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Abstract

Pregnancy is energetically demanding and, therefore, by necessity reproduction and energy 

balance are inextricably linked. With insufficient or excessive energy stores a female is liable 

to suffer complications during pregnancy or produce unhealthy offspring. Gonadotropin releasing 

hormone neurons are responsible for initiating both the pulsatile and subsequent surge release 

of luteinizing hormone to control ovulation. Meticulous work has identified two hypothalamic 

populations of kisspeptin (Kiss1) neurons that are critical for this pattern of release. The 

involvement of the hypothalamus is unsurprising as its quintessential function is to couple the 

endocrine and nervous systems, coordinating energy balance and reproduction. Estrogens, more 

specifically 17β-estradiol (E2), orchestrate the activity of a triumvirate of hypothalamic neurons 

within the arcuate nucleus (ARH) that govern the physiological underpinnings of these behavioral 

dynamics. Arising from a common progenitor pool, these cells differentiate into ARH kisspeptin, 

proopiomelanocortin (POMC), and agouti related peptide/neuropeptide Y (AgRP) neurons. 

Although the excitability of all these subpopulations is subject to genomic and rapid estrogenic 

regulation, Kiss1 neurons are the most sensitive, reflecting their integral function in female 

fertility. Based on the premise that E2 coordinates autonomic functions around reproduction, we 

will review recent findings on how Kiss1 neurons interact with GnRH, AgRP, and POMC neurons 

as well as how the rapid membrane-initiated and intracellular signaling cascades activated by 

E2 in these neurons are critical for control of homeostatic functions supporting reproduction. In 

particular, we will highlight how Kiss1 and POMC neurons conspire to inhibit AgRP neurons and 

diminish food motivation in service of reproductive success.
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1. Estrogenic regulation of reproduction through kisspeptin neurons

Successful reproduction is the core measure of evolutionary fitness and the quintessential 

function of the hypothalamus is to link the nervous and endocrine systems to support this 

physiological process. Within the brain, gonadotropin-releasing hormone (GnRH) neurons 

drive pubertal development and regulate the reproductive cycle. Postnatal GnRH neurons 

predominantly reside in the medial septum, diagonal band, and preoptic area (POA) of 

rodents (1–3), but are also found in the basal hypothalamus of sheep (2), guinea pigs 

(4), and primates including humans (5, 6). From these regions projections are sent to the 

median eminence to secrete GnRH in a pulsatile fashion, stimulating anterior pituitary 

gonadotrophs to release luteinizing hormone (LH) and follicle stimulating hormone (FSH). 

In females, LH and FSH in turn cause the synthesis and release of estrogen and progesterone 

from the ovaries. Following puberty, these ovarian hormones provide the requisite negative 

and positive feedback to maintain a normal cycle (7–10). This process is not linear, but 

rather relies on precisely timed GnRH pulses preceding a final surge to elicit LH release 

which causes ovulation and stimulates ovarian steroidogenesis. Significant effort has been 

expended elucidating the neural circuits involved and how estrogens regulate their activity to 

orchestrate the female reproductive cycle, which will be summarized in this section.

Classically, estrogenic signaling is viewed through estradiol (E2) activation of primarily 

ERα (11, 12), but also ERβ (13) receptors. Found in the cytosol, ERα or ERβ bind 

with estrogens and dimerize prior to translocation to the nucleus. Through interactions 

with estrogen response elements (EREs) present in certain gene promotors, estrogens can 

regulate transcription (14–16). In addition to cytosolic ERα and ERβ, E2 can activate 

membranebound estrogen receptors (mERs) to mediate rapid non-genomic actions (17, 18), 

though certain second messenger cascades such as phosphorylation of cAMP response 

element-binding protein can ultimately lead to alterations in gene expression as well (19–

23). While ERα and ERβ can act as mERs, there are also the G-protein coupled estrogen 

receptor (GPER/GPR30/GPER1) (24, 25) and an as-yet unidentified Gq-coupled receptor 

(Gq-mER) (26, 27). These estrogen signaling pathways frequently co-exist and can produce 

divergent outcomes between cell types. For a more detailed overview of estrogen signaling 

cascades in hypothalamic neurons, please refer to Stincic et al., 2018 (28).

Despite the clear synchronization of GnRH neuronal activity with circulating estrogen 

levels (29), GnRH neurons are devoid of ERα (30–32). This revelation prompted a search 

for either estrogen signaling via alternative pathways or extrinsic synaptic inputs. Though 

ERβ is found in GnRH neurons (33–38), deletion of ERβ in either the whole animal or 

conditionally in GnRH neurons typically only impairs rather than eliminates fertility (39–41) 

by reducing the amplitude without affecting the timing of LH release (42, 43). The role of 

rapid estrogenic signaling is less clear but may assist in maintaining the GnRH surge for the 

requisite duration (44). So, while non-ERα signaling pathways contribute to GnRH release, 

mounting evidence has supported the existence of an extrinsic pulse generator.

