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Abstract 

As one of the most important applications of digitalization, intelligence, and service, the digital twin (DT) breaks 
through the constraints of time, space, cost, and security on physical entities, expands and optimizes the relevant 
functions of physical entities, and enhances their application value. This phenomenon has been widely studied in 
academia and industry. In this study, the concept and definition of DT, as utilized by scholars and researchers in vari‑
ous fields of industry, are summarized. The internal association between DT and related technologies is explained. The 
four stages of DT development history are identified. The fundamentals of the technology, evaluation indexes, and 
model frameworks are reviewed. Subsequently, a conceptual ternary model of DT based on time, space, and logic is 
proposed. The technology and application status of typical DT systems are described. Finally, the current technical 
challenges of DT technology are analyzed, and directions for future development are discussed.
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Introduction
Digital twin (DT) technology is also known as digital 
avatars [1], digital masters [2], digital shadows [3], etc. 
It is a technology that accomplishes the mapping of the 
real world to the digital world and realizes the interac-
tion between them in real time. This technology over-
comes the constraints of real environmental factors. It 
can extend the relevant functions of the real world to the 
digital world and react to the real world. Currently, DTs 
are characterized by three functions [4]: (1) data fusion of 
various features of physical objects and high-fidelity real-
time mapping of physical objects; (2) coexistence and 

coevolution throughout the lifecycle of physical objects; 
and (3) description, optimization, and control of physical 
objects.

DTs originated in the United States military aerospace 
industry. They have now been extended to transporta-
tion, industrial production, intelligent education, and 
other industry sectors. They can contribute to simula-
tion, monitoring, evaluation, prediction, optimization, 
control, and other applications. As shown in Fig.  1, DT 
technology is strongly correlated with multiple technolo-
gies. DT is regarded as a key technology for realizing the 
digital transformation of enterprises and is also a hot 
technology of interest in industry and academia.

Although the concept of DT has been around for many 
years, it has not attracted much attention until the last 
few years. In 2019, academic exchange presentations 
at the “3rd Academic Conference on Digital Twin and 
Intelligent Manufacturing Services” further promoted 
the thinking of scholars in various fields on theories and 
technologies related to DTs [6]. In 2021, the first Interna-
tional Conference on Digital Twin Technology and first 
International Workshop on Model-driven Engineering 
with Digital Twin were held.
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This study analyzes and reviews the research on DT 
technology and its applications. In “The concept of 
DT” section, the definition of DT in various domains is 
presented. The relationships and differences between 
DT and other related technologies are explained. In 
“The evolution of DT” section, the four stages and 
main processes of the DT development are clarified. 
In “The technical system of DT” section, the techni-
cal basis, evaluation indices, model framework  and 
applications of the DT are introduced, whereby time, 
space, and logic model (TSL Model) of DT is pro-
posed.  Finally, the challenges and future trends are 
analyzed from the perspectives of DT technology and 
application research.

The concept of DT
DT is an emerging technology concept, which foremost 
has practical utility succeeded by concept. DT exhib-
its the typical characteristics of cross-technology fields, 
cross-system integration, and cross-industry integration. 
The technical scope of this study is wide. There is a strong 
correlation and continuity between computer-aided 
technology, simulation systems, extended reality (XR), 
metaverse, and other technologies.

Definition of DT
The concept of a DT was introduced by Grieves and Vick-
ers [7] in 2013, and since then, the definition of DT has 
proliferated, as listed in Table 1. However, the wide range 
of DT systems preclude the development of a unified 
definition for DTs [8]. Researchers have mainly defined 
DT from one or more perspectives, such as models, data, 
links, and functions.

DT was defined from a model-focused perspective in 
2012 by NASA as a multi-scale integrated simulation of 
a physical equipment or physical system that makes full 
use of virtual models, real-time sensor data, and histori-
cal data to map the entire life cycle process of the equip-
ment or system [9, 18]. Ríos et  al. [19] introduced this 
concept into the product design process and extended 
DT to the general industrial field. Han [20] summarized 
the related literature to define DT as a digital model for 
describing the full lifecycle information of physical enti-
ties, including the precise mapping relationship between 
digital voxels and physical entities. Grieves and Vickers 
[7] argued that a DT requires not only virtual mapping 
of products at the macro-geometric level but also all the 
information about actual manufactured products at the 
micro-atomic level.

Fig. 1  DT and related technologies [5]
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DT was defined from a data-focused perspective in 
2013 by Lee et  al. [10] as an approach that uses data-
driven analytical algorithms and other physical models 
to simulate the operational state of an entity. This can be 
described as a 5S system consisting of sensing, storing, 
synchronizing, synthesizing, and serving.

DT was defined from a function-focused perspective 
by Zhuang et  al. [12] who added the main functions of 
a DT to the original definition, emphasizing that the DT 
of a product must realize full-factor digital mapping of 
physical entities in virtual space, to simulate, predict, and 
control the feedback of physical entities. Nie et  al. [17] 
defined DT as a refined digital description of a product 
entity. Simulation experiments based on digital models 
can more realistically reflect the characteristics, behavior, 
formation process, and performance of physical prod-
ucts. A DT can interact with reality, by associating and 
mapping real-time collected data to identify, track, and 
monitor products. Simultaneously, the DT can predict 
and analyze the behavior of simulated objects, diagnose 
faults and issue warnings, locate and record problems, 
and achieve optimal control.

