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• The use of WBE for the SARS-CoV-2 virus
and forecast cumulative COVID-19 cases
two weeks in advance was investigated.

• RT-qPCR was used to detect the SARS-
CoV-2 nucleocapsid 1 (N1), nucleocapsid
2 (N2), and E genes in municipal waste-
water.

• The random forest model is more effective
in predicting cumulative COVID-19 cases
when strain prevalence data are included.

• Strain prevalence has a significant influ-
ence on the model predicting COVID-19
outbreaks.
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Wastewater-based epidemiology (WBE) is a rapid and cost-effectivemethod that can detect SARS-CoV-2 genomic com-
ponents in wastewater and can provide an early warning for possible COVID-19 outbreaks up to one or two weeks in
advance. However, the quantitative relationship between the intensity of the epidemic and the possible progression of
the pandemic is still unclear, necessitating further research. This study investigates the use of WBE to rapidly monitor
the SARS-CoV-2 virus from five municipal wastewater treatment plants in Latvia and forecast cumulative COVID-19
cases two weeks in advance. For this purpose, a real-time quantitative PCR approach was used to monitor the SARS-
CoV-2 nucleocapsid 1 (N1), nucleocapsid 2 (N2), and E genes in municipal wastewater. The RNA signals in the waste-
water were compared to the reported COVID-19 cases, and the strain prevalence data of the SARS-CoV-2 virus were
identified by targeted sequencing of receptor binding domain (RBD) and furin cleavage site (FCS) regions employing
next-generation sequencing technology. The model methodology for a linear model and a random forest was designed
and carried out to ascertain the correlation between the cumulative cases, strain prevalence data, and RNA concentra-
tion in the wastewater to predict the COVID-19 outbreak and its scale. Additionally, the factors that impact the model
prediction accuracy for COVID-19 were investigated and compared between linear and random forest models. The re-
sults of cross-validated model metrics showed that the random forest model is more effective in predicting the
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cumulative COVID-19 cases two weeks in advance when strain prevalence data are included. The results from this re-
search help informWBEand public health recommendations by providing valuable insights into the impact of environ-
mental exposures on health outcomes.
1. Introduction

By 2023, the COVID-19 pandemic will have persisted for four years, and
SARS-CoV-2 will continue to be associated with a significant number of
deaths worldwide (Kumar et al., 2022; Westhaus et al., 2021). Conse-
quently, there is an urgent requirement for a surveillance tool that can ef-
fectively detect and forecast COVID-19 outbreaks at global and national
levels, with a rapid response time, broad coverage, noninvasive character-
istics, low installation costs, and are anonymous (Zhu et al., 2021a). Previ-
ous research has indicated that SARS-CoV-2 can be detected in human feces
and urine throughout the course of the infection, even in asymptomatic
cases (Medema et al., 2020). A review by Jones et al. (2020) revealed
that SARS-CoV-2 viral shedding can last and is detectable in wastewater
samples from 14 to 28 days after infection. Additionally, Ali et al. (2021)
and Yanaç et al. (2022) reported that infection with the SARS-CoV-2 virus
is associated with persistent shedding of virus RNA in feces in 27 % to
89 % of patients, at densities ranging from 0.8 to 7.5 log10 gene copies
per gram. These findings have provided a clear rationale for the use of
wastewater-based monitoring to investigate COVID-19 spread in a particu-
lar region (Ali et al., 2021; Jones et al., 2020; Wölfel et al., 2020; Yanaç
et al., 2022).

The application of thewastewater-based epidemiology (WBE) approach
provides a noninvasive and almost instantaneous detection of the SARS-
CoV-2 signal inwastewater (Choi et al., 2018). The process involves four es-
sential steps: (1) sampling of wastewater from the selected environment;
(2) analysis of wastewater for SARS-CoV-2 genomic components, which in-
cludes concentration measurements; (3) data analysis (e.g., normalization
of the concentrations of SARS-CoV-2 genomic RNA copies by factors such
as the sewage daily flow rates or population size to obtain the daily viral
loads); and (4) tracking of the signal and prediction of outbreaks
(e.g., tracing the sewer line exhibiting a positive signal back to the contrib-
uting communities) (Medema et al., 2020). In 2021, the European Commis-
sion published a recommendation for all European Union Member States,
including Latvia, to establish wastewater monitoring to track the spread
of COVID-19 and its causal agent's variants. All EU Member States have
taken prompt action, and currently, approximately 1370 wastewater treat-
ment plants across the EU are under regular surveillance, generating valu-
able data for WBE (European Commission, 2020; Gudra et al., 2022;
Proverbio et al., 2022). To date, the WBE approach has been found to facil-
itate the predetection of SARS-CoV-2-infection outbreaks by one or two
weeks at a city scale (Tiwari et al., 2021). Consequently, the WBE has
been proposed as an effective method for epidemiologic monitoring and
the creation of a reliable alert or early warning system in the detection of
viral RNA content in wastewater samples (Cao and Francis, 2021; Xu
et al., 2021). However, the quantitative relationship between the severity
of the epidemic and the phase of the pandemic is still unclear (Cheval
et al., 2020), which necessitates the use of modeling to resolve these issues
and accurately interpret the collected data (Proverbio et al., 2022).

