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Abstract

The immense information density of DNA and its potential for massively parallelized 

computations, paired with rapidly expanding data production and storage needs, have fueled a 

renewed interest in DNA-based computation. Since the construction of the first DNA computing 

systems in 1990s, the field has grown to encompass a diverse array of configurations. Simple 

enzymatic and hybridization reactions to solve small combinatorial problems transitioned to 

synthetic circuits mimicking gene regulatory networks and DNA-only logic circuits based on 

strand displacement cascades. These have formed the foundations of neural networks and 

diagnostic tools that aim to bring molecular computation to practical scales and applications. 

Considering these great leaps in system complexity as well as in the tools and technologies 

enabling them, a reassessment of the potential of such DNA computing systems is warranted.

Background

The excitement motivating early DNA-based computation derived from two related 

properties of DNA: 1) its immense information density and 2) the potential for extreme-scale 

parallelized computations. Yet, it also faced high costs, scaling challenges, and concerns 

over potential fundamental biophysical limits. In recent years, surging data storage and 

computational needs and concomitant energy usage have brought additional attention to 

alternative computing platforms. According to the international Energy Agency, data centers 

alone account for 1–1.5% of global energy use [1]. Such concerns, as well as advances 

in multiple aspects of nucleic acid technologies, have fueled a renewed interest in DNA-

based technologies. Here we succinctly review different classes of DNA-based computation 

that leverage nucleic acid hybridization, strand displacement, and enzymatic activities. 
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We then reassess the challenges of cost, scaling, and biophysical limits in the context of 

contemporary technologies and understandings.

Computation Leveraging Nucleic Acid Hybridization

The first DNA computer, built in 1994 by Leonard Adelman, solves an instance of the 

Hamiltonian Path problem, or the ‘traveling salesman’ problem [2]. This well-known 

problem seeks a path through a directed graph that begins and ends at specified nodes 

and includes each node only once (Fig 1A). DNA oligomers represent each node and 

edge within the graph, with edges being partially complementary to both their source 

and destination nodes. Specific assembly of these edges and nodes through ligation and 

subsequent size selection of product DNAs generates all paths through the graph that 

adhere to user-specified rules such as paths must pass through each node exactly once. This 

small-scale computation sparked a new field, including work that also leveraged nucleic 

acid assembly and hybridization events including logical operations executed by RNA-DNA 

hybridization [3] or computing based upon self-assembling DNA tiles and DNA origami 

[4,5].

Computation Leveraging Strand Displacements

Nucleic acid hybridization extends to situations where multiple molecules compete for 

hybridization. A particularly important form of this occurs in toehold-mediated strand 

displacement, where a single-stranded DNA molecule anneals to a complementary single-

stranded region of an otherwise double-stranded molecule, using this ‘toehold’ to displace 

the originally hybridized strand and form a new double-stranded molecule (Fig 1B)[6]. Such 

reactions are relatively easily controlled through toehold length and sequence [7]. Seelig et 

al. first applied such strand displacement to DNA circuits [8], performing logic operations 

via ‘gates’ represented by double- or multi-stranded molecules containing exposed toehold 

regions. As an example, AND gates require two input strands to be present for successful 

displacement of the output strand, while OR gates require only one input. This system 

design became widely popular and formed the foundation of many modern systems [9–13]. 

Cascading strand displacement, where the displaced strand from one toehold reaction acts 

as the input for a subsequent toehold, also confers the possibility of reducing manual inputs 

required for computation [8].

