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ABSTRACT

Hypertension is one of the major health problems leading to the development of cardiovascular diseases. Despite a rapid
expansion in global hypertension prevalence, molecular mechanisms leading to hypertension are not fully understood
largely due to the complexity of pathogenesis involving several factors. Salt intake is recognized as a leading
determinant of blood pressure, since reduced dietary salt intake is related to lower morbidity and mortality, and
hypertension in relation to cardiovascular events. Compared with salt-resistant populations, salt-sensitive individuals
exhibit high sensitivity in blood pressure responses according to changes in salt intake. In this setting, the kidney plays a
major role in the maintenance of blood pressure under the hormonal control of the renin–angiotensin–aldosterone
system. In the present review, we summarize the current overview on the molecular mechanisms for modulation of
blood pressure associated with renal ion channels/transporters including sodium–hydrogen exchanger isoform 3 (NHE3),
Na+-K+-2Cl– cotransporter (NKCC2), sodium–chloride cotransporter (NCC), epithelial sodium channel (ENaC) and
pendrin expressed in different nephron segments. In particular, recent studies on experimental animal models with
deletion of renal ion channels led to the identification of several crucial physiological mechanisms and molecules
involved in hypertension. These findings could further provide a potential for novel therapeutic approaches applicable
on human patients with hypertension.

LAY SUMMARY

Hypertension is one of the major health problems leading to the development of cardiovascular diseases. However,
the molecular mechanisms leading to hypertension are not fully understood largely due to the complexity of
pathogenesis involving several factors. Salt intake is recognized as a leading determinant of blood pressure. Kidney
plays a major role on the maintenance of blood pressure under the hormonal control of
renin–angiotensin–aldosterone system. In the present review, we summarize the current overview on the molecular
mechanisms for modulation of blood pressure associated with renal ion channels/transporters including NHE3,
NKCC2, NCC, ENaC and pendrin. In particular, recent studies on experimental animal models targeting renal ion
channels/transporters led to the identification of several crucial physiological mechanisms and molecules involved in
hypertension. These findings could further provide a potential for novel therapeutic approaches applicable on human
patients with hypertension.
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INTRODUCTION

Hypertension is a major health problem in people over
50 years old, associated with cardiovascular events [1]. Accord-
ing to population-representative studies, the global prevalence
of hypertension in adult people aged 30–79 years old doubled
from 1990 to 2019 [2]. In particular, a remarkable increase
in age-standardized prevalence was observed in low-income
countries. Despite a rapid expansion in global hyperten-
sion prevalence, molecular mechanisms leading to hyperten-
sion are not fully understood largely due to the complex-
ity of pathogenesis involving several factors such as genetic
variation, dietary patterns (salt, potassium, fiber, protein, fat
intake), alcohol consumption, insufficient physical activity and
obesity [3, 4].

Salt (NaCl) intake is recognized as a leading determinant of
blood pressure, as reduced dietary salt intake is associated with
lower morbidity and mortality, and hypertension in relation to
cardiovascular events [5]. It is of note that we distinguish ‘salt
(NaCl)’ and ‘sodium (Na)’ intake, since sodium in conjunction
with chloride is indispensable for the development of hyper-
tension [6, 7]. The relationship between blood pressure and di-
etary salt intake has been also demonstrated in animal models
[8, 9]. Compared with salt-resistant populations, salt-sensitive
individuals exhibit high sensitivity in blood pressure responses
according to changes in salt intake [10–12]. In this setting, kid-
ney plays a pivotal role on the modulation of blood pressure via
extracellular fluid volume regulation acquired through salt re-
absorption activity, under the control of the renin–angiotensin–
aldosterone system (RAAS).

The human adult kidney typically filters approximately 20–
25 moles of sodium per day, and more than 99% of filtered
sodium is reabsorbed into the circulation through sodium
transporters/exchangers located along different nephron seg-
ments [13, 14]. Na+/K+-ATPase ubiquitously expressed at the
basolateral membrane along the nephron provides an essen-
tial driving force for the sodium entry from the apical side
through an electrochemical gradient [14]. However, sensing of
sodium and the regulation of the rate-limiting step of trans-
epithelial sodium transport is located on the entry side at
the apical membrane [15]. Sodium–hydrogen exchanger iso-
form 3 (NHE3) is chiefly responsible for the apical sodium
transport in the proximal tubules (PT) where almost 70% of
sodium is absorbed [16]. Approximately 25% of salt reuptake is
through Na+-K+-2Cl− cotransporter (NKCC2) expressed on the
apical membrane of the thick ascending limb of the loop of
Henle (TAL) [17]. Aldosterone-sensitive distal nephron (ASDN)
finely tunes salt reabsorption through several transporters in-
cluding the thiazide-sensitive sodium-chloride cotransporter
(NCC) at distal convoluted tubules (DCT) [18], and amiloride-
sensitive epithelial sodium channel (ENaC) in principal cells
(PC) of connecting tubule and collecting duct (CD) [19]. In ad-
dition, recent studies demonstrated a participation of inter-
calated cells (ICs) for salt uptake through coupling of pen-
drin and Na+-dependent Cl−/2HCO3

− exchanger (NDCBE) [20].
In the present review, we summarize the current overview
on molecular mechanisms for modulation of blood pres-
sure associated with renal ion channels/transporters described
above.