Kisspeptin (Kiss1), transcribed from the Kiss1 gene, is a neuropeptide primarily produced 

by two populations of hypothalamic neurons found in the arcuate nucleus (ARH) 

and anteroventral periventricular/periventricular nuclei (AVPV/PeN) (45–49). Kiss1, also 
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referred to as Kisspeptin-54, is the endogenous ligand of G protein-coupled receptor 54 

(GPR54, aka Kiss1R) (50). Kiss1 neurons and the Kiss1Rs are indispensable for normal 

pubertal development (51–54) and fertility (55–57). Centrally administered kisspeptin 

robustly stimulates GnRH and gonadotropin secretion in both pre-pubertal and adult animals 

(45 , 58). Mutations in GPR54 cause autosomal recessive idiopathic hypogonadism in 

humans and deletion of GPR54 or Kiss1 in mice results in defective sexual development 

and reproductive failure (51, 53). GnRH neurons robustly express Gpr54 mRNA (59), and 

conditional deletion of the gene produces offspring that do not progress through puberty, 

have reduced gonadal size and are infertile (60). Underscoring the importance of Kiss1 

signaling on GnRH function, the infertility phenotype in global GPR54 knockouts can be 

rescued by reintroducing the receptor solely in GnRH neurons (60). Kiss1 neurons express 

high levels of ERα and ERβ in both the AVPV/PeN (31, 55, 61) and the ARH (62). 

Therefore, estrogenic regulation of Kiss1 signaling could communicate the reproductive 

state of an animal to GnRH neurons.

GnRH neurons are strongly depolarized by kisspeptins. In vitro brief kisspeptin bath 

application produces a long-lasting depolarization in most adult GnRH neurons, regardless 

of sex (63–67). However, the responsiveness of GnRH neurons is much smaller in juvenile 

and prepubertal male mice despite a near constant level of Kiss1R mRNA expression 

across development (63). Based on cell signaling studies, kisspeptin excites GnRH neurons 

primarily through activation of canonical transient receptor potential 4 (TRPC4) channels 

(66, 68–70) and to a lesser extent through inhibition of inwardly rectifying K+ channels 

(66–68, 71, 72). TRPC channels can be activated by G-protein coupled receptors (73, 

74) or participate in store-operated calcium entry (75). Trpc4, Hcn1, Cav1.3, Cav 2.2, 
and Cav 2.3 mRNA expression are all increased (59), which would presumably enhance 

responsiveness to kisspeptin. These findings demonstrate that E2 and kisspeptin signaling 

can drive GnRH/LH release but do not reveal how the pulses or surge are generated.

One of the more striking features of estrogenic regulation of Kiss1 neurons is the 

divergent effects on the ARH and AVPV/PeN populations. Kiss1ARH neurons co-express 

and release neurokinin B (NKB) and dynorphin (Dyn) (76–78), leading to their nickname 

of “KNDy neurons” (79). When circulating levels of E2 are high, Kiss1ARH neurons 

display enhanced expression of Vglut2 while Kiss1 mRNA expression is attenuated, biasing 

neurotransmission from peptidergic to glutamatergic signaling (80). Kiss1ARH neurons form 

a reciprocal network with other Kiss1ARH neurons (80) as well as sending projections to 

Kiss1AVPV/PeN neurons and GnRH “dendrons” and terminals in the median eminence (3, 

81–84). Because Kiss1AVPV/PeN neurons do not express TACR3s (NKB receptor) or Kiss1Rs 

(85, 86), Kiss1ARH inputs to the AVPV/PeN population are essentially silent when E2 

levels are low (80). However, as E2 levels peak in the lead up to proestrus and the LH 

surge, synchronization of Kiss1ARH neurons will exert an excitatory glutamatergic input 

to both Kiss1AVPV/PeN neurons and distal processes of GnRH neurons (69, 80, 87, 88). 

In this manner, the Kiss1ARH neurons can act as the pulse generator while driving up 

Kiss1AVPV/PeN activity that later initiates the LH surge.

The AVPV/PeN expresses high levels of ERα and ERβ, and the actions of the gonadal 

steroid hormones on Kiss1 neurons are mediated, at least in part, via nuclear-initiated 
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signaling (transcriptional) mechanisms (31, 55, 61). For example, following E2 treatment 

Kiss1 mRNA expression is upregulated in the AVPV/PeN (47). Furthermore, E2 treatment 

enhances the expression of Vgat and tyrosine hydroxylase to, respectively, support 

GABAergic and dopaminergic signaling in Kiss1AVPV/PeN neurons (89, 90). Proestrus levels 

of E2 also elevate Kiss1AVPV/PeN excitability through positive regulation of currents such as 

the h-, T-type calcium and a persistent sodium current (91–93) (95). Together with previous 

observations that in rodents lesions of the AVPV/PeN or ER antagonist implants in the 

region abrogate the positive feedback effects of E2 (96–99) many have hypothesized that E2 

acts on Kiss1AVPV/PeN neurons to induce the positive feedback on GnRH and LH secretion. 