During the past few months, the success of vaccination campaigns has
decreased the spread of SARS-CoV-2 infection cases in several countries;
however, the risk of the virus or its newer version resurgence may have re-
mained, and we may experience it when the precautionary measures and
restrictions are eased (Voigt et al., 2022). Consequently, even if active
RT–PCR or antigen testing is discontinued, WBE monitoring should still
be conducted, and the observed data should be analyzed (Faria de Moura
et al., 2021). Despite its potential, there are still experimental setup, data
processing, andmodeling procedure-related challenges that should be over-
come before the WBE monitoring can be fully applied (Hart and Halden,
2020). For instance, relatively few studies have been conducted to
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investigate which observed data from wastewater monitoring have the
most significant impact on modeling and predicting the COVID-19 out-
break in designing an early warning system (Bibby et al., 2021; le Rutte
et al., 2022; Ramos et al., 2021; Zhang et al., 2022; Zhu et al., 2021b).
Therefore, the primary objective of this study was to rapidly monitor the
SARS-CoV-2 virus in five municipal wastewater treatment plants in Latvia
through targeted surveillance via WBE and to determine if it was possible
to forecast cumulative COVID-19 cases two weeks in advance using histor-
ical data on previous two-week cumulative cases, RNA concentration data,
and strain prevalence data.

To achieve this objective, the main tasks of the study were to (i) employ
quantitative reverse transcription PCR (RT–qPCR) methodology tomonitor
SARS-CoV-2 nucleocapsid 1 (N1), nucleocapsid 2 (N2), and E gene concen-
trations in five Latvian municipal wastewater treatment plants (WWTPs);
(ii) compare SARS-CoV-2 RNA signals in municipal wastewater to reported
cases; (iii) identify SARS-CoV-2 virus variants; (iv) determine a correlation
between dominant virus variants and RNA concentrations in wastewater to
predict COVID-19 outbreaks; and (v) investigate and compare the factors
that impact the COVID-19 epidemiological model. To the best of our knowl-
edge, this is the first study that employs a generalized cross-validation-
based predictive modeling methodology on data frommultiple municipali-
ties in Latvia and identifies the most critical parameters for the creation of
predictions. The authors of this study believe that the predominant strain
variant of the SARS-CoV-2 virus might have a significantly important im-
pact on the model's ability to predict COVID-19 outbreaks, suggesting
that these factors should be considered when designing and implementing
a national monitoring system for SARS-CoV-2.

2. Material and methods

2.1. Wastewater sampling and monitoring

From July 2021 to September 2022, five relatively different municipal-
ities of Latvia were chosen for consistent monitoring of SARS-CoV-2 pres-
ence in wastewater: Liepaja (~74,000 connected inhabitants), Ventspils
(~36,000 connected inhabitants), Jurmala (~43,000 connected inhabi-
tants), Jelgava (~53,000 connected inhabitants), and Riga (~635,000 con-
nected inhabitants). A portable autosampler - P6 MINI MAXX (MAXXMess
und Probenahmetechnik GmbH, Germany), was employed to collect 24-h
time-dependent daily composite raw wastewater samples (7.2 L) at the
inlet of the WWTP. The collected samples (2 L in PET bottle) were immedi-
ately stored at 4 °C, transported to the laboratory, and processed within
24 h. Samples from each municipality were collected once or twice per
week. To estimate the total volume ofwastewater treated at theWWTPdur-
ing the sample collection time, appropriate water meter reading records
were also collected. In total, 525 longitudinal wastewater samples were in-
cluded in this study: 106 samples fromLiepaja, 101 samples fromVentspils,
105 samples from Jurmala, 106 samples from Jelgava, and 107 samples
from Riga.

