using 

GRCh38. Transcript abundance estimates were calculated internal to the STAR aligner using 

the algorithm of htseq-count,[18] GEO database: GSE211922.

For the explant challenge, three biopsies from each participant were weighed and challenged 

with 102.8 TCID50 HIV-1 BaL for 2 h (37°C, 5% CO2), placed on a collagen raft, and 

sampled longitudinally, as previously described.[17] Supernatants were collected Days 3, 7, 

10, 14, 18 post-challenge, and stored at −30° C until p24 was quantified via ELISA (ABL, 

Inc. #5447), and normalized to biopsy weight. Log area under the curve (logAUC) was 

calculated for each challenge, and median logAUC from the infected replicates was used for 

further analyses

Neither age, reported race, RAI, CMV, HSV-1, nor HSV-2 status associated with logAUC 

(two-stage linear step-up method of Benjamini, Krieger and Yekutieli; False Discovery Rate 

= 1%; q at least 0.01. Clustering was visualized by covariance principal components analysis 

(PCA) using the 500 highest variance genes. Considering that race is social construct which 

could influence analyses in an underappreciated manner, we conservatively considered race 

as a covariate for differential gene expression, which was determined as a continuous 

covariate using DESeq2.[19] To identify the genes of greatest significance, differentially 

expressed genes (DEGs) were defined as i) base mean expression ≥20, ii) log2fold change 

±0.58, iii) a conservative adjusted p-value ≤0.01. From the resulting list of significant 

DEGs (181 DEGs upregulated, 2 DEGs downregulated), the 181 upregulated DEG set was 

utilized as input for ReactomeFIViz app within Cytoscape Version 3.8.2.[20–22] Significant 

Reactome pathways were illustrated with Reacfoam. Pathways with entities false discovery 

rates (FDR) ≤0.01 (probability of overlap between query and pathway occurred by chance, 

corrected for multiple comparisons) are listed in Table 1.

Results

Separation and clustering of the rectal mucosal tissue transcriptomes that supported a 

spectrum of lower (blue) to higher (red) p24 production in parallel biopsies in the 

rectal explant model (median logAUC 3.3, range 2.04–4.38) was illustrated by PCA (Fig 

1B). There were 183 DEGs (181 DEGs upregulated, 2 DEGs downregulated; padj≤0.01) 

associated with higher p24 accumulation in the ex vivo challenge model. The bias 

towards upregulated DEGs suggests biological processes facilitating HIV replication, as 

opposed to the absence of anti-HIV biological processes within the rectal mucosal tissue. 

Indeed, neither of the two downregulated DEG, CHRNA1 (log2fold=−1.14, padj=0.003) 

and SERPINA6 (log2fold=−0.89, padj=0.007), has been associated with restricting HIV 

replication. Conversely, the upregulated DEG identified in this study with the greatest 

significance, IDO1, codes for an enzyme in the kynurenine pathway important in 

suppression of inflammation and the development of immune tolerance (log2fold=2.09, 
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padj=2.55E-07)[23] and has been positively associated with HIV pathogenesis after HIV 

infection.[24, 25] Additional genes involved in tryptophan catabolism were also positively 

associated with p24 production, but did not meet our conservative threshold for DEG 

significance (TDO2, KMO, KYNU, padj<0.05).[26]

To determine which biological pathways were represented by the 181 upregulated DEG, 

these genes were used as input into ReactomeFIViz. All of the 23 Reactome pathways 

identified (conservative entities FDR≤0.01) implicated enrichment of immunological 

pathways (Fig 1C, Table 1). Because CD4+ T cells are a primary target of HIV-1 infection, 

the identification of significant T cell-associated pathways (e.g. ‘TCR signaling’) was 

expected. T cell activation genes that were associated with increased HIV replication 

included PDCD1/PD1 (log2fold=1.13, padj=0.003), TIGIT (log2fold=0.74, padj=0.004), 

CTLA4 (log2fold=1.18, padj=0.0007), TNFRSF4/OX40 (log2fold=0.58, padj=0.004), and 

TNFRSF9/4–1BB (log2fold=1.15, padj=0.005), as well as CD2 (log2fold=0.61, padj=0.002) 

and CD6 (log2fold=0.69, padj=0.005). Transcription factors often associated with specific 

T cell lineages also correlated with p24 production including Th1-associated TBX21/

T-bet (log2fold=0.73, padj=0.002); Treg-associated FOXP3 (log2fold=0.85, padj=0.003); 

Th2-associated GATA3 (log2fold=0.68, padj=0.007); and CD8-associated EOMES 

(log2fold=1.04, padj=0.003). Th17-associated RORC (log2fold=−0.12, padj=0.82) was not 

significant.