More recently, experiments have shown that high frequency optogenetic stimulation of 

Kiss1AVPV/PeN neurons evokes kisspeptin release that activates TRPC4 channels in order to 

depolarize and excite GnRH neurons (87). However, despite the necessity of Kiss1AVPV/PeN 

neurons for the GnRH/LH surge (55, 87, 100, 101), these neurons are not involved in the 

pulsatile release of LH. Rather multi-unit recordings point to a different origin of pulse 

generator activity (83, 102–105).

Though the ARH was long speculated to be the origin of patterned activity, only relatively 

recently were Kiss1ARH neurons identified as the responsible neuronal subpopulation (81, 

87, 106, 107). In vivo optogenetic stimulation of Kiss1ARH neurons proved capable of 

eliciting pulsatile GnRH and, subsequently, LH release in the mouse (106, 108). In vitro 
recordings, however, were necessary to reveal the neurocircuitry required to synchronize 

ARH Kiss1 activity (Figure 1) (87). To summarize, E2 levels are low prior to onset of LH 

pulses at which time Kiss1ARH neurons produce and co-release the neuropeptides NKB 

and dynorphin. Kiss1ARH neurons form a network of excitatory reciprocal connections 

through NKB release. Dynorphin then presynaptically inhibits further release, reducing the 

activity of all networked Kiss1ARH neurons (87). This sequence repeats, giving rise to 

oscillations in neural activity. Next, as E2 levels rise in advance of ovulation, expression 

of NKB, dynorphin, and kisspeptin genes falls (47, 79, 81) as Vglut2 mRNA expression 

and glutamate release probability dramatically rise (80). This causes a progression from 

peptidergic to amino acid transmission and affects not only inputs from Kiss1ARH to 

Kiss1AVPV/PeN neurons, but also to other ARH neurons (see below). The Kiss1ARH 

glutamatergic excitation of Kiss1AVPV/PeN neurons also contributes to kisspeptin-mediated 

excitation of GnRH neurons in the preovulatory state (87, 109). Furthermore, the precise 

timing of these events is synchronized to circadian rhythms through vasopressin (AVP) 

projections from the suprachiasmiatic nucleus to the Kiss1AVPV/PeN neurons such that 

ovulation occurs immediately prior to activity onset (110). Kiss1 AVPV/PeN and ARH 

neurons make reciprocal connections (3), which would explain why silencing of Kiss1ARH 

neurons causes a diurnal shift in eating patterns and obesity (111). Finally, although 

Kiss1AVPV/PeN neurons are responsible for the LH surge, Kiss1ARH neurons can amplify 

the surge when E2 is low or paired with progesterone (109).

2. Hypothalamic neurons link reproduction and energy homeostasis

Kiss1ARH, proopiomelanocortin (POMC), and neuropeptide Y/agouti-related peptide 

(AgRP) neurons arise from a common precursor pool (112, 113) and together these neurons 

govern both reproduction and energy homeostasis. The close juxtaposition of these neuronal 
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subpopulations to the median eminence, a circumventricular organ, enables circulating 

indicators of energy state (e.g. blood glucose, leptin, and insulin) to reach these neuronal 

populations which then convey the information downstream targets (114, 115). ARH 

neurons are also able to sense E2 levels by virtue of robust estrogen receptor expression 

(116–118), establishing a point of crosstalk between endocrine and homeostatic signaling in 

the brain. Historically ARH regulation of energy balance was viewed as a “tug-of-war” 

between two ARH subpopulations, pro-opiomelanocortin (POMC) and neuropeptide Y/

agouti-related peptide (AgRP) neurons. However, Kiss1 neurons and kisspeptin/GPR54 

signaling has been revealed to also influence metabolism (119), which has led to the idea 

that these three populations form a “triumvirate” of neurons to regulate energy homeostasis.

AgRP neurons are considered orexigenic and, regardless of energy state, can drive rapid 

food consumption (120–123). However, recent findings have challenged this “classical” 

homeostatic model of ARH function. A long-held assumption was that AgRP activity 

persisted during food consumption until post-ingestional effects emerged (e.g., elevated 

blood glucose and insulin); however in vivo photometry revealed that detection of food, 

depending on energy state and palatability, is sufficient to rapidly inhibit AgRP while 

exciting POMC neurons (124). Therefore, anticipation and extrinsic factors also influence 

the connectivity between and output of ARH neurons. Regardless, AgRP neurons do not 

send direct projections to GnRH neurons, but instead act indirectly through GABAergic 

inhibition of Kiss1 neurons (125). Therefore, low energy stores would lead to increased 

AgRP excitability and signaling to decrease Kiss1 and, consequently, GnRH activity. Indeed, 

chemogenetic activation of AgRP neurons prolongs the estrous cycle, whereas targeted 

ablation of AgRP neurons attenuates the inhibitory tone on Kiss1 neurons (125) and restores 

fertility in obese or leptin deficient mice (126). Fasting activates AgRP neurons (127), which 

reduces fertility and expression of Kiss1 in the ARH (128). Therefore, persistent AgRP 

activity acts as an indicator of undernutrition and inhibits reproduction.