DT was defined from a linkage-focused perspec-
tive by Rosen et al. [11] who argued that a DT not only 
comprises a large collection of digital products but also 
should possess a good architecture so that all compo-
nents are linked.

To summarize the concept and understanding of the 
DT, DT is defined as a digital mapping of the physical 
world in TSL. This reflects the composition and structure 
of entities, relationship between entities and the external 
environment, and developmental process of entities in the 
digital world, thereby enabling the acquisition of the cur-
rent state of entities, prediction of subsequent changes in 
entities, and guidance in the operation of entities.

DT technology connection
DT technology is closely related to computer-aided tech-
nology, virtual simulations, XR, and metaverse technol-
ogy, which have a lot in common but also differences in 
technical focus.

The association of DT with computer‑aided technology
Computer-aided technologies include computer-aided 
design (CAD) [15, 16, 21], computer-aided engineering 
(CAE) [22], and other methods which use computers and 
graphic devices to assist designers with rapid retrieval, 
editing and processing, solution comparison, and other 
related tasks.

Computer-aided technology has many of the same tech-
nical requirements as DT technology; however, there are 
also significant differences. Both CAD/CAE and DT mod-
els are required to achieve high fidelity, reliability, and accu-
racy. CAD/CAE models can be two- or three-dimensional, 

Table 1  The definition of DT

No. Reference Year DT definition

1 [9] 2012 DT is a multi-scale integrated simulation of a physical equipment or system that makes full use of virtual models, real-time sen‑
sor data, and historical data on the equipment or system to map the entire life cycle of the process

2 [8] 2012 DT models need to meet the requirements of the system and subsystems throughout their life cycle, enabling the assessment 
of the vehicle’s mission accomplishment capabilities

3 [10] 2013 DT is an approach that uses data-driven analytical algorithms and other physical models to simulate the operational state of an 
entity, which can be described as a 5S system consisting of sensing, storing, synchronizing, synthesizing, and serving

4 [11] 2015 DT comprises a large collection of digital products, requiring a good architecture to link all components

5 [7] 2017 DT requires not only virtual mapping of products at the macro-geometric level, but also all the information about the actual 
manufactured products at the micro-atomic level

6 [12] 2017 DT of a product needs to realize the full-factor digital mapping of physical entities in virtual space, to simulate, predict, and 
control the feedback of physical entities

7 [13] 2018 DT is a real time mapping of physical, virtual, and interaction data in the entire life cycle of a physical entity

8 [14] 2018 DT is an all-encompassing digital representation of a product that simulates the properties, conditions, and behavior of an 
actual physical object through data and models

9 [15] 2019 DT is a dynamic virtual model that digitally builds multi-dimensional, multi-physical entities of multi-temporal scale to reflect 
the properties and behaviors of the real environment

10 [16] 2019 DT is a simulation process that integrates multiple physical quantities and scales in the entire life cycle of physical equipment, 
using physical models, real-time sensor data, operational history data, etc., to build models in virtual space to complete the 
mapping

11 [17] 2022 The twin is a refined digital description of the product entity. Simulation experiments based on digital models can more real‑
istically reflect the characteristics, behavior, formation process, and performance of physical products. The real-time collected 
data are associated and mapped onto the DT to identify, track, and monitor the product. The DT can predict and analyze the 
behavior of simulated objects, diagnose faults and issue warnings, locate and record problems, and achieve optimal control
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whereas DT models must be three-dimensional. CAD/CAE 
models are usually static and limited to a certain process 
of the project, whereas DT models are used throughout 
the system life cycle. CAD/CAE models are used to verify 
product performance, simulate manufacturing processes, 
and validate design feasibility without interaction, whereas 
DT models are interactive in terms of data feedback and 
control and are useful for enhancing the traditional product 
design and development process.

Association of DT with virtual simulation technology
Virtual simulation technology [23–26] is a computer 
system for creating and experiencing a virtual world. A 
virtual simulation can be either a replication of the real 
world or a separate concept of the real world.

Virtual simulation is one of the core technologies of 
DT but is fundamentally different from DT. Simulation 
technologies partially reproduce the real world offline, 
primarily during the research and design stages. They 
usually do not perform analyses or optimization func-
tions. However, DT reflects the state changes of physical 
objects in real time and can be used to analyze and pre-
dict the decision optimization function of physical enti-
ties. Simulation technology relies on models and data to 
map the properties and parameters of the physical world. 
DT must sense, diagnose, and predict the state of physi-
cal entities in real time to optimize them.