Qian et al. implemented logic functions encoded by strand displacement cascades to create 

the first DNA-based neural network [10]. Nearly a decade later, Cherry and Qian scaled this 

to a ‘winner-take-all’ classifier of handwritten digits from the Modified National Institute of 

Standards and Technology database (Fig 1B) [12]. The system takes a series of input strands 

representing pixels of a digit, with each strand indicating the presence of ink in its assigned 

pixel. These input strands are compared to pixelated images of known digits encoded 

through ‘weight’ strands, and the similarity is computed as (i.e. physically results in) a high 

or low concentration of a weighted sum molecule. The winner-take-all function is a pairwise 

annihilation reaction where competing weighted sum molecules are turned to ‘waste’ in 

a 1:1 ratio by successively hybridizing to an ‘annihilator’ molecule. This leaves only the 

most prevalent weighted sum molecule having excess single-stranded DNA available to 
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release a reporter molecule through yet another strand displacement, indicating the digit 

most similar to the input. This classifier explores the functionality of neural networks at 

an impressive scale, analyzing up to 100 pixels of input digits. This scale highlights a 

key challenge in constructing large DNA-only systems: strand complexity. Even using a 

winner-take-all function, which involves fewer components than non-competitive networks, 

the most intensive computation in this example requires over 300 distinct DNA molecules.

Computation Leveraging Enzymatic Activities

While deriving most of their computational capabilities through nucleic acid hybridization, 

some early DNA computation systems also leveraged enzymes including ligases, RNAseH, 

and polymerase [3,14,15]. Though enzymatic systems were eclipsed by DNA-only systems 

for nearly two decades, especially by strand displacement systems, new enzymatic circuits 

and networks have been recently developed. The “PEN DNA toolbox,” [16] has since 

become a critical tool in enzyme-driven computation including an enzymatic neural network 

[17]. The PEN DNA toolbox relies on a polymerase, exonuclease, and nickase to build 

basic networks through which sequences are synthesized, released, and degraded. A single-

stranded DNA molecule acts as a primer for a single-stranded template molecule. The 

polymerase generates the desired sequence from the template, and a nickase cuts the newly 

generated strand. The reaction occurs at a temperature greater than the melting temperature 

of the shorter sequences but lower than that of the longer template strands. Cleavage by the 

nickase thus releases the shorter primer and newly synthesized molecule [16]. Okumura et 

al. used this to construct neural networks that compute both simpler linear classification (Fig 

1C) as well as more complex nonlinear classification [17].

Algorithms and Applications

The highly parallelized nature of DNA computation, which stems from the ability to operate 

on all molecules in a solution at once, lends itself to problems requiring prohibitively 

high numbers of operations. Large combinatorial or NP-complete problems involving 

exhaustive searches have been targeted for parallelization, as massive problem spaces 

may be searched in parallel using DNA systems [18]. For example, in Adelman’s self-

assembling computation, all oligomers hybridize to complementary sequences in a one-pot 

style reaction [2]. An algorithm solving an instance of the Knight Problem (what are all 

chess board configurations of knights with no knight attacking another?) operates on a 

combinatorial library of possible solutions, eliminating all but the correct strands following 

given input parameters [3,19]. Perumal et al. compared a DNA-based computer with an 

electronic computer in the solving of the Subset Sum Problem (an established NP-complete 

problem), noting the DNA system’s linear run time compared to the exponential run time of 

the electronic system [20].

The advent of DNA-based neural networks has also enabled construction of increasingly 

complex DNA classifiers. Networks built of layered DNA-based circuits that can operate 

simultaneously may prove another effective use of parallel molecular computing and 

increase the speed of pattern recognition. Diagnostic DNA classifiers have already been 

trained to recognize mRNA expression patterns characteristic of cancer [21] or of bacterial 
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and viral infection [22] with a reaction time as short as 20 minutes. Such classifiers 

have also been applied to image analysis, most notably in Cherry and Qian’s analysis of 

handwritten digits [12].