Conversely, POMC neurons are active when energy stores are replete and decrease food 

intake following stimulation (120, 129, 130). In addition to the amino acid neurotransmitters 

GABA (131, 132) and glutamate (131), POMC neurons release a diverse complement 

of neuropeptides. The POMC precursor peptide is processed into several neuropeptides 

including, but not limited to, α-melanocyte stimulating hormone (α-MSH, excitatory) and 

β-endorphin (inhibitory) (133). In contrast to AgRP neurons, POMC neurons send direct 

projections to GnRH neurons, and the selective μ-opioid agonist DAMGO ([D-Ala2, N-

Me-Phe4, Gly5-ol]-enkephalin), which mimicks β-endorphin’s action (134), hyperpolarizes 

(inhibits) GnRH neurons through activation of a K+ conductance (135–138). Naloxone, an 

opioid antagonist, stimulates GnRH release (139–143) and increases LH production (144, 

145), suggesting POMC β-endorphin signaling inhibits GnRH activity and reproductive 

function (146), whereas selective activation of the α-MSH pathway is stimulatory (146).

More straightforward is Kiss1 to POMC neuronal signaling. Kisspeptin administered 

icv reduces food intake (147), optogenetic stimulation of Kiss1ARH neurons elicits 

glutamatergic (80, 148) and kisspeptin mediated excitation of POMC neurons (149). 

Reciprocal connections are made between POMC and Kiss1 neurons (150). POMC neuronal 

signaling may also use Kiss1 neurons as an intermediary with GnRH neurons since 
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a subpopulation of Kiss1AVPV/PeN neurons expresses melanocortin 4 receptor (MC4R) 

(49), and in sheep the majority of Kiss1ARH neurons express the mRNA for MC3R 

(151). Blockade of melanocortin signaling in peripubertal females decreases Kiss1 mRNA 

expression in the Kiss1ARH neurons (146), and MC4R knockout impairs fecundity (152). 

Moreover, overexpression of AgRP, an inverse agonist for MCRs, causes infertility (126, 

146, 153). While the specifics of POMC inputs to Kiss1 neurons remains unclear, one would 

assume these projections act to limit food intake in favor of reproductive behaviors.

Due to the metabolically demanding nature of pregnancy, it is no surprise that neurons 

involved in metabolism also affect fertility. Women suffering with anorexia often 

exhibit amenorrhea (154–157) and miscarriage risk is heightened in underweight females 

(158). Unsurprisingly, when energy reserves are low, AgRP neurons limit reproductive 

functions (125). Metabolism and kisspeptin neurons also affect one another. For example, 

hypogonadism due to undernutrition is associated with decreased Kiss1 mRNA expression 

across a range of ages and species (128, 159–162), Conversely, a high-fat diet is associated 

with elevated levels of NKB expression and precocious puberty in female rats (163), 

demonstrating that disruptions of energy homeostasis in either direction can affect kisspeptin 

signaling. In service of their antagonistic roles to maintain energy balance, AgRP and 

POMC neurons are inversely regulated by glucose and metabolic hormones including leptin 

and insulin (164–166). Leptin, a hormone produced by white adipocytes (167), signals the 

total body energy stores. Mice deficient in leptin or lacking the requisite receptor present 

an infertile, obese phenotype (168, 169). Since GnRH neurons lack leptin receptors (170, 

171), leptin regulation of GnRH neurons is indirect. ARH neurons are one potential line of 

communication and ablation of AgRP neurons is sufficient to reverse the obese phenotype 

(126), but as previously stated AgRP neurons do not directly contact GnRH neurons. 

However, Kiss1ARH neurons express leptin receptors (172, 173), and similar to POMC 

neurons, leptin depolarizes and increase their firing (173). In contrast, leptin hyperpolarizes 

AgRP neurons via opening K+-ATP (174) and Kv2.1 channels (175). Without the inhibitory 

effects of leptin AgRP neurons become highly active (176) and inhibit Kiss1ARH and 

Kiss1AVPV/PeN neurons (Figure 2) (125) as well as POMC neurons. Therefore, AgRP 

activity will be relayed to GnRH neurons, at least in part, through Kiss1 and POMC neurons. 

Injection or overexpression of leptin into lean mice accelerates the onset of puberty (177, 

178), and obesity is associated with precocious puberty in females (179, 180). Therefore, 

undernutrition and adiposity will affect leptin levels, which in turn influence not just fertility 

but pubertal timing.