2.2. Sample treatment and RNA extraction

Viral particleswere concentrated fromwastewater by PEG/NaCl precip-
itation, and RNA was subsequently extracted using the TRIzol method. In
detail, a total of 135 mL of each sample was distributed equally among
three 50mL tubes and centrifuged for 15 min at 4800×g and 4 °C to pellet
the larger particles. The supernatant was poured into a fresh 50 mL tube
containing 0.9 g of NaCl (Carl Roth, Germany) and 3.2 g of polyethylene
glycol 8000 (Carl Roth, Germany). The tubes were then incubated for



Table 2
Markermutations used to calculate the prevalence of SARS-CoV-2 variants in waste-
water samples.

SARS-CoV-2 variant Marker mutations

Delta (B.1.617.2) L452R, T478K, P681R
Omicron
(B.1.1.529)

K417N, N440K, G446S, S477N, T478K, E484A, Q493R, G496S,
Q498R, N501Y, H655Y, N679K, P681H

Omicron subvariant
BA.1

G446S, G496S

Omicron subvariant
BA.2a

D405N, R408S

Omicron subvariant
BA.4/5

L452R, F486V

a After the introduction of BA.4/5, the marker mutation for BA.2 was Q493R.
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12 h at 4 °C with gentle agitation. Viral particles were deposited on the in-
side of the tubes by centrifugation for 30 min at 10000 ×g and 4 °C. After
removing the supernatant, the inner walls of the tubes were washed with
1 mL of TRI Reagent™ Solution (Invitrogen, Lithuania), and the rest of the
RNA isolation was performed according to the manufacturer's protocol.
As the last step, the RNA was dissolved in 70 μL of nuclease-free water
(Sigma–Aldrich, United Kingdom).

2.3. PCR analysis

The RNA of SARS-CoV-2 was quantified by RT–qPCR amplification of
the nucleocapsid (N) and envelope (E) genes from the viral genome. The
E gene was targeted by the E_Sarbeco primers and E_Sarbeco_P1 probe
(Corman et al., 2020), and the N gene was targeted by the SARS-CoV-2
N1+N2 Assay Kit (Qiagen, Germany), which includes N1 and N2 primers
and probes from the CDC design (Lu et al., 2020). The total volume of the
RT–qPCR was 20 μL, and all measurements were performed in duplicate
for each sample. The reaction mixture contained 5 μL of RNA, 10 μL of
2 × Reaction Mix from the SuperScript™ III One-Step RT–PCR System
with Platinum™ Taq DNA Polymerase (Invitrogen, USA), 16 nmol of addi-
tional MgSO4, 0.5 μL of SuperScript™ III RT/Platinum™ TaqMix, and either
of the two primer and probe sets. E_Sarbeco primers and probes were used
at final concentrations of 0.4 nM and 0.2 nM, respectively. The N1+N2
Assay Kit was used at a 20× dilution. The thermal cycling conditions for
both E gene and N gene reactions were as described by Corman et al.
(2020). Serial dilutions of the synthetic RNA SARS-CoV-2 Positive RunCon-
trol (Exact Diagnostics, USA) were used to produce a standard curve.

2.4. Library construction and NGS sequencing

2.4.1. Primer design
Primers were designed specifically for the receptor-binding domain

(RBD) and furine cleavage site (FCS) of SARS-CoV-2 spike protein coding
domains. For the amplification of the RBD region, the primer pair SCoV2-
RBD-2-i5Fw and SCoV2-RBD-2-i7Rs was used, whereas for the amplifica-
tion of the FCS region, SCoV2-FCS-i5Fw and SCoV2-FCS-i7Rs were used
(Table 1).

Synthesis of cDNA and PCR amplification were carried out in one step
using a qScript One-Step XLT RT–PCR Kit (Quantabio, USA). For the reac-
tion, 0.5 μL of RNA sample was combined with 12.5 μL of 2x One-step
PCR Tough Mix, 1 μL of 25x One-step qScript XLT RT, 1.2 μL of 10 μM
primers, and 8.6 μL of nuclease-free water for a total volume of 25 μL.
The PCR was performed according to the following thermal cycling param-
eters: 50 °C for 20min, 94 °C for 3min, and 40 cycles of 94 °C for 20 s, 55 °C
for 1 min, and 72 °C for 1 min. The quantity and quality of the obtained
cDNA were determined by electrophoresis in 1.2 % agarose gel and using
the Qubit High Sensitivity dsDNA Assay kit on a Qubit Flex fluorometer
(Thermo Fisher Scientific, USA). PCR products were purified using
NucleoMag NGS Clean-Up and Size Select kit (Macherey-Nagel, Germany)
magnetic beads at a ratio of 1:0.65.