THE ROLES OF NHE3 IN THE CONTROL
OF BLOOD PRESSURE

NHE3 is encoded by the solute carrier family 9 member A3 (SLC9A3)
gene [21], belonging to the Na+/H+ exchanger family composed
of nine isoforms. The N-terminal region of NHE family exchang-
ers is located in the extracellular part and plays a role in solute
exchange,while the C-terminus is involved in the hormonal reg-
ulations of the NHE family [22, 23]. In the kidney, NHE3 is mainly
expressed in the brush border of PT together with sodium-
glucose cotransporters (SGLT) and sodium-phosphate cotrans-
porter (Napi-2), and exchanger activity of NHE3 directly or indi-
rectly contributes to the absorption ofNa+, Cl−,HCO3

− andwater
(Fig. 1). In addition to the major role in the systemic acid–base
balance homeostasis, renal NHE3 is responsible for more than
50% of reabsorption of filtered sodium.NHE3 is also expressed in
the gastrointestinal tract and involved in absorption of the ma-
jority of ingested sodium [24]. Indeed, mutations in the SLC9A3
gene could lead to a rare genetic disorder, congenital secretory
sodium diarrhoea 8 [25].

Accumulating evidence obtained from animalmodels target-
ing NHE3 revealed a fundamental role of NHE3 on the mainte-
nance of blood pressure as well as involvement in angiotensin
II (Ang II)-induced hypertension [26] (Table 1). A mouse model
with global NHE3 deletion exhibited slight diarrhoea, mild aci-
dosis and reduced blood pressure with significantly high level
of plasma aldosterone [24]. Renal expression of renin and
Cl−/HCO3

− exchanger AE1 mRNAs are elevated. Severe absorp-
tive defect was evident in the intestine, and both ENaC activ-
ity and H+-K+-ATPase mRNA were significantly increased in
the colon, which might be part of compensatory response. Tar-
geted proteomics approach on the kidney of NHE3 knockout
mice revealed significant enhancements of NaPi-2 in PT and
cleaved γ -ENaC in CD in addition to the considerable reduc-
tion in glomerular filtration [27]. Woo et al. generated and char-
acterized the tgNhe3−/− mouse, in which NHE3 expression in
global NHE3 deletion was rescued transgenically only in the
small intestines using the intestinal fatty acid binding pro-
tein (IFABP) promoter [28]. In tgNhe3−/− mice, mild to moder-
ate diarrhoea and increased faecal Na+ excretionwere observed.
Basal systolic blood pressure andmean intra-arterial blood pres-
sure as well as glomerular filtration, urine volume and urinary
sodium/potassium/chloride excretions were significantly lower
in tgNhe3−/− mice compared with its littermates. These phe-
notypes were associated with considerably enhanced plasma
Ang II and aldosterone levels in tgNhe3−/− mice [28–30]. An-
other mouse model targeting NHE3 in the kidney, namely Pax8-
Cre/NHE3-floxed mouse, showed significantly higher urinary pH
with no evidence for metabolic acidosis, while glomerular filtra-
tion, food and fluid consumption were similar to those in con-
trol mice. Normal body salt and fluid, as well as acid and base
balances in these mice, suggested the compensatory mecha-
nism for the NHE3 deletion in the kidney. However, intra-arterial
blood pressure was considerably lower in Pax8-Cre/NHE3-floxed
mice, and increased sensitivity to dietary salt (20%) was
marked [31, 32]. Recently, a mouse model with PT-specific NHE3
deletion was generated through a SGLT2-Cre/NHE3-floxed ap-
proach (PT-Nhe3−/−) [33–35]). These mice demonstrated normal
functions and structures in gastrointestinal tract, which was
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Figure 1: Sodium transporters, exchangers and ion channels along the nephron. NHE3, sodium-hydrogen exchanger isoform 3; Napi-2a, sodium-phosphate cotrans-
porter 2a; SGLT2, sodium-glucose cotransporter; NKCC2, Na+-K+-2Cl− cotransporter; ROMK, renal outer medullary potassium channel; ClC-Kb, chloride channel Kb;
NCC, sodium-chloride cotransporter; Kir4.1, inward-rectifying potassium channel 4.1; ENaC, epithelial sodium channel; NDCBE, sodium-driven chloride/bicarbonate
exchanger; vH+-ATPase, vacuolar H+-ATPase.

abnormally altered in global Nhe3−/− and to a lesser extent in
tgNhe3−/− mouse models [24, 28, 30]. PT-Nhe3−/− mice showed
similar 24h faecal Na+ excretion to control mice, with no sign
of diarrhoea. Notably, an inducible intestinal epithelial cell-
specific NHE3 knockout mouse model exhibited marked abnor-
mality in intestinal absorptive ability and diarrhoea [36, 37].
Therefore, in agreement with similar phenotypes observed in
global and in intestine-specific Nhe3−/− mice as well as hu-
man patients with absent or mutated NHE3 protein [38], it is
likely that diarrhoea is due to the defect in intestinal NHE3.
PT-Nhe3−/− mice showed significantly increased 24-h urine vol-
ume, urinary sodium and potassium excretions with a drop of
12–15mmHg in blood pressure compared with wild-type (WT)
mice. Therefore, deletion of NHE3 in the PT is sufficient to al-
ter the blood pressure. Molecular mechanisms and hormonal
regulations in both renal and intestinal NHE3 require further
investigations as they might be distinctively regulated [26]. In
addition, spontaneous hypertensive rats (SHR) demonstrate the
altered NHE3 levels suggesting the involvement in the pathol-
ogy of hypertension. Expression and activity of NHE3 in PT were
increased both in the pre-hypertensive and adults stages of
SHR [39].