Short-term indices of energy balance also affect ARH function through both genomic and 

rapid signaling mechanisms (Figure 2). Furthermore, the ARH is a critical control center 

for peripheral insulin sensitivity and glucose metabolism (181–185). In lean animals, rising 

blood glucose levels after meal consumption cause insulin release. Circulating insulin easily 

reaches the ARH neurons adjacent to the median eminence, and in vitro perfusion of 

insulin into the ARH rapidly depolarize POMC neuron by activating inositol triphosphate 

3-kinase signaling pathways (186) and ultimately TRPC5 channels (185). TRPC channels 

can function as both receptor- or store-operated channels opened, respectively, by membrane 

delimited receptors or depletion of Ca2+ stores (75, 187). At the same time AgRP neurons 

are hyperpolarized by insulin through activation of ATP-sensitive potassium channels (185). 
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However, neurons and peripheral tissues can become resistant to insulin and develop glucose 

intolerance. Acute activation of AgRP neurons rapidly but transiently impairs glucose and 

insulin tolerance (188) through NPY signaling that limits glucose uptake in brown adipose 

tissue (BAT) (189). This phenomenon could be a temporary physiological response to 

simultaneously limit energy expenditure while promoting foraging (121, 190). However, 

loss of insulin and glucose sensitivity can decouple ARH neurons from homeostatic 

feedback, promoting or perpetuating obesity (191–193). High-fat diet induced obesity 

also leads to leptin and ghrelin resistance as well as increased NPY/AgRP neuronal 

excitability (175, 194). Interestingly, while knockout of leptin receptors in AgRP neurons 

delays puberty (195), childhood obesity is highly associated with precocious puberty (196–

198). In an obese state, TRPC channels associate with the endoplasmic reticulum protein 

stromal-interaction molecule (STIM1) to function as store-operated and, hence, are no 

longer opened by insulin (75). E2 protects females from developing insulin resistance 

in the brain by downregulating STIM1 in POMC neurons, increasing their excitability, 

and preventing conversion of TRPC to store-operated channels (199). Knockdown of 

Stim1 mRNA in Kiss1ARH cells enhances TRPC5 currents in response to senktide and 

protects against HFD-induced obesity (200). More importantly, E2 also protects against 

insulin resistance by preventing high-fat diet related upregulation of SOCS-3 (suppressor 

of cytokine signaling 3), thereby preserving insulin signaling in female rodents (199). In 

addition, insulin significantly increases Pomc mRNA expression within 72 hours following 

icv administration (201). Therefore, circulating estrogens are vital for maintaining insulin 

sensitivity throughout the female reproductive cycle and are neuroprotective against insulin 

resistance in obese states.

The ventromedial nucleus of the hypothalamus (VMH) neurons has long been recognized 

as an integral site for energy balance (202) that also provides positive estrogen feedback 

(203). Dorsomedial VMH neurons express leptin and insulin receptors (204–208), but 

ERα-labeled neurons appear restricted to the ventrolateral region (209). The majority 

of VMH neurons also play a role in glucose sensing (210, 211), displaying excitation 

with increasing glucose concentrations (212). Only sparse projections are sent outside the 

VMH; however, a few axons reach the ARH, dorsomedial hypothalamus (DMH), and 

paraventricular nucleus of the hypothalamus (PVH) (213, 214). On a gross functional 

scale, the VMH acts anorexigenically with electrical stimulation decreasing food intake 

(215), and lesions or injections of ERα interference RNA causing hyperphagic and obese 

phenotypes (216–219). Steroidogenic factor-1 (SF-1) is expressed exclusively within a 

subpopulation of VMH neurons (220) that innervate and excite POMC neurons (221–226). 

SF-1 neurons also send excitatory projections to GnRH neurons (227, 228). ERα signaling 

appears to stimulate energy expenditure through SF-1 neurons (114), and SF1 ablation 

diminishes LH secretion (229). NPY inhibits VMH neurons (230) through Y1 receptors 

(231), attenuating VMH-mediated excitation of POMC neurons (232). Therefore, in addition 

to direct reciprocal connections NPY and POMC neurons utilize VMH SF-1 neurons as an 

intermediary regulator. Brain-derived neurotrophic factor (BDNF) is an important protein in 

the differentiation and survival of neurons through development (233) that also plays a role 

in adult energy balance, particularly in a number of VMH neurons (234, 235). BDNF is 

co-expressed by most, but not all (~60%) SF-1 neurons (236) and appears to participate in 
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energy balance (237), specifically by decreasing meal size (238–241). BDNF and ERα are 

co-localized in the VMH (242), and the anorexigenic efficacy of BDNF is largely dependent 

on E2 levels (243). So while there are clear links between the VMH and ARH in regards 

to metabolism and reproduction, whether or not Kiss1 neurons participate is unknown and 

deserves further study. If synapses are made in either direction with Kiss1 neurons, one 

would assume these to be excitatory and anorexigenic.

Kiss1 neurons also regulate energy balance through their projections to nuclei outside the 

mediobasal hypothalamus (i.e., ARH and VMH). The PVH is important for neuroendocrine 

and autonomic regulation of numerous functions such as food intake (244). Kiss1ARH 

and Kiss1AVPV/PeN neurons make close contact with PVH AVP and oxytocin neurons, 

and optogenetic stimulation of each Kiss1 population can, respectively, elicit postsynaptic 

glutamatergic or GABAergic responses, demonstrating a direct functional input to the 

PVH (3). As the PVH is heterogeneous in cell type and is composed of subregions with 

distinct projection patterns (245), further work remains to be done elucidating the functional 

significance of these Kiss1 inputs. Concerning the other aspect of the control of energy 

homeostasis, the DMH is important in thermoregulation through energy expenditure(246) 