2.4.2. Library construction
During the second PCR stage, Illumina MiSeq i7 and i5 indices were

added to the RBD and FCS PCR products using custom-ordered Nextera
XT Index (Illumina Inc., USA) primers (Metabion International AG,
Germany). For this reaction, 5 ng of the cDNA amplification product was
combined with 10 μL of Phusion U Multiplex PCR master mix (Thermo
Table 1
Summary of primer pairs.

Primer Region Sequence

SCoV2-RBD-2-i5Fw RBD TCGTCGGCAGCGTCAGATGTGT
SCoV2-RBD-2-i7Rs RBD GTCTCGTGGGCTCGGAGATGTG
SCoV2-FCS-i5Fw FCS TCGTCGGCAGCGTCAGATGTGT
SCoV2-FCS-i7Rs FCS GTCTCGTGGGCTCGGAGATGTG
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Fisher Scientific), indexed primers, and nuclease-free water for a total reac-
tion volume of 20 μL. The PCR was performed according to the following
thermal cycling parameters: 98 °C for 30 s, 35 cycles of 98 °C for 10 s,
67 °C for 15 s, and 72 °C for 15 s, followed by 7 min of 72 °C. PCR products
were purified using NucleoMag NGS Clean-Up and Size Select kit magnetic
beads at a ratio of 1:0.65. The resulting libraries were quantified using the
Qubit High Sensitivity dsDNA assay kit on a Qubit Flex instrument, while
the average size in base pairs was assessed using an Agilent High Sensitivity
DNA kit on an Agilent 2100 Bioanalyzer (Agilent Technologies, USA).

2.4.3. Amplicon sequencing by Illumina MiSeq
Prior to sequencing, all samples were pooled at equal molarities and di-

luted to 6 pM. They were then paired-end sequenced using a 500-cycle
MiSeq Nano Reagent Kit v2 and an Illumina MiSeq instrument (Illumina
Inc.). Each run was expected to produce at least 2000 reads per sample.
After the sequencing run was completed, the individual sequence reads
were filtered using MiSeq Reporter software to remove low-quality se-
quences.

2.4.4. Sequencing data analysis
Sequence reads were demultiplexed using Illumina's MiSeq Reporter

Software and quality filtered using Trimmomatic v.0.39 with the leading
and trailing quality of Q20, and the first 28 nt were trimmed as they
matched the primer sequences (Bolger et al., 2014). Quality-filtered se-
quences were then aligned to the SARS-CoV-2 isolate Wuhan-Hu-1 refer-
ence sequence (NCBI Reference Sequence ID: NC_045512.2) using
bowtie2 v.2.4.5. (Langmead and Salzberg, 2012). The resulting sequence
alignment file was converted to a binary alignment (BAM) file, sorted and
indexed using samtools v.1.14. (Danecek et al., 2021). Variant calling was
performed using LoFreq v.2.1.2. (Wilm et al., 2012) - first indel qualities
were inserted into the BAM file, then variants were called using
NC_045512.2 reference by disabling all filters and setting minimum cover-
age to 1. Genetic variant annotations were assigned using the SnpEff tool-
box with the NC_045512.2 reference (Cingolani et al., 2012). The
resulting variant call format (VCF) files were filtered, and entries with a
mapping quality (QUAL) <52 were discarded. Next, VCF files were used
to calculate the prevalence of SARS-CoV-2 variants in wastewater based
on Pango lineages (O'Toole et al., 2021). Thus, Pango-defined Variants of
Concern (VOCs) were used to extract information on marker mutations
from the spike regions (Table 2) and the prevalence of SARS-CoV-2 variants
was calculated as the mean allelic frequencies of respective marker
Reference

ATAAGAGACAGNNNNNNTGTCTATGCAGATTCATTTK This study
TATAAGAGACAGNNNNNNAGTAGACTTTTTAGGTCCACAA This study
ATAAGAGACAGNNNNNNCTTCTAACCAGGTTGCTGTT This study
TATAAGAGACAGNNNNNNGTACAAAAACTGCCATATTG This study
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mutations. Acquired data were visualized using the matplotlib library
within the Python environment.