Modern Advances through Hybrid Systems, Modularity and Materials

The above are salient examples reflecting common themes within DNA computing; 

however, a much wider array of systems exist. Hybrid systems such as the logic circuits 

designed by Song et al. simplified strand displacement logic circuits by using single-

stranded gates with a strand-displacing polymerase in place of additional DNA molecules 

[23]. Other endeavors towards minimizing the number of unique strands required for 

each computation include the use of switching circuits [24] and convolutional neural 

networks [25]. Physical constraints can also alter computation speed and complexity, 

and implementations of modularity and interfaces with inorganic phases and materials 

are beginning to address them. Okumura et al. distributed their computational network 

among emulsion droplets that could be exposed to varied inputs, allowing distinct, highly 

parallelized reactions using identical base components [17]. Chatterjee et al. explored 

modularity by constructing strand displacement circuits tethered to an origami scaffold, 

using spatial proximity to control interacting species [26]. This allowed the reuse of 

molecules throughout the system, minimizing complexity while also speeding computation 

by minimizing distances traveled by interacting elements. Engelen et al. demonstrated 

the use of a supramolecular polymer for a similar purpose, in place of DNA origami 

scaffolding [27]. Such innovations have continued to increase computing power and speed 

while minimizing components required.

Perceived Bottlenecks and Feasibility

Cost.

One of the most prominent concerns regarding DNA-based computation at scale is the 

cost of DNA synthesis. For example, Faulhammer et al.’s 1024-molecule combinatorial 

library of ~250 base pair strands [3] would cost over $4,000 from leading DNA synthesis 

companies, while Cherry and Qian’s network remembering three 100-bit patterns required 

305 molecules of less than 40 base pairs [12] and would cost ~$1,000 [28]. Though 

these prices remain prohibitively high, there is high demand for increasingly affordable 

DNA synthesis technologies from the biological sciences, biopharma, and bioengineering 

including DNA-based data storage [29–31]. This has spurred substantial innovation. 

Enzymatic methods including terminal deoxynucleotidyl transferase (TdT) show promise 

and have been predicted to lower cost by 1 to 2 orders of magnitude [32]. Yet, this alone 

would be unlikely to support economically feasible DNA-based computation. Fortunately 

for DNA-based computation, synthesis of completely arbitrary and fully custom DNA 

sequences may not be necessary, and rather the combinatorial assembly of a fixed set of 

DNA blocks into longer strands can achieve theoretical costs rivaling if not bettering the cost 

of equivalent amounts of contemporary electronic or tape-based storage media. This is an 

approach already recognized and actively being advanced by academic and industrial groups 
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[33–36]. In addition, there are efforts to demonstrate the ability to reuse strands without 

needing to synthesize de novo for each distinct computation [5,37].

DNA sequencing is of perhaps lesser current concern given output readouts could be 

substantially smaller than the computational substrates, and the cost of DNA sequencing 

has been dropping faster than that of DNA synthesis [38]. Furthermore, many computing 

systems do not require sequencing for readout, and may use electromagnetic outputs 

[11,12,17,24]. Therefore, while cost presents a significant current obstacle for both DNA 

synthesis and sequencing, there is reason to be optimistic that these barriers will be 

overcome sufficiently to support practical applications of DNA-based computation at scale.

Computation Speeds.

If costs are presumed solvable, a greater challenge may be latency. The high information 

density of DNA and its massively parallel architecture is countered by the inherently slower 

biophysical and chemical processes and events, as well as of physical sample handling steps, 

compared to semiconductor-based computation. This tradeoff will inform the practicality of 

such systems, and perhaps present targets for research and development. We can begin at the 

smallest spatial scale and consider the speed of enzymatic reactions, hybridization events, 

and strand displacements.

The kinetics of enzymatic reactions can be used to assess their potential contribution 

to the latency of DNA computation. Enzymatic cleavage involves a broad range of rate 

constants, for example from 7.1 s−1 for RNAse H [39] to 1.4×103 s−1 for RNAse A [40]. 

Polymerases add to latency as a function of polymer length and polymerization speed, 

with polymerization rates spanning roughly 1–1000 nucleotides (nt) per second, or roughly 

three orders of magnitude slower than restriction endonucleases [41,42]. Enzymatic systems 

would slow further if the substrates they act on were in super-saturating amounts. Thus, in 

optimal conditions, one might estimate speeds on the orders of 1 to 103 computations per 

second per molecule, scaling linearly with system size. This would be 6 orders of magnitude 

slower than conventional silicon processors. However, when considering the parallelizability 

and density of DNA, and assuming an aqueous solubility of ~1018 DNA molecules per mL 

(for 200 nt molecules), one might achieve 1018-1021 computations per second per mL, over 

9 orders of magnitude faster than modern gigahertz processors of similar volume.