(247–249). Leptin, in addition to inhibiting ARH AgRP neurons (176), also activates 

neurons in the DMH to drive BAT thermogenesis (250–253). Global knockout of Kiss1R/

GPR54 (brain and peripheral tissues) selectively induces an obese phenotype in female 

mice (254–256). However, Kiss1R knockout constrained to BAT produces a lean phenotype 

with increased metabolism and body temperature (257), suggesting both direct and indirect 

signaling pathways. Kiss1ARH fibers do make close contact with leptin receptor expressing 

neurons in the DMH, and optogenetic stimulation elicits direct glutamatergic postsynaptic 

responses (3). Activation of leptin receptor-expressing DMH neurons robustly induces 

energy expenditure (258). Conversely, silencing these neurons decreases expenditure and 

increases food intake (259) with the latter effect likely the consequence of a lost inhibitory 

input to AgRP neurons (260). Estrogenic signaling may also play a role in adapting to 

changes in ambient temperature as E2 increases cFos immunocytochemical labeling in the 

DMH when animals are exposed to cold (261). However, the DMH exhibits low expression 

of ERα and ERβ (262), which would suggest either involvement of GPER, Gq-mER or 

an E2-sensitive input. Indeed, projections from leptin-sensitive neurons in the ARH (263), 

which are estrogen-sensitive, and the DMH (264) are crucial for communicating hormonal 

signals of energy balance to PVH neurons, which lack leptin receptors (204) and sparsely 

express ERα mRNA (265). AVP and OT neurons in the PVH as well as corticotrophin 

releasing hormone neurons do express ERβ (266) (267). Therefore, the steroid (E2)-sensitive 

Kiss1ARH neurons are likely not only vital for controlling pulsatile release of GnRH/LH 

but also coordinating energy homeostasis with reproductive activities through projections to 

regions such as the PVH and DMH.

3. E2 regulation of ARH circuitry and energy balance

More subtle changes are present in signaling and behavior during healthy reproductive 

cycles as E2 levels naturally rise and fall. Food intake, specifically sweet foods, decreases 

during the follicular phase (high E2) of the menstrual cycle (268–270). Female rodents 

also eat up to 25% less food during the evening following the LH surge (271, 272), which 
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could represent the delay between E2-initiated transcription changes and protein synthesis. 

Decreases in food consumption are due to smaller meal sizes that are not fully compensated 

for by a slight increase in meal frequency (270, 273–275) , which may speak to how satiety 

is affected. Intact female rodents exhibit a “scalloping” pattern of activity, in which running 

activity increases on the night of proestrus (276, 277). Ovariectomy eliminates this effect 

and leads to an overall decrease in motor activity (278–280) as well as increased food 

intake (27, 275, 281–285); however, E2 replacement alone is sufficient to restore normal 

energy balance (23, 27, 275, 278–280). With respect to estrogenic signaling, ERα knockout 

mice develop an obese phenotype reflective of that observed following ovariectomy (286). 

Moreover, metabolic deficits are reversed by restoration of ERα, despite lacking the 

ERE targeting domain, which emphasizes the importance of non-classical signaling (287). 

Different models of ERβ knockout mice present a range of phenotypes from an impaired 

ovulatory cycle (288) to complete infertility (289). However, selective deletion of the ERE 

domain produces only a mild phenotype, once again underscoring the importance of non-

classical ERβ signaling (290). GPER knockout mice display sexual dimorphism; although 

both sexes exhibit reduced energy expenditure and increased body weight, this phenotype 

emerges six weeks later in female rodents (291). While each subpopulation of ARH neurons 

exhibits different effects of estrogenic regulation, in general the signaling of anorexigenic 

neurons is enhanced while orexigenic signaling is attenuated. These are just a few examples 

of how estrogens are pleiotropic regulators, influencing communication between POMC, 

AgRP, and Kiss1 neurons in the ARH to coordinate reproduction and energy balance (Figure 

2).

POMC neurons are one means by which the anorexigenic effects of E2 are communicated. 

Disruption of POMC signaling typically results in a positive energy balance. For example, 

E2 promotes physical activity by upregulating Mc4r gene expression in neurons in the 

VMH, sensitizing them to POMC inputs (292). POMC-specific deletion of ERα is 

sufficient to induce hyperphagia and increased heat production (114). The contradictory 

thermogenesis phenotype could be due to higher circulating levels of E2, which is suggested 

by blunted negative feedback of E2 on LH release that produces abnormal estrous cycles. 

Regardless, estrogenic signaling is of tantamount importance to the anorexigenic function 

of POMC neurons in females. There is an upregulation of Pomc mRNA expression with 

high circulating levels of E2 (i.e., proestrus/surge levels) (293, 294) when compared to 

ovariectomized females rodents (295, 296). Processing of the POMC precursor peptide 

into β-endorphin is also enhanced by E2 (297, 298). In addition, glutamatergic signaling 

is supported by E2 through increased expression of Vglut2 mRNA which manifests 

functionally as a higher release probability (150, 299). Furthermore, acutely applied E2 

or Gq-coupled mER ligand STX also increases the probability of glutamate release (150), 

possibly by decoupling GABAB receptors from G protein-coupled inwardly rectifying 

K+ (GIRK) channels in POMC nerve terminals (27, 300). E2 also enhances the overall 

excitability of POMC neurons through upregulation of calcium channel subunits and 

receptor-operated TRPC channels (199, 301). Therefore, POMC neuronal excitability and 

neurotransmission is potentiated during proestrus to reduce food intake.