2.5. Data analysis and design of modeling methodology

A generalized cross-validation-based predictive modeling methodology
was developed and applied towastewatermonitoring data from allfivemu-
nicipalities of Latvia. For a predictive model of COVID-19 outbreak predic-
tion, observed datasets (normalized bywastewaterflow, connected number
of inhabitants at theWWTP and standardized to 100,000 inhabitants) from
wastewater monitoring were used. In Fig. 1, the conceptual scheme of the
modeling methodology for this study is presented.

Datasets from wastewater monitoring were analyzed based on the date
of conducted measurements (Fig. 1 A). Additionally, the merged dataset
was extended by adding measurements of cumulative COVID-19 cases per
100,000 inhabitants recorded during the previous two weeks acquired
from the official statistics database published by the National Centre for
Disease Prevention and Control as additional columns (Fig. 1 B). For each
cross-validation cycle (total 100), the merged dataset was randomly split
into 75% training and 25% testing data subsets (Fig. 1 C), and the selected
regression modeling algorithm was trained on the training data subset and
tested on the testing data subset (Fig. 1 D). Finally, the testing metrics (co-
efficient of determination R2 and root mean square error RMSE) were
stored for later processing, and several cross-validation cycles were created
to approve whether the model could be generalized. When cross-validation
Fig. 1. Conceptual scheme and description of the modeling methodology (created
by Biorender).
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cycles were made, the average R2, RMSE, and their standard deviations
were calculated to assess the cross-validated model quality (Fig. 1 E).

3. Results and discussion

3.1. Wastewater monitoring

Latvia was one of the countries that developed and implemented a new
approach toWBEduring thefirst stage of the COVID-19 pandemic to obtain
additional information about the spread of this viral infectious disease al-
ready in 2020 (European Commission, 2020). Based on recommendations
of the European Commission, Latvia expanded the previously developed
approach as a national monitoring program for the detection of SARS-
CoV-2 in wastewater with the purpose of monitoring spreading trends,
predicting disease outbreaks, and monitoring the appearance of novel
viral variants in a timely manner.

To gain a better understanding of the COVID-19 epidemiological
situation in Latvia, we performed both viral RNA quantification and ampli-
fication based on viral spike protein gene RBD and FCS region next-
generation sequencing. Fig. 2 presents the acquired wastewater monitoring
results from five municipalities. Here, the average concentration measure-
ments of SARS-CoV-2 viral RNA in Latvian wastewater samples are
overlaid with the reported cumulative incidence of COVID-19 (Fig. 2A) as
well as the average SARS-CoV-2 variant prevalence in the Latvian popula-
tion (Fig. 2B).

The first COVID-19 outbreak was observed in October 2021, with the
Delta variant being dominant, while the second outbreak occurred in
March 2022, when the Omicron BA.1 and BA.2 variants emerged and
outcompeted the former variant. The comparison of these two outbreaks re-
vealed considerable differences between RNA concentrations, which was
not detected in the 14-day cumulative incidence per 100,000 inhabitants,
indicating that both variants might exhibit different viral shedding rates
in feces and urine.

This is consistent with previous studies that have suggested that differ-
ent variants of the virus can have different impacts on disease severity and
transmission (Lin et al., 2021; Parra-Lucares et al., 2022).Moreover, the im-
portance of surveillance strategies for COVID-19 increased in 2021 when
the spread of Delta and Omicron variants disrupted Australia's successful
public health response to the pandemic (Duckett, 2022). Generally, track-
ing the overall changes in nucleotide diversity, variant-specific reproduc-
tion numbers and emergence of novel mutation constellations in WW
allow observation of evolutionary processes, potentially assisting under-
standing and anticipation of future shifts in circulating virus populations
(Amman et al., 2022). For instance, previous studies have found that the
Delta variant of SARS-CoV-2 was associated with higher transmission
rates compared to other previous variants (Earnest et al., 2022;
Meyerowitz and Richterman, 2022).