Intra- and intermolecular hybridization of DNA molecules is important in nearly all forms 

of computation. Rate constants for hairpin formation range from sub-milliseconds to tens 

of milliseconds and increase with hairpin length. For example, the rate constant of closure 

of DNA hairpins with ~5–9 nt long loops is approximately 1×106 s−1 [43]. Hybridization 

of ~20 nt single-stranded DNAs to each other ranges from 1×106-1×107 s−1mol−1 [44]. 

These rates apply only to intra- and intermolecular associations, while more complex strand 

displacements would involve longer time scales. Individual intermolecular and hairpin-based 

events could operate roughly 2 to 3 orders of magnitude slower than a single processor 

in personal computers, respectively (megahertz compared to gigahertz, respectively). Again 

assuming 200 nt long DNA with an aqueous solubility of ~1018 DNA molecules per mL, 

one might achieve 1024 to 1025 computations per second per mL. Therefore, enzymatic 

and intra- and intermolecular interaction rate constants, considering the density and hence 
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computational parallelizability of DNA, suggest considerable net speed advantages over 

electronic systems.

At the next length scale, molecules must first find each other in space to react or hybridize. 

Without mixing, molecules diffuse with diffusion coefficients on the order of 1 to 1000 

um2 s−1 depending on their size, from small 20 nt single-stranded DNA or RNA to 

large 40 kb+ plasmids [45–47], respectively. For molecules with the largest diffusion 

coefficients, this would suggest a root mean square displacement of only up to 1 mm 

over 15 hours (<r2> = qiDt, where qi = 6, D is the diffusion coefficient, and t is time). 

Therefore, macromolecular mixing either through convection or oscillating electric fields 

will be necessary. Macromolecular mixing rates may be limited by direct negative impacts 

on the stability of the DNA and may also scale non-linearly with total volume size, 

molecular density, fluid viscosity, and vessel geometry. Relatedly, the copy number of 

unique sequences will likely be important as subsets of molecules must interact within 

a reasonable timeframe. In addition, as molecule length increases, entanglement effects 

may affect mixing as well as diffusion. Despite these considerations, there is room for 

optimism. While substantial work will be needed to advance our understanding and control 

of mixing specifically in nucleic acid systems, assuming mixing times of even several hours 

(~10−5 s−1) could be practical. With parallel computation in 1 mL of fluid, one might still 

achieve an impressive ~1013 computations per second (10−5 s−1 mixing * 1018 s−1 mL−1 

enzymatic reaction). This represents just one physical manipulation of many required in 

most nucleic acid based computational systems to date. For example, pipetting, mixing, 

purifications, and sequencing add to computational latency. Yet, even for these processes 

that slow computational speed by another one or two orders of magnitude, the net theoretical 

computation speed possible within 1mL of fluid may still exceed silicon-based processors.

While we have focused on computational speed and scalability, molecular computation 

may also offer savings in energy usage. Experimental comparisons of electronic and 

DNA computing systems by Perumal et al. found energy usage by the DNA system 

to be approximately one order of magnitude lower than electronic systems [20]. The 

chemical energy equivalent of 1 Watt is approximately 7×1022 molecules of ATP. If each 

molecule of ATP supports a computation, or operation, then molecular computing can 

perform 7×1022 computations per Watt [48]. Supercomputers, by comparison, can perform 

1×1010 operations per Watt [49]. By this admittedly optimistic estimation, DNA could 

yield an improvement in energy usage of approximately 12 orders of magnitude, providing 

substantial room for practical energy inefficiencies not yet determined in the design of DNA 

computers.