NHE3 is regulated by multiple factors including Ang II,
parathyroid hormone (PTH), insulin, dopamine, glucocorticoids,

protein kinase A (PKA), cAMP and cGMP. Among them, Ang
II is one of the main regulators of NHE3 through modulation
of NHE3 trafficking between apical membrane and cytoplasm
[40–42]. The fundamental role of NHE3 in the development of
Ang II–induced hypertension was demonstrated by Ang II infu-
sion on WT, global Nhe3−/−, tgNhe3−/− and PT-Nhe3−/− mice. Re-
sponses to Ang II infusion in all knockout mouse models were
significantly impaired, with almost 50% lower blood pressure
values with respect to WT [26, 43]. These observations further
support the hypothesis that NHE3 could serve as a potential
therapeutic target to treat human hypertension. So far, a few
NHE3 inhibitors were tested in vivo (Table 2). SAR218034 was
demonstrated to lower the blood pressure associated with en-
hanced faecal sodiumexcretionwhen administrated in SHR [44].
Treatment with non-systemic drug tenapanor targeting intesti-
nal NHE3 to block the absorption of ingested sodium showed
minimal systemic effects [44, 45]. Absorbable drug AVE-0657 in-
duced natriuresis and significantly impaired hypertensive re-
sponse in Ang II–infused, 2% high salt-fed C57BL/6 J mice with-
out changes in fecal Na+ excretion [26, 34, 35]. Finally, NHE3-
mediated sodium transport has been considered fundamental
also for the natriuretic effect promoted by SGLT2 inhibitors.
Indeed, empagliflozin reduces NHE3 transport activity in rats,
showing a tight relation between SGLT2 and NHE3 transporters
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Table 1: Main findings in mouse models targeting renal sodium transporters and modulators.

Target protein Animal model Phenotypes Reference

NHE3 (Slc9a3) Nhe3−/− Slight diarrhoea, mild acidosis, low blood pressure, high plasma
aldosterone, intestinal absorptive defect, high renal expression of
renin and AE1 mRNA, high activity of ENaC and H+-K+-ATPase mRNA
in the colon, lower response of blood pressure to Ang II in fusion

[24, 27]

tgNhe3−/− (transgenic
rescue of small intestinal
NHE3)

Mild to moderate diarrhoea, increased faecal Na+ excretion, low
systolic blood pressure and mean intra-arterial blood pressure, low
glomerular filtration rate, low urine volume, low urinary
sodium/potassium/chloride excretions, high plasma Ang II and
aldosterone levels, lower response of blood pressure to Ang II in
fusion

[28–30]

Pax8-Cre/NHE3-floxed
(renal tubulus-specific
NHE3 deletion)

Higher urinary pH, low intra-arterial blood pressure, increased
sensitivity to dietary salt

[31, 32]

PT-Nhe3−/− (proximal
tubule-specific deletion of
NHE3)

High 24-h urine volume, high urinary sodium and potassium
excretions, low blood pressure (12–15mmHg lower than WT), lower
response of blood pressure to Ang II in fusion

[33–35]

NKCC2 (Slc12a1) NKCC2−/− Signs of extracellular volume depletion 1 day after birth, failure to
thrive, small body, marked dehydration, renal insufficiency, high
plasma potassium, metabolic acidosis, hydronephrosis, high plasma
renin concentration, no survival before weaning

[51]

NCC (Slc12a3) NCC−/− Mild perturbations of sodium and fluid volume homeostasis, normal
blood pressure, normal acid–base and plasma electrolyte
concentrations, normal serum aldosterone levels, development of
hyportension hypotension in response to 2 weeks of sodium
depletion, structural remodelling in DCT, increased abundance of
cleaved γ -ENaC

[27, 72, 73]

Kir4.1 (Kcnj10) KS-Kir4.1 KO
(kidney-specific knockout
of Kir4.1)

Increased basal urinary Na+ excretion, no significant natriuretic
effect of HCTZ, hypokalaemia and metabolic alkalosis under normal
and low potassium condition

[75]

WNK4 (Wnk4) WNK4−/− Higher plasma pH, lower plasma Na+ and Cl–, lower systolic blood
pressure under low-salt diet, considerable decrease of total and
phosphorylated NCC

[85]

WNK1 (Wnk1) Wnk1+/− (Wnk1
heterozygote)

Low blood pressure, while homozygous Wnk1–/– died during
embryonic development

[83]

SPAK (Stk39) SPAK−/− Hypotension, hypokalemia, hypomagnesemia, hypocalciuria [91]

α-ENaC (scnn1a) αENaC−/− Lethal respiratory distress syndrome, metabolic acidosis [99, 100]

β-ENaC (scnn1b) βENaC−/− Delayed liquid clearance at birth, salt wasting, lethal hyperkalaemia,
metabolic acidosis

[99]

γ -ENaC (scnn1g) γENaC−/− Low urinary potassium, high urinary sodium, metabolic acidosis, died
between 24–36 h after birth, slow lung fluid clearance at birth

[98, 99]

Pendrin (Slc26a4) Slc26a4−/− Enhanced urinary volume and chloride excretion in response to
moderate salt restriction, hypotension under salt depletion, impaired
bicarbonate secretion in CD, acidic urine pH and elevated serum
HCO3 concentration