Overall, the results frommonitoring strongly suggest that variants have
different transmission and shedding rates, meaning that the effectiveness of
containment measures may be different for each variant. In this regard, re-
cent studies have shown that patients infected with the Omicron variant
had lower viral shedding rates compared to patients infected with the
Delta variant (Prasek et al., 2022, 2023; Puhach et al., 2023). Therefore,
the determination of SARS-CoV-2 variants might play an important role
inmodeling the possible outbreak of the virus Therefore, the determination
of SARS-CoV-2 variants might play an important role in modeling the pos-
sible outbreak of the virus (Barreiro et al., 2022; Schiøler et al., 2021). Fur-
thermore, the use of data with virus variants might allow a better
understanding of how the virus is evolving and how it is spreading,
i.e., identifying variants of SARS-CoV-2 can help to predict potential muta-
tions and prepare for their potential consequences (Otto et al., 2021). It can
also help to inform decision-makers, as different variants may require dif-
ferent precautionary measures and medical treatments and vaccines
(Corrao et al., 2022; Harvey et al., 2021). However, relatively few studies
have focused on how to use SARS-CoV-2 variants for modeling the virus
outbreak (Hinch et al., 2022; Obermeyer et al., 2022; Rui et al., 2022).



Fig. 2. The epidemiological situation of COVID-19 in Latvia according to wastewater monitoring from July 2021 to September 2022. Section A: Average concentration mea-
surements of SARS-CoV-2 viral RNA in LatvianWWs and its overlap with the reported cumulative incidence of COVID-19. Section B: Average SARS-CoV-2 variant prevalence
in the Latvian population as estimated by NGS sequencing of SARS-CoV-2 viral RNA FCS and RBD regions. Themeasurement values in both sections (A, B) are represented as
a five-value centered moving average, excluding the cumulative index.
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In this study, to identify the parameters from the national monitoring
system that would best inform the model, the design of the model was de-
veloped and tested using the data from Liepaja and Jelgava as case studies.
Liepaja was selected because it demonstrated a similar tendency in compar-
ison to the overall epidemiological situation of COVID-19 in Latvia, while
data from Jelgava were lacking in providing reliable data on average
concentration measurements of SARS-CoV-2 viral RNA (Fig. 3). This
might be explained by the fact that Jelgava is an industrial city, and mu-
nicipal wastewater has a relatively high inflow of industrial wastewater
compared to other cities in Latvia, which could potentially interfere with
PCR, leading to underestimation of viral RNA concentration (Zhang et al.,
2022).

The determination of whether it is feasible to create an accurate model
with limited data on the average concentration of SARS-CoV-2 viral RNA
will therefore also be investigated.

3.2. Design of the modeling methodology

One of the outlined tasks of this study was to investigate the feasibility
of predicting cumulative COVID-19 cases two weeks into the future based
on the previous two-week cumulative number of COVID-19 cases, RNA
concentration data, and SARS-CoV-2 strain prevalence data. Therefore,
the model generation strategy depicted in Fig. 4 was developed. In our
5

view, it was optimal because it provided both flexibility and simplicity
(Fig. 4) (Jakariya et al., 2022; Rallapalli et al., 2021).

Two regression modeling algorithms, a linear model and a random for-
est, were selected and compared in this study. Both models were chosen
based on the results of similar investigations reported in previous literature,
which demonstrated promising outcomes (Koureas et al., 2021; Speiser,
2021; Yuchi et al., 2019). By combining the results of multiple decision
trees, random forest models can providemore accurate predictions than lin-
ear models (Shanmugasundar et al., 2021). However, the main benefit of
using both models for this study is the possibility of gaining a better under-
standing of the data and making more informed decisions, i.e., each model
can provide different insights into the data (Koureas et al., 2021).

A very simple and effective method to assess input parameter impor-
tance and test the above assumption is by adding input parameters one by
one and testing if the cross-validated metrics such as R2 score improve
(Chicco et al., 2021). Therefore, for testing and validating the model gener-
ation strategy, the wastewater monitoring data from Liepāja and Jelgava
were individually selected and tested.

3.2.1. Model test for Liepaja
The testing and validation of themodelingmethodology to predict future

cumulative COVID-19 cases by relying only on prior cumulative COVID-19
cases were performed for Liepaja city. After testing only prior cumulative
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Fig. 4. Simplified schematic diagram of interchangeable components within the
developed model generation strategy (created by BioRender).
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COVID-19 cases, the RNA concentration input parameterwas added, and the
test was repeated. Finally, the SARS-CoV-2 strain prevalence input parame-
ter was included. The comparison of the test results is shown in Table 3.

The results demonstrated the improvement of cross-validatedmodelmet-
rics after the inclusion of SARS-CoV-2 strain prevalence data. The random
forest model showed relatively better results (CV-R2 = 0.80, CV-RMSE =
0.54) compared to a linear model (CV-R2 = 0.75, CV-RMSE = 0.64).