Since E2 is an anorexigenic hormone, it is logical that estrogenic signaling inhibits 

AgRP neuronal activity (302). Initially it was thought that AgRP neurons unilaterally sent 

Stincic and Kelly Page 9

J Neuroendocrinol. Author manuscript; available in PMC 2023 May 30.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



inhibitory GABAergic projections to POMC neurons (123, 164); however, channelrhodopsin 

assisted circuit mapping has shown POMC neurons send reciprocal projections to AgRP 

neurons, primarily releasing β-endorphin and glutamate (Figure 2) (150). Initial reports 

noted optogenetic stimulation of POMC neurons most commonly results postsynaptic 

GABA-mediated currents in unidentified ARH neurons (131). However, other studies 

focused on responses in AgRP neurons found that optogenetic activation of POMC 

neurons rarely elicits a fast GABAergic or a slow excitatory (e.g. α-MSH) current (120, 

123, 150). Few AgRP neurons express Mc4r but surprisingly nearly half express Mc3r 
(303). Therefore, the infrequency of GABA and melanocortin mediated responses suggests 

segregated neurotransmission from POMC neurons (304–307). The predominance of POMC 

glutamatergic and the infrequency of GABAergic inputs seems contradictory since one 

would not expect a satiety neuron to excite a hunger neuron. However, enhanced glutamate 

release from POMC neurons would exert an overall inhibitory tone since E2 upregulates 

mGluR7 (Group II/III mGluR) mRNA expression in NPY/AgRP neurons (Figure 2) (80). 

Together these changes in transcription will enhance POMC inhibition of AgRP neurons 

when circulating E2 is high.

Perhaps, Kiss1 and POMC neurons set the tone of homeostatic circuits based on the 

reproductive state of the female. As E2 levels peak preceding ovulation, the neuronal 

activity of AgRP neurons will be suppressed, unless energy reserves are critically low, 

to reduce food motivation. For example, fasting enhances AgRP activity and signaling 

by rapidly rewiring circuits (308). In those circumstances AgRP neurons will strongly 

inhibit Kiss1 neurons (125), disrupting the estrous cycle. Despite initial reports (309), 

AgRP neurons do express ERα (302); however, under normal physiological conditions 

rapid E2 signaling bidirectionally adjusts the activity AgRP neurons. For example, E2 

alters the ability of GABAB receptors to activate G protein inwardly rectifying K+ (GIRK) 

channels, either strengthening or weakening the coupling based on the relative expression 

of ERα versus Gq-mER at the time (302, 310). That is not to say that some genomic 

estrogenic regulation is also present. For example, E2 also decreases AgRP excitability 

through increased transcription of Kcnq5 mRNA, enhancing the inhibitory M-current (311). 

These findings suggest that estrogenic signaling uses both genomic and rapid mechanisms to 

regulate POMC and Kiss1 function but relies primarily on membrane-initiated signaling for 

adjusting the activity of AgRP neurons.

4. Conclusions and Future Directions

In summary, estrogenic signaling governs a tripartite collaboration between ARH neurons 

that regulates GnRH neurons to synchronize energy balance and fertility to maximize 

reproductive success. When energy reserves are low, POMC activity will be minimal 

accompanied by a nominal amount of glutamate release onto AgRP neurons (Figure 2). 

With sufficient energy stores AgRP neurons become less active, leading to disinhibition 

of POMC neurons (312). Next, POMC activity firing rates rise to the higher frequencies 

(~20 Hz) (313) necessary to elicit synaptic release of β-endorphin that inhibits AgRP 

neurons via activation of μ-opioid receptors (150). When circulating E2 levels are high, 

such as during proestrus, POMC and Kiss1ARH neurons have enhanced glutamate release 

probability onto AgRP neurons (80). However, simultaneously increased expression of the 
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Group III metabotropic glutamate receptor 7 postsynaptically in AgRP neurons causes this 

to be a net inhibitory input (80, 150). With the same enhanced glutamate release, Kiss1ARH 

neurons will excite POMC neurons through Group I mGluRs (80). As genomic changes lag 

while genes are expressed and transcribed rapid, estrogenic signaling likely eases transitions 

between states (low vs high E2). The positive and negative feedback between ARH neuronal 

subpopulations may serve to prevent small and/or transient fluctuations in the energy state 

of the animal from triggering dramatic shifts in the balance of ARH function (312) and 

enable E2 to bias, but not dictate, interactions between ARH neurons. The functional output 

of these neural circuit dynamics would manifest behaviorally as changes in reward salience 

and motivation. Briefly, when a female has sufficient energy stores to support a pregnancy, 

ovulation is induced, and priorities switch from ingestive behavior to mating. Indeed, 

ovariectomized female rodents find sucrose more rewarding than E2-treated females (314). 