[119–121]

Tg[E];Tg[R];Slc26a4�/�

conditional transgenic
Lower blood pressure in response to acute pendrin ablation [121]

TgB1-hPDS (overexpression
of pendrin in intercalated
cells)

Hypertension, delayed increase in urinary NaCl under high-salt diet [130]

Pendrin/NCC
(slc26a4/slc12a3)

Pendrin/NCC double
knockout (dKO)

Significantly lower blood pressure, renal failure and metabolic
alkalosis under basal condition, severe volume depletion and renal
failure

[122]

NDCBE (Slc4a8) Ndcbe−/− Mild perturbations of Na+ homeostasis, no changes in blood pressure [129]
NDCBE/NCC
(Slc4a8/Slc12a3)

Ndcbe/Ncc double knockout
(dKO)

Hypokalemia, upregulation of ENaC and Ca2+-activated K+ channel
BKCa under basal conditions, remarkable intravascular volume
depletion induced by salt restriction

[129]
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Table 2: Putative: therapeutic targets for hypertension and their potential drugs discussed in the present manuscript.

Target Potential drugs Observed effect Reference

NHE3 SAR218034 Reduction in blood pressure in Spontaneously Hypertensive rats [44]
Tenapanor Blockage of absorption of ingested sodium with minimal systemic

effects
[44, 45]

AVE-0657 Induction of natriuresis, impaired hypertensive response in Ang
II–infused, 2% high salt-fed C57BL/6 J mice without changes in faecal
Na+ excretion

[26, 34, 35]

Empagliflozin (SGLT2
inhibitor)

Reduction of NHE3 transport activity in rats and mice [46, 47]

SPAK (CUL3/KLHL3–
WNK1/4–SPAK/OSR1
regulatory cascade)

STOCK1S-50699
STOCK2S-26 016

Inhibition of SPAK interaction to WNK, and inhibition on
phosphorylation of SPAK and NCC

[92]

ZT-1a Inhibitory effect on NCC phosphorylation in SPAK-dependent manner
in mouse kidney

[93]

• Bartter syndrome type I
  NKCC2
• Bartter syndrome type II
  ROMK
• Bartter syndrome type III
  ClC-Kb
• Bartter syndrome type IV
  Barttin

• Gitelman syndrome
  NCC
• Gordon syndrome
  WNK1, WNK4, CLU3, KLHL3
• EAST/SeSAME syndrome
  Kir4.1

• Liddle syndrome
  ENaC
• Pseudohypoaldosteronism type 1B
  ENaC
• Pendred syndrome
  Pendrin

Thick ascending limb

Distal convoluted tubule

Collecting duct

Figure 2: Rare genetic blood pressure disorders associated with mutations in genes encoding sodium transporters, exchangers, ion channels and their regulators
expressed along the nephron.

[46]. This has been recently highlighted in amicemodelmimick-
ing the Fanconi syndrome secondary to glycogen storage disease
1b [47].

THE ROLES OF NKCC2 ON THE CONTROL
OF BLOOD PRESSURE

NKCC2 encoded by the SLC12A1 gene belongs to the cation-
chloride cotransporters (CCCs). The members of CCCs mediate
the coupling of Cl− with Na+ and/or K+ across the plasmamem-
brane. Transmembrane domain of CCCs is responsible for ion
translocation, while intracellular N- and C-terminal domains
play a role in transport and trafficking activities [48]. NKCC2
is a kidney-specific, Na+-dependent Na+-K+-Cl− cotransporter
mainly expressed in the TAL. At this site, apically expressed
NKCC2 generates a hyperosmotic renalmedulla through a coun-

tercurrent multiplier mechanism. In tandem to NKCC2 activ-
ity, renal outer medullary potassium channel (ROMK) transports
potassium out of the cells for the maintenance of the luminal
potassium concentration (Fig. 1). Loss-of-function mutations in
either NKCC2 or ROMK have been associated with the blood
pressure disorder Bartter syndrome (BS) type I and II, respec-
tively. Mutations in kidney-specific chloride channel ClC-Kb and
its essential β-subunit Barttin could also lead to distinguishable
BS corresponding to type III and IV (Fig. 2) [49].

Patients with BS show hypokalaemic alkalosis, hypercalci-
uria, polyuria and low blood pressure with early presentation
of severe volume depletion [50]. Six homozygous mutations in
NKCC2 (G193R, A267S, G319R, A508T, del526N and Y998X) iden-
tified in patients with BS type I showed low expression lev-
els and impaired sodium transport activities compared with
WT channel when expressed in Xenopus oocytes [49]. A mouse
model with deletion of NKCC2 (NKCC2−/− mice) presented with
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extracellular volume depletion 1 day after birth and failed to
thrive, not surviving up to weaning [51] (Table 1). In contrast
to BS, elevated NKCC2 activity is associated with hypertension,
which may also involve the increased ability to conserve water,
increased glomerular capillary hydraulic pressure and predilec-
tion to glomerular injury [52]. Administration of calcineurin in-
hibitor cyclosporine A enhanced NKCC2 phosphorylation, salt
retention and hypertension along with stimulation of renin and
suppression of renal cyclooxygenase 2 (COX2) inWistar rats [53].