In Fig. 5, the comparison of linear and random forest model cross-
validated prediction is presented, where the random forest model demon-
strated a relatively more stable prediction for predicted cumulative cases
from September 2021 to July 2022 compared to the linear model.

3.2.2. Model test for Jelgava
The model test for Jelgava was performed using the same methodology

as for Liepaja. After testing only prior cumulative COVID-19, the RNA con-
centration input parameter was added and tested. Finally, the SARS-CoV-2
strain prevalence input parameter was included. The comparison of the test
results is shown in Table 4.

The results demonstrated that the random forest model showed rela-
tively higher cross-validated scores than the linear model (CV-R2 = 0.79
with CV-RMSE = 0.54 and CV-R2 = 0.84 with CV-RMSE = 0.48, respec-
tively). Moreover, as the data on RNA concentration were incomplete, the
results showed that the best R2 and RMSE scores were obtained with the
random forest model when the cumulative cases, available data of RNA
concentration, and strain prevalencewere analyzed by themodel compared
to the analysis only with the cumulative cases and available data of RNA
concentration (CV-R2 = 0.78 with CV-RMSE = 0.46 and CV-R2 = 0.84
with CV-RMSE = 0.48, respectively). In Fig. 6, the comparison of linear
and random forest model cross-validated prediction is presented, where
the random forest model demonstrated a relatively more stable prediction
compared to the linear model, similar to Liepaja.

Finally, the model methodology was also applied and tested with the
monitoring data from Riga, Jurmala, and Ventspils, where the results dem-
onstrated similar tendencies (see AppendixA, B, and C). Therefore, it can be
stated that this modeling methodology can be used to accurately predict
COVID-19 outbreaks two weeks in advance for all five municipalities in
this study.

Overall, the results from this study demonstrate the effectiveness of the
random forest model for predicting cumulative COVID-19 cases. This is es-
pecially true when SARS-CoV-2 strain prevalence data are included in the
model. These findings suggest that a random forest model is a valuable
tool for predicting andmanaging the spread of COVID-19 in variousmunic-
ipalities. The results from this study are in line with other research on pre-
dictive modeling for COVID-19. For instance, a study by Ando et al. (2023)
designed a mathematical model for predicting COVID-19 cases. The model
was able to successfully predict the cumulative number of newly reported
Table 3
Summary of test results for Liepaja city for 2 different regression modeling algorithms a
COVID-19 cases two weeks into the future.

Model Prior cumulative cases

Linear model CV-R2 = 0.65; std = 0.15
CV-RMSE = 0.75; std = 0.13

Random forest model CV-R2 = 0.70; std = 0.15
CV-RMSE = 0.66; std = 0.12
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cases within a factor of 2with a precision of 36–64%, and themodel without
recent clinical data was able to successfully predict the number of cases for
the following 5 days within a factor of 2 with a precision of 38–66 % (Ando
et al., 2023). However, most of the studies do not use data from virus variants
to predict the COVID-19 outbreak (Koureas et al., 2021; Speiser, 2021; Yuchi
et al., 2019). Thus, Ali AlArjan et al. (2022) concluded that mathematical
modeling accuracy might be improved by adding the data of virus variants
(AlArjani et al., 2022). Considering this information, the following stage of
our study involved the analysis of parameter importance to determine
whether the strain prevalence has an influence on the model prediction.

3.3. Analysis of parameter importance

As the highest R2 and RMSE scores were obtained with the random for-
est model when the cumulative cases, available data of RNA concentration,
and strain prevalence were analyzed by the model, in a further study, this
model was used to identify the importance of available input parameters
and to test the assumption from this study that SARS-CoV-2 strain preva-
lence data can improve the quality of predictions. After data analysis, the
random forest model reported the Gini ratio (parameter importance) for
all used input parameters. The results are presented in Fig. 7.

It was demonstrated that the highest level of parameter importance was
achievedby cumulative cases and strainprevalencedata (GiniRatio>0.05),
with only RNA concentration per day following. Consequently, these results
have confirmed the hypothesis that strain prevalence has a relatively higher
influence compared to other parameters on themodel predicting COVID-19
outbreaks.

Finally, the cross-validated model was trained on the natural logarithm
of cumulative COVID-19 cases for Latvia due to the distribution of true cu-
mulative COVID-19 cases being positively skewed and thus challenging to
model. Therefore, the model can also be used as a tool for an early warning
system by predicting the risk level at which infection spreads rapidly
(i.e., the logarithm) rather than the true number of cases. For instance,
Simkovich et al. (2021) have designed a four-level framework for assessing
the risk associated with research activities, enabling risk measures and def-
initions to be adjusted in response to new evidence that emerges regarding
virus transmission.