Conclusions

In summary, the biophysical and dynamic characteristics of relevant molecular processes 

suggest nucleic acid computation could offer advantages over silicon-based processors for 

certain applications, with the key property being the incredible information density of DNA 

conferring highly parallel and volumetrically dense computation. Continued advances in our 

fundamental understanding and engineering capabilities of molecular through macroscale 

properties will be important. However, although the properties of basic reactions underlying 
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each step of a molecular computation are important considerations and provide a general 

guide to creating practically scaled systems, the key barriers appear to be macroscale: those 

of operational complexity/scalability and system reusability. A concerted focus by the field 

on these challenges of system design and configuration may yield breakthroughs. New 

designs must continue to reduce or modularize components while increasing computational 

power and must minimize slow physical operations. Indeed, recent advances and the 

consistent creativity of the field over the past three decades suggest reasonable hope.
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Highlights

• DNA holds potential for immense information density and extreme-scale 

parallelized computation

• The molecular components of DNA-based computing systems do not appear 

to significantly limit such systems’ ability to function at comparable net 

speeds to silicon processors

• The primary barriers to advancing DNA computation are macroscale and may 

be addressed through system design

• Advances in system configuration mimicking gene regulatory and neural 

networks present promising steps towards computation at scale
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Figure 1. 
A. Nucleic Acid Hybridization: Combinatorial Self-Assembly and the Traveling Salesman 

Problem

Nodes were represented by a specified sequence with edge sequences complementary to 

both the 3’ end of its origin node sequence and the 5’ end of its destination node. Edges 

leading to or from 0 or 6 were complementary to the full sequence of those nodes. When 

combined in a one-pot ligation reaction, these complementary regions ligated to form 

strands encoding possible paths. The double-stranded sequences were then PCR-amplified 

with primers annealing to the sequences of nodes 0 and 6, , satisfying the requirement that 

each path enter at node 0 and exit at node 6. These products were selected for the correct 

size by gel electrophoresis. To isolate paths containing every node, Adelman then used 
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sequential affinity purification to pull down each node in turn and verified the correct final 

sequence through graduated PCR.

B. Strand Displacement: Classification via Neural Network

Cascading strand displacement converts an input molecule into an intermediate strand 

through a weight molecule, in proportion to the initial concentration of the input. The 

intermediate interacts with a summation gate to produce a strand representing the weighted 

sum. This weighted sum strand participates in a pairwise annihilation reaction that performs 

the winner-take-all (WTA) function, in which weighted sums are compared to known digits, 

or ‘memories,’ and only the most similar remembered digit given as output. This occurs 

on the molecular level via 1:1 deactivation of distinct weighted sums through hybridization, 

leaving only the most prevalent weighted sum molecule active. This ‘winner’ may continue 

to signal restoration that produces an output strand and leads to fluorescence of a reporter 

molecule. Weight concentrations were assigned based on the color value (darkness of 

writing) of each of 100 pixels within the image. Values of input symbols were compared to 

the values of representative images of digits through the network, and the most similar digit 

reported as output.

C. Enzymatic Activities: Classification via Neural Network

The PEN DNA toolbox mechanism is used to generate a short output strand upon addition 

of the input strands, implementing positive weight, while also producing a drain molecule 

that hybridizes and deactivates the output, acting as the negative weight. These weights 

were tuned using additional template strands that competed for the inputs but produced 

a nonfunctional molecule. Interaction of the output strand and drain strand performed the 

thresholding, as output molecules that overcome the drain mechanism remain available 

for an amplification step using an additional template strand. This generates more output 

strands to interact with the reporter molecule to generate fluorescent signal. Created with 

Biorender.com
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Figure 2. 
Schematic of computational configurations. Molecular interactions such as hybridization and 

enzymatic reaction can provide foundational limitations of a system, but macroscale factors 

such as speed of diffusion must also be considered. System configuration plays the most 

important role in computation capability, as requirements for specific design, incubation 

times, and physical manipulations may greatly extend latencies of computation. Created 

with BioRender.com.
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