The expression and activity of NKCC2 in TAL are regulated
by multiple hormones including vasopressin, PTH, calcitonin,
glucagon, as well as β-adrenergic agonists including isopro-
terenol and norepinephrine. These hormones increase intra-
cellular cAMP levels which may ultimately modulate NKCC2
activity in terms of surface expression and phosphorylation
[54]. In addition to stimulation of surface expression of NKCC2,
vasopressin was shown to enhance the phosphorylation of
N-terminal threonines in mice [55].

NKCC2 is inhibited by loop diuretics such as bumetanide,
furosemide and torsemide as they probably bind to the extra-
cellular ion translocation pathway [56]. The cyclic guanosine
monophosphate (cGMP) generated upon stimulation by atrial
natriuretic peptides or nitric oxide also inhibits NaCl reabsorp-
tion in TAL through reduced apical NKCC2 abundance mediated
by phosphodiesterase 2 (PDE2) [54, 57].

Like other members of the CCCs, phosphorylation and de-
phosphorylation at key serine/threonine residues is amajor reg-
ulatorymechanism tomodulate NKCC2. Kinases such as Protein
Kinase A (PKA), SPS1-related proline/alanine-rich kinase (SPAK)
and oxidative stress-responsive kinase 1 (OSR1) have been re-
ported to phosphorylate NKCC2 [58–61]. Elevated NKCC2 ac-
tivity and chloride reabsorption were associated with abnor-
mally elevated salt reabsorption in TAL of Dahl salt-sensitive
rats (DSS) rats under basal condition, suggesting the contribu-
tion of NKCC2 to hypertension [62]. Phosphorylation at Thr96
and Thr101 were enhanced in DSS compared with Dahl salt-
resistant rats on normal salt diet. Hyperphosphorylation was
associated with enhanced SPAK phosphorylation, suggesting
increased activity [63]. Free radical superoxide enhances NaCl
absorption in TAL by increasing the surface expression of NKCC2
via Protein kinase C (PKC) without modulating NKCC2 phospho-
rylation or its upstream kinases SPAK in Sprague–Dawley rats
[64].

Previously we showed that expression of NKCC2 at TAL was
significantly enhanced at pre-hypertensive phase (23–25 days
old) in theMilan hypertensive strain (MHS) of ratwhich harbours
mutations in three genes encoding adducin proteins (α-F316Y,
β-Q529R and γ -Q572K). However, those rats still retained simi-
lar blood pressure levels comparedwith age-matchedMilan nor-
motensive strain (MNS), as reduced protein levels of NCC and α-
ENaC in the downstream nephron segments probably compen-
sated the effect of NKCC2 upregulation [65, 66] (Fig. 3). In con-
trast, MHS rats in established hypertension stage (3 months old)
showed upregulation of NCC coupled with increased chloride
channel (ClC-K) protein level in DCT, with only a slight reduc-
tion of α- and β-ENaC in outer medulla [67]. Later on, Carmosino
and colleagues showed that regulatory phospho-threonines (96,
101 and 111) in NKCC2were significantly increased in the kidney
of MHS rats and associatedwith increased NKCC2 activation im-
plicated in the pathogenesis of hypertension in this strain of rats
(Fig. 4). Elevated NKCC2 activity in MHS rats could be mediated
by SPAK phosphorylation at serine 325, which was significantly
increased in MHS rats [68].
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Figure 3: Sodium transporters, exchangers and ion channels along the nephron
of MHS at pre-hypertensive phase (23–25 days old) [65]. Although NKCC2 at TAL
is significantly enhanced (red thick arrow), MHS at this age retains compara-
ble blood pressure with respect to MNS presumably due to the compensatory

mechanism involving downregulation of NCC and ENaC (red dashed arrow) at
the downstream nephron segments.

THE ROLES OF NCC IN THE CONTROL
OF BLOOD PRESSURE

Anothermember of CCCs, thiazide-sensitive NCC, plays a role in
fine-tuning of salt reabsorption in DCT (Fig. 1) [69]. Loss-of func-
tion mutations in the gene encoding NCC are associated with
Gitelman syndrome, an autosomal recessive form of salt wast-
ing, low blood pressure, hypokalemic metabolic alkalosis, hy-
pomagnesemia and hypocalciuria (Fig. 2) [70, 71]. Mouse model
with deletion of NCC (NCC−/−) showed similar phenotypes as
Gitelman’s syndrome, with mild perturbations of sodium and
fluid volume homeostasis (Table 1). NCC knockout mice re-
tained comparable blood pressure, acid–base balance, plasma
electrolyte concentrations and serum aldosterone levels with
respect to control mice under basal conditions, however they
developed hypotension in response to 2 weeks of sodium de-
pletion [72]. Structural remodelling in DCT were evident in NCC-
deficient mice, with absence of early DCT but intact preserva-
tion of late DCT which expresses ENaC, TRPV5 and Na+-Ca2+

exchanger [73]. Renal transporter-profiling on the kidney of NCC
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knockoutmice revealed increased abundance of cleaved γ -ENaC
as a compensatory response, while other sodium transporters
were unchanged [27]. Recently, low potassium diet was impli-
cated in the activation of NCC at DCT leading to sodium reten-
tion and thereby increased blood pressure [74]. Studies on mice
with kidney-specific knockout of inward-rectifying potassium
channel 4.1 (Kir4.1) revealed that Kir4.1 plays an essential role on
the activation of NCC in response to hypokalemia [75] (Table 1).
At the basolateral side, Kir4.1 works as a sensor for circulat-
ing potassium levels, and potassium efflux by Kir4.1/Kir5.1 con-
tributes to the maintenance of Na+/K+-ATPase activity through
recycling of potassium (Fig. 1). Kir4.1/Kir5.1 is a primary deter-
minant of membrane potential and intracellular chloride con-
centration, which mediates the WNK-dependent regulation of
NCC [75, 76]. Indeed, loss-of-function mutations in KCNJ10 gene
encoding Kir4.1 lead to EAST/SeSAME syndrome, resembling
to Gitelman syndrome presenting with hypokalemic metabolic
alkalosis [77–79].