On the one hand, the results lead to a relatively higher mean absolute
error in predicted true case numbers, while the model predicts high natural
logarithms of cases. However, the information on risk levels is still useful
for decision-makers and epidemiologists since it can be used to predict
the level of critical care capacity needed to respond to the outbreak,
i.e., the higher the risk level, the more likely patients will require critical
care, and therefore, more critical care capacity is needed.

Overall, the use of mathematical modeling with COVID-19 data can in-
crease the knowledge of disease propagation by evaluating preventionmea-
sures as well as early and accurate detection of the disease in patients
(Mohamadou et al., 2020). In the writing of this paper, the majority of arti-
cles found regarding mathematical modeling were related to COVID-19 dy-
namics (AlArjani et al., 2022; Ramos et al., 2021; Vallejo et al., 2022; Yanaç
et al., 2022; Zhu et al., 2022). Modeling can be performed using
appropriate datasets to explore the effects of variables such as climate
and preventive measures on the spread of COVID-19, as outlined previ-
ously. Thus, simulation of the next waves of COVID-19 outbreaks will
also be beneficial to enhance surveillance. As countries start to relax social
nd 3 different subsets of input parameters used for predicting two-week cumulative

Prior cumulative cases
RNA concentration

Prior cumulative cases
RNA concentration
Strain prevalence

CV-R2 = 0.65; std = 0.12
CV-RMSE = 0.63; std = 0.08

CV-R2 = 0.75; std = 0.10
CV-RMSE = 0.64; std = 0.09

CV-R2 = 0.70; std = 0.12
CV-RMSE = 0.51; std = 0.10

CV-R2 = 0.80; std = 0.10
CV-RMSE = 0.54; std = 0.12



Fig. 5. Comparison of linear and random forest models for Liepaja.

Table 4
Summary of test results for Jelgava city for 2 different regression modeling algorithms and 3 different subsets of input parameters used for predicting two-week cumulative
COVID-19 cases two weeks into the future.

Model Prior cumulative cases Prior cumulative cases
RNA concentration

Prior cumulative cases
RNA concentration
Strain prevalence

Linear model CV-R2 = 0.81; std. = 0.08
CV-RMSE = 0.52; std. = 0.09

CV-R2 = 0.82; std. = 0.07
CV-RMSE = 0.54; std. = 0.11

CV-R2 = 0.79; std. = 0.09
CV-RMSE = 0.54; std. = 0.12

Random forest model CV-R2 = 0.81; std. = 0.07
CV-RMSE = 0.55; std. = 0.11

CV-R2 = 0.78; std. = 0.09
CV-RMSE = 0.46; std. = 0.12

CV-R2 = 0.84; std. = 0.08
CV-RMSE = 0.48; std. = 0.11
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restriction measures, it is necessary to conduct a study to estimate potential
hotspots for new outbreaks.

4. Conclusions

The presence of different variants of the SARS-CoV-2 virus can have dif-
ferent impacts on the severity and transmission of COVID-19, and this was
demonstrated in the data frommonitoring the Delta and Omicron variants.
Linearmodels and random forestmodels can both provide different insights
Fig. 6. Comparison of linear and ran
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into the data. However, the results of cross-validated model metrics from
Liepaja showed that the random forest model was more effective (CV-
R2 = 0.80 and CV-RMSE = 0.54) than the linear model (CV-R2 = 0.75
and CV-RMSE = 0.64) in predicting the cumulative COVID-19 cases
14 days in advance when strain prevalence data were included. Finally,
the results of the risk level can be used to predict the level of critical care
capacity needed to respond to the COVID-19 outbreak. Furthermore, the
study demonstrated that the highest level of parameter importance was
achieved by cumulative cases and strain prevalence data. Overall, this
dom forest models for Jelgava.



Fig. 7. The random forest model reported the Gini ratio (parameter importance) for
all input parameters used.

B. Dejus et al. Science of the Total Environment 891 (2023) 164519
study has provided valuable insights into the parameters that are important
for accurate COVID-19 prediction and can improve preparedness for future
outbreaks. Thus, further research is necessary to continue the verification of
the modeling methodology with the new variants of COVID-19 and their
changing prevalence. Additionally, it is conceivable that this approach
could be utilized for WBE's purpose of modeling and constructing early
warning systems.
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