Additional significant Reactome pathways included Antigen Presenting Cell (APC)/B cell 

pathways and cytokine/chemokine pathways (Table 1). Previous studies within our lab 

identified B cells within the gut, specifically CD1c+ B cells, as being associated with p24 

production in the rectal explant model,[17] and CD1C was also associated with p24 here 

(log2fold=1.10, padj=0.003). Additional DEGs of interest included genes necessary for B 

cell-T cell interactions, such as CD40 (log2fold=0.72, padj=0.0004), CD83 (log2fold=0.93, 

padj=0.003), and IL4I1 (log2fold=0.96, padj=0.001). This suggests a gut environment primed 

for T cell-B cell interactions might support higher levels of p24 production, perhaps due 

to trans infection of CD4 T cells. Cytokine/chemokine DEG of interested included TNF 

(log2fold=0.74, padj=0.002), CCL4/MIP-1β (log2fold=0.66, padj=0.009), CCL20/MIP-3α 
(log2fold=1.49, padj=7.25E-06), CXCL1/GROα (log2fold=1.22, padj=0.001), and CXCL3/

MIP-2β (log2fold=0.94, padj=0.007). While these molecules have been associated with 

HIV pathology,[27–30] transcriptomic analysis presented here was performed on uninfected 

biopsies. Thus, these DEGs may be indicative of rectal mucosal immunologic differences 

prior to exposure that contribute to HIV replicative capacity within this tissue compartment.

Discussion

This study, which consists of transcriptomic analysis of rectal mucosal tissue prior to prior 

exposure paired with the ex vivo HIV challenge model, suggests that there are immunologic 

features of healthy, human gut tissue that are more conducive to HIV replication. We 

demonstrate, for the first time, that gene signatures of T cell activation, genes critical for 

APC/B cell interactions with T cells, and chemokine transcription within the rectal mucosa 

are associated with HIV replication within this highly relevant tissue compartment. The 

utility of this ex vivo rectal explant challenge model is highlighted by the numerous DEGs 
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identified here that were also identified as genes relevant during hyperacute HIV infection 

with single-cell transcriptomic analyses of PBMC in another study.[9] This includes genes 

necessary for T cell activation such as CD3D, CD3G, TRAC, CD2, FYB, and TRBC2, as 

well as APC/B cell-associated genes CD19, DAPP1, CD74, and HLA-DRA.[9] Our analysis 

also revealed associations between CCL4, CXCL1, and CXCL3, and p24 production which 

were also present within monocyte modules of Kazer et al.[9] Thus, it is likely that 

the pre-existing immunological environment within the gut sets the stage for subsequent 

rectal mucosal tissue responses to an HIV exposure as we demonstrate here, and this has 

relevance for systemic HIV pathology during hyperacute infection. These early/hyperacute 

events, specifically within gut tissue, are critical determinants of i) the viral set-point and 

subsequent disease-course, and ii) the establishment of the HIV reservoir, a substantial 

barrier to HIV cure strategies.[31–34] Of note, while all participants in our study were men, 

the participants in the Kazer study were women.[9] These potential differences underscore 

the need to include diverse participants in future studies to identify potential sex-, gender-, 

and tissue-specific DEGs associated with HIV replication to elucidate appropriate HIV 

prevention and treatment approaches for specific populations.[35]

These data also support further utilization of the rectal explant model in future mechanistic 

studies. Previous work performed by our group utilized flow cytometry to identify a 

significant association between an innate-like population of B cells within the rectal mucosa 

and p24 production within the explant model.[17] Here, we again identified APC/B cell 

pathways enriched in biopsies that supported higher levels of p24 production, suggesting B 

cells might contribute to HIV replication within the rectal mucosa in an underappreciated 

manner. As hypothesized previously and supported further here, CD1c+ B cells within the 

three-dimensional structure of the gut (and perhaps other relevant tissues such as the female 

reproductive tract) could bind to HIV particles, and facilitate HIV replication via trans 
infection of CD4+ T cells.[17, 36] This could be highly relevant to HIV prevention efforts, as 

trans infection is a highly potent means of propagating HIV infection,[37] and reduces the 

neutralization capacity of some broadly neutralizing antibodies.[38]

In conclusion, the human rectal explant model of HIV infection has provided a unique 

opportunity to elucidate transcriptomic signatures within the rectal mucosa of healthy men 

whose gut tissues supported higher levels of HIV replication. Studies are ongoing within 

our laboratory to explore these findings in further detail. We also seek to determine which 

factors could influence this observed spectrum of p24 production, such as age, hormones, 

and microbiome composition. Future studies can then interrogate identified pathways or 

genes of interest and formulate biomedical interventions to prevent rectal HIV transmission 

and establishment of tissue reservoirs.
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Figure 1. RNAseq transcriptomic analyses and ex vivo challenge of rectal mucosal tissue reveals 
associations with increased HIV replication.
A) Schematic of study procedures created with BioRender.com, in part. B) PCA plot 

illustrating diversity of participant rectal mucosal transcriptomes. Circle color is indicative 

of participant median p24 logAUC on a continuous gradient scale from low (blue) to high 

(red). C) Voroni diagram illustrating ‘Immune System’ pathways after Reactome analysis 

of the 181 significantly upregulated differentially expressed genes. Each cell represents 

a sub-pathway. Cell size is proportional to the proteins/molecules annotated within the 

pathway, not the query set. Significance of pathway enrichment is highlighted in yellow 

(most significant entities FDR) gradient to yellow-black (p=0.05), non-significant pathways 

remain gray.
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