In contrast to Gitelman syndrome, mutations in regulators
of NCC could result in Gordon syndrome, also known as Fa-
milial hyperkalaemic hypertension syndrome or pseudohypoal-

dosteronism type II, which is an autosomal dominant inherited
form of low-renin hypertension associated with hyperkalaemia
and hyperchloremic metabolic acidosis (Fig. 2) [80]. Initially, mu-
tations in genes encoding With No lysine (K) serine/threonine
kinases WNK1 and WNK4 in DCT have been implicated in the
causing mechanism of Gordon syndrome. Later on, two genes
CUL3 and KLHL3 emerged as being responsible for 80% of fam-
ilies with Gordon syndrome [81]. Since phosphorylation modu-
lates the activity of NCC, WNK1/4 were expected as kinases to
activate NCC by phosphorylation. However, recent studies re-
vealed more complex mechanisms for NCC. In fact, WNK1/4 do
not phosphorylate NCC, but downstream serine/threonine ki-
nases SPAK and OSR1, which in turn phosphorylate NCC for
channel activation [82]. Mice with targeted disruption of WNK4
or WNK1 heterozygous (Wnk1+/−) exhibited hypotension [83, 84]
(Table 1). WNK4−/− mice showed almost complete absence of
phospho- and total NCC levels which were not compensated by
a significantly enhanced WNK1 level, suggesting that WNK4 is
the principal WNK involved in NCC regulation [85]. WNK1 inter-
acts with WNK4 through its kinase domain and inhibits WNK4
[86]. CUL3 and KLHL3 code for a hydrophobic scaffold protein in
an ubiquitin-E3 ligase Cullin3 and an adaptor protein Kelch3, re-
spectively. These proteins form a CUL3–KLHL3 E3 ligase complex
involved in the endosomal degradation of WNK4 [87, 88]. Subse-
quently, mutations in WNK1, WNK4, KLHL3 and CUL3 are asso-
ciated with abnormal accumulation of WNK4 leading to Gordon
syndrome [88, 89].

Although thiazide diuretics are effective anti-hypertensive
drugs targeting NCC, the use of the thiazides have been implied
in the increased risk of Type 2 diabetes due to metabolic distur-
bances [90]. SinceNCC is regulated by the CUL3/KLHL3–WNK1/4–
SPAK/OSR1 regulatory pathway, targeting the molecules in-
volved in this cascade could represent as a therapeutic strategy
for hypertension. Indeed, deficiency of SPAK in mice showed re-
duction in blood pressure with reduced NCC protein abundance
and activity [91] (Table 1). Two novel compounds STOCK1S-50699
and STOCK2S-26016 were shown to inhibit the interaction of
SPAK to WNK. Two compounds exhibited dose-dependent in-
hibitory effects on phosphorylation of endogenously expressed
SPAK and NCC in mpkDCT cells [92] (Table 2). A selective
SPAK inhibitor ZT-1a developed through scaffold-hybrid strategy
showed an inhibitory effect on NCC phosphorylation in SPAK-
dependent manner in mouse kidney [93]. Since the strategy to
target CUL3/KLHL3–WNK1/4–SPAK/OSR1 cascade holds poten-
tial for anti-hypertensive therapy, improvements in terms of se-
lectivity on kinase isoforms to avoid the undesirable side effects
are the major challenging to be addressed.

THE ROLES OF ENAC ON THE CONTROL
OF BLOOD PRESSURE

ENaC is expressed on the apical membrane of PC of ASDN and
participates in the fine-tuning of sodium reabsorption [18]. At
this site, lumen electronegativity provides a driving force for
sodium absorption through ENaC in parallel with potassium se-
cretion via ROMK (Fig. 4). Other sodium transporters including
NCC and NDCBE require simultaneous chloride absorption inde-
pendent of potassium excretion [94, 95]. ENaC belongs to cation-
selective, ligand-gated degenerin/ENaC (DEG/ENaC) superfamily
implicated in sensory functions [96, 97]. Other members in this
superfamily include acid-sensing ion channel (ASIC) in mam-
mals and FMRFamide-gated Na+ channel (FaNaC) in inverte-
brate [97]. Functional ENaC channels form heteromeric trimer
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composed of three subunits (α, β and γ ), encoded by SCNN1A,
SCNN1B or SCNN1G genes. Another subunit, δ-ENaC, has been
also identified with different tissue distribution pattern [97]. Al-
though ASIC1 is functional as a homotrimer, ENaC requires a
heterotrimer composed of α or δ, β and γ to form functional
channel. In addition, ENaC knockoutmicemodels demonstrated
that α, β and γ subunits are crucial for the survivals [98–100]
(Table 1).

Expression levels and channel activity of ENaC are mod-
ulated by several factors including SGK1, Nedd4-2, proteases
(furin, prostasin and kallikrein), hormones including aldos-
terone, angiotensin II, vasopressin and endothelin, as well
as shear stress, ATP, Na+ and nitric oxide [96]. In addition,
ENaC is inhibited by either amiloride via binding to ENaC
or potassium-sparing diuretics including spironolactone, can-
renone and eplerenone through blocking the binding of aldos-
terone to mineralocorticoid receptor (MR) [101].