In addition, when Vglut2 mRNA is deleted from Kiss1ARH neurons, this E2 protective 

effect is lost (80), suggesting that glutamatergic inhibition of AgRP neurons combined with 

excitation of POMC neurons may be an underlying mechanism.

Although there is little doubt that estrogenic signaling is necessary for Kiss1 neurons 

to control GnRH and LH release, estrogens clearly orchestrate communication between 

Kiss1, AgRP, and POMC neurons to regulate energy balance in the service of optimizing 

reproductive success. Still much work remains to be done to elucidate POMC inputs to 

ARH and AVPV/PeN Kiss1 neurons (146). Finally, GnRH neurons have variable responses 

to NPY, α-MSH, and β-endorphin (315) with at least the potency of the μ-opioid response 

regulated by E2 (316). Therefore, metabolic cues may be communicated directly by POMC 

and AgRP neurons or through Kiss1 neurons to GnRH neurons. Future studies should be 

aimed at further unraveling the complexity of the neuronal signaling by this triumvirate of 

arcuate neurons (Figure 2).
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Figure 1. Estradiol governs signaling between Kiss1 and GnRH neurons to drive LH release.
A) Prior to proestrus, estradiol (E2) levels are low and kisspeptin (Kiss1) neurons (bottom, 

magenta) in the arcuate nucleus of the hypothalamus (ARH, grey region) release neurokinin 

B (NKB, triangles) that depolarizes and recruits other Kiss1ARH neurons. Dynorphin (Dyn, 

hexagons) is co-released and acts presynaptically to modulate (inhibit) the release of 

NKB. Together the two peptides govern the synchronous activity of Kiss1ARH neurons 

and promote kisspeptin release (diamonds) that stimulates pulsatile gonadotrophin-releasing 

hormone (GnRH) release from fibers (cyan) in the median eminence (ME). As estradiol 

levels rise Kiss1ARH neurons transition from peptidergic to primarily fast glutamatergic 

(circles) neurotransmission to communicate with the Kiss1AVPV/PeN neurons, which 

stimulates burst-firing of Kiss1AVPV/PeN neurons. E2 also enhances the excitability and 

kisspeptin release of these rostral Kiss1 neurons (top, red) to robustly excite GnRH neurons 

via activation of the GPR54 signaling cascade, thereby stimulating the release of GnRH 

at the time of the preovulatory surge. Kisspeptin, GPR54, NKB, Tacr3 and GnRH are all 

required for normal fertility. B) Confocal micrograph of the PeN containing Kiss1 neurons 

found along the third ventricle. C) Confocal micrograph showing labeled Kiss1 cell bodies 

(magenta) and a few GnRH cell bodies (cyan with white arrowheads) in the ARH as noted in 

Herde et al. (J. Neuroscience 2013; 33:12689-97). GnRH fibers from the preoptic run along 

the ventral ARH into the ME. (3V: third ventricle; AVPV: anteroventral periventricular; 
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ARH: arcuate nucleus of the hypothalamus; Kiss1: kisspeptin; ME: median eminence; 

MnPO: median preoptic nucleus; OC: Optic Chiasm; PeN: periventricular nucleus)
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Figure 2. Tri-synaptic circuit in the arcuate nucleus of the hypothalamus.
(Left panel) When circulating estradiol levels are low, AgRP neurons will release the 

inhibitory neurotransmitter GABA onto Kiss1 and POMC neurons. POMC and Kiss1 

neurons will release a trickle of glutamate onto AgRP neurons, exciting them through 

AMPA receptors. (Right panel) When circulating levels of E2 are high in proestrus or with 

E2-replacement in ovariectomized females, AgRP will display reduced neuronal excitability 

and GABA release. In POMC neurons the coupling of metabotropic GABAB receptors to 

GIRK channels is attenuated, further diminishing GABAergic inhibition. Simultaneously in 

Kiss1ARH neurons Vglut2, CaV3.1, and Hcn1,2 mRNA expression is upregulated to enhance 

glutamate release as well as the excitatory T-type calcium and h-currents (80). Therefore, 

POMC and Kiss1 neurons will be disinhibited/excited at the same time their glutamate 

release probability is enhanced through increased Vglut2 mRNA transcription. However, 

E2 will also increase expression of the inhibitory mGluR7 receptor in AgRP neurons such 

that the greater glutamate release will recruit these extrasynaptic receptors, causing an 

overall inhibitory input. Additionally, POMC neurons will produce more β-endorphin to 

further inhibit AgRP neurons. Taken together, reciprocal connections between POMC and 

Kiss1 neurons will act synergistically to increase their activity and excitability while both 

inhibiting AgRP neurons to decrease food motivation in favor of reproductive behavior. 

(AgRP: neuropeptide Y/agouti-related peptide; Kiss1: kisspeptin; mOR: μ-opioid receptor; 

mGluR1: Group I metabotropic glutamate receptor 1; mGluR7: Group III metabotropic 

glutamate receptor 7; POMC: proopiomelanocortin).
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