Mutations in genes encoding ENaC subunits could lead to
blood pressure disorders as described as Liddle syndrome or
pseudohypoaldosteronism type 1B (PHA1B) (Fig. 2).

Liddle syndrome is an autosomal dominant inherited form of
hypertension caused by elevated renal sodium reabsorption due
to gain-of-function mutations in mostly SCNN1B and SCNN1G
genes [102]. Patients with Liddle syndrome are characterized by
hypokalemic hypertension, low plasma renin and aldosterone
levels with metabolic alkalosis. ENaC is negatively regulated by
E3 ubiquitin-protein ligases NEDD4 family proteins [103]. Each
ENaC subunit contains PY (Proline Tyrosine) motif at the intra-
cellular C-terminus serving as a binding site for NEDD4 pro-
teins.Nedd4-2 catalyzes the ubiquitination of ENaC at cell mem-
brane, prompting the internalization of the channels and even-
tual proteasomal degradation. The mutations in SCNN1B and
SCNN1G genes identified in Liddle syndrome are mostly mis-
sense mutations within the PY motif or nonsense/frameshift
mutations leading to elimination of the PY motif [102]. Alter-
ation or elimination of PY motif impairs interaction between
Nedd4-2 and ENaC thus disrupting regulated internalization,
resulting in excessive apical ENaC expression and enhanced
Na+ reabsorption at the distal nephron [104]. In addition to
the abnormal accumulation of ENaC at cell surface, enhanced
single-channel open probability [105, 106] or aberrant prote-
olytic channel activation [107] could result in hypertension in
Liddle syndrome. Functional expression of truncated variant β-
R564X inXenopus oocyte showed a significantly enhanced single-
channel open probability under high- and low-Na+ conditions
[105]. Missense γ -N530S mutation located in the extracellular
loop showed a similar cell surface expression compared with
WT channel but two-fold increased channel activity in Xeno-
pus oocytes [106]. β-R566X and γ -K576X increased the cleaved
form of α-ENaC at the cell surface when three ENaC subunits
were co-expressed in HEK 293T cells [107]. Despite the presence
of PY motif in all ENaC subunits, only one mutation in α-ENaC
has been identified for Liddle syndrome so far [108]. α-C479R lo-
cated at the extracellular domain participates in disulfide bond
together with C394 residue. Both C479R and C394S variants ex-
hibited increased amiloride-sensitive ENaC current in Xenopus
oocyte.

In contrast to Liddle syndrome, PHA1B is described as
autosomal-recessive inherited form of salt-wasting due to resis-
tance to aldosterone [97]. Patients with PHA1B are characterized
by low blood pressure, hyponatremia, hyperkalaemia,metabolic
acidosis, anorexia and dehydration, with high plasma aldos-
terone and renin activity starting from their infancy [109].While
autosomal dominant PHA1A is due to mutations in the gene en-

coding MR, PHA1B is caused by the loss-of-function mutations
in genes encoding ENaC subunits. Studies on three PHA1B pa-
tients demonstrated that mild PHA symptom is associated with
a missense mutation in α-ENaC (G327C), while two mutations, a
frameshift mutation in α-ENaC and a splice site mutation in in-
tron 12 of the β-ENaC, were related to more severe phenotypes
[110].

Recently we have identified key molecules in salt sensitiv-
ity, including glutamyl aminopeptidase (ENPEP), plasminogen
activator, urokinase (PLAU), epidermal growth factor (EGF) and
Xaa-Pro aminopeptidase 2 precursor (XPNPEP2) through urine
proteomic analyses on salt-sensitive and salt-resistant hyper-
tensive patients. Since these molecules are involved in the
regulation of ENaC, the development of hypertension in salt-
sensitive patients could be associated with ENaC-dependent
sodium reabsorption along the distal tubule [111].

Finally, Pitzer and colleagues have suggested that ENaC-
dependent activation of inflammasome in antigen-presenting
cells could contribute the development of salt-sensitive hyper-
tension [112, 113]. In antigen-presenting dendritic cells (DCs),
upon increase in extracellular concentration of sodium due to
high salt diet, sodium enters DCs via ENaC, and in turn, intra-
cellular Ca2+ level is increased through the activity of Na+/Ca2+

exchanger. Elevated Ca2+ activates PKC, which phosphorylates
p47phox to trigger the activation of NADPH-oxidase, leading
to superoxide and reactive oxygen species productions. Forma-
tions of IsoLGs and IsoLG-protein adducts stimulated by su-
peroxide and reactive oxygen species induce the activation of
NLRP3 inflammasome, which enhances proinflammatory cy-
tokine interleukin (IL)-1β maturation via activation of Caspase-
1. Activated DCs promote the production of IL-17A and in-
terferon gamma (IFN-γ ) in T cells, accelerating sodium reten-
tion following infiltration to the kidney. These findings reveal
a novel mechanism for ENaC in immune cells to contribute
to salt-induced inflammation and ultimately salt-sensitive
hypertension.

THE ROLES OF PENDRIN ON THE CONTROL
OF BLOOD PRESSURE

It has long been believed that intercalated cells (ICs) of distal
nephron have the sole role of acid–base homeostasis through
H+ and HCO3

− handling by the activities of vacuolar H+-ATPase
(vH+-ATPase), Cl−/HCO3

− exchangers kAE1 and pendrin. How-
ever, recent studies have shown that ICs also participate in salt
reabsorption [18]. Pendrin is encoded by the SLC26A4 gene and is
mainly expressed in kidney, thyroid and inner ear. Pendrin gen-
erallymediates entry of chloride anion into the cells in exchange
for release of bicarbonate ion or iodide [114, 115]. In the kidney,
pendrin localizes at apical membrane of β-ICs, non-α and non-β
ICs of the connecting tubules and cortical CD. In themice cortical
CD, two cycles of pendrin molecules were coupled with one cy-
cle of NDCBE to generate electroneutral thiazide-sensitive NaCl
absorption (Fig. 1) [116]. In contrast to other types of cells, ba-
solaterally expressed vH+-ATPase energizes salt reabsorption in
ICs [20].

Inactivatingmutations of pendrin could lead to Pendred syn-
drome (Fig. 2), which is associated with sensorineural deaf-
ness, hearing loss and goiter [117]. Studies on genetically mod-
ified mice targeting pendrin highlighted the role of pendrin in
blood pressure modulation (Table 1). In addition to inner-ear de-
fects as observed in Pendred syndrome [118], Slc26a4−/− mice
demonstrated enhanced urinary volume and chloride excretion
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compared with WT mice in response to moderate NaCl re-
striction. Furthermore, strict salt depletion induced a hypoten-
sive effect in Slc26a4−/− mice [119]. Another Slc26a4−/− mouse
model showed impaired bicarbonate secretion in CD associated
with acidic urine pH and elevated serum HCO3

− concentration
[120].Trepiccione et al. generated a conditional transgenicmouse
model in which expression of pendrin can be switched on in vivo
by doxycycline. Acute deletion of pendrin resulted in a marked
drop in blood pressure without affecting the acid–base balance
or blood K+ concentration [121] (Table 1). Single deletion of pen-
drin or NCC exhibited volume contraction or hypotension during
salt depletion, while showing only a mild degree of salt wasting
at basal condition [122]. This has prompted a hypothesis that
these two transporters are under the control of high aldosterone
levels. Indeed, expression of MR was also confirmed in ICs [123].
Phosphorylation on MR at S843 was almost exclusively detected
in ICs in vivo in the kidney [124]. The inactive phosphorylated
form of MR is converted to active dephosphorylated form by Ang
II via mTOR signalling, leading to aldosterone-dependent up-
regulation of pendrin [125]. The mTOR pathway is involved in
pendrin regulation and congenital hypothyroidism in thyroid
follicular cells [126]. Dietary salt restriction or Ang II infusion
upregulated NCC and pendrin expressions accompanied by in-
creased plasma aldosterone levels in controlmice. Salt depletion
did not change blood pressure in control mice, but considerably
reduced blood pressure in pendrin-knockoutmice [127] (Table 1).
Furthermore, pendrin was upregulated by an analogue of al-
dosterone deoxycorticosterone in control mouse kidney [128].
Pendrin/NCC double knockout mice showed significantly lower
blood pressure compared with WT and single NCC or pendrin
knockout mice, associated with renal failure and metabolic al-
kalosis under basal condition [122] (Table 1). Deletion of ND-
CBE caused only mild perturbations of Na+ homeostasis with
no significant alterations in blood pressure with respect to con-
trol mice [129]. NDCBE/NCC double-knockout (dKO) mice devel-
oped hypokalemia together with upregulations of ENaC and the
Ca2+-activated K+ channel BKCa under basal conditions. Salt re-
striction induced remarkable intravascular volume depletion in
NDCBE/NCC dKO mice. In contrast to pendrin/NCC dKO mice
with severe volume depletion and renal failure,NDCBE/NCC dKO
mice exhibited milder renal phenotypes. While deletion of ND-
CBE retains salt absorption ability through ENaC/pendrin mech-
anism,pendrin ablation could have impacts on salt reabsorption
through distinct transport pathways involving ENaC/pendrin
and NDCBE/pendrin [129].

A mouse model overexpressing pendrin in ICs developed hy-
pertension accompanied by delayed increase in urinary NaCl
under high-salt diet (Table 1). Since replacement of NaCl with
NaHCO3 did not have significant changes in blood pressure,
hypertension in these mice was chloride-dependent. Pendrin-
driven chloride reabsorption stimulates the sodium uptake
from ENaC and NDCBE although these sodium transporters
are downregulated due to vascular volume expansion in these
mice [130].

Clinical data from patients harbouring mutations in pendrin
further conferred the involvement of pendrin in blood pressure
regulation. Demographic and biochemical data analyses on pa-
tients with bi-allelic SLC26A4 mutations showed that subjects
with impaired pendrin function are likely to be resistant to high
blood pressure. In addition, recent identification of patients with
mutations in pendrin presented the Gitelman-like syndrome
demonstrating low blood pressure, metabolic alkalosis and
renal salt-losing with hypokalemia [125, 131, 132].

CONCLUSION

Hypertension and associated diseases have become extremely
common especially in western countries. While the pathogen-
esis underlying the development of hypertension is still to
be addressed, several crucial physiological mechanisms and
molecules involved in hypertension have been identified thanks
to the studies on animal models targeting renal transporters.
These findings could further provide a potential for novel
therapeutic approaches applicable for human patients with
hypertension.
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