Association of DT with XR
XR [27, 28] is a human-computer interaction-based vir-
tual reality (VR) environment generated by computer 
technology and wearable devices. XR is a generic term for 
VR [29, 30], augmented reality (AR) [31, 32], and mixed 
reality [33]. VR is the simulation of a completely virtual 
digital world using devices, such as VR eyes and game-
pads, which provide users with both visual and auditory 
sensory experiences. AR is an integrated technology that 
combines real-world and virtual-scenes. By implanting 
specific images or information from the real world into a 

program, and by upgrading, supplementing, and render-
ing the content, the information processed by the com-
puter is used to simulate a specific scene and overlaid 
onto the real-world image.

XR improves user experience through the integration 
of virtual and real environments, whereas DT is accom-
panied by the entire life cycle of the process, thereby 
focusing on the development and change of entities, to 
close the loop with reality.

Association of DT with metaverse
The concept of metaverse [34] is not yet universally 
defined although interest in metaverse exploded in 
2021, which is generally considered to be the first year of 
metaverse research. Metaverse is an emerging cross-cut-
ting field involving philosophy, economics, management, 
education, and computer science, among others [35–37].

The participants in the metaverse group are real people 
with dynamics, highly civilized, and socially interactive. 
The objects of the metaverse are digital simulations of real 
objects as well as special objects with no real counterpart. 
A DT is a simulation of the entire life cycle of develop-
ment, focusing on virtual-real interactions, where each 
digital object has a corresponding objective counterpart.

Therefore, DT technology is closely related to the above 
four closely related areas that complement each other.

The evolution of DT
DT originated in the aerospace industry. With the devel-
opment of new generation information technology, DT 
has experienced four developmental stages: technology 
exploration, concept formulation, application germina-
tion, and industry penetration (Fig. 2).

Technology exploration stage
The initial development of twin technology involved 
building twins of physical entities to evaluate, diag-
nose, and predict physical entities. In 1970, after NASA 
launched Apollo 13, the spacecraft experienced severe 
malfunction. For a successful rescue operation, physical 

Fig. 2  The evolution of DT
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replication systems were created on the ground to match 
the spacecraft, and to train astronauts and mission con-
trollers for each mission scenario [38]. However, this 
approach has three main shortcomings: (1) Physical 
entities are strictly unique. Therefore, complete consist-
ency between physical entities and physical twins can-
not be guaranteed; (2) Creating twins of physical entities 
is costly, incurring high trial and error cost for physical 
twins; and (3) The real-time interaction between physical 
entities and twins is poor. Therefore, a rapid response to 
state changes of physical entities cannot be achieved.

With the development of computers and related tech-
nologies, researchers attempted to build digital virtual 
entities to improve the performance of physical entities 
through feedback. In 1970, NASA built a semi-DT system 
for the Apollo program to train personnel and trouble-
shoot for space exploration. During the training process, 
the mission console and cockpit were physical entities 
replicated from the spacecraft, whereas the command 
module, lunar module, and other equipment were digital 
virtual objects created by multiple computer simulations. 
Although the system could not be fully digitized because 
of the limitations of technology at that time, this is still 
considered the earliest application of DTs [39] despite the 
fact that DT technology was not widely used at the time.

Concept formulation stage
The concept of DT was first introduced by Professor 
Grieves at the University of Michigan. His concept of DT 
and the corresponding model were important in leading 
the development of this technology.

In 2002, Professor Grieves proposed the creation of 
physical products, virtual products, and a data interface 
between them. This is a vision of DT in the context of 
product life cycle management. In 2003, Professor Grieves 
proposed the concept of a virtual digital representation 
equivalent to the physical product [7]. In the period from 

2003 to 2005, Professor Grieves referred to this vision 
as “Mirrored Spaced Model” [40]. From 2006 to 2010, 
“Information Mirroring Model” [41] was used to describe 
this vision; however, it was not until 2011 that Professor 
Grieves and NASA expert John Vickers co-named digital 
twin. The two researchers proposed a DT 3D model that 
combined real space, virtual space, and the data flow con-
nection between them, considering the actual situation at 
the time [42]. Although Professor Grieves actively explored 
DTs and related technologies, few researchers focused on 
DT-related technologies because of the limitations of the 
internet of things (IoT) and data processing technologies 
at that time, limiting wide implementation and use.

Application germination stage
DT technology applications have emerged in industry 
since 2010. As shown in Fig. 3, typical industrial applica-
tions are primarily in system operations, entity manage-
ment, and manufacturing.

The first application of DT was in operational control 
of aviation systems. In 2010, the United States military 
implemented digital companion flights for F35 based 
on DT technology, to reduce aircraft maintenance and 
utilization costs. In 2011, the United States Air Force 
Research Laboratory introduced DT technology for 
aircraft health control and achieved significant results 
[9, 43]. In 2015, General Electric built a twin model for 
passenger aircraft engines to enable real-time monitor-
ing and predictive maintenance.

The second application of DT involved the physical 
management of large installations. In 2017, General Elec-
tric used DT technology to achieve virtual inspection and 
simulation of equipment and processes for better man-
agement of entities, such as power plants and turbine 
engines. In the same year, Siemens AG integrated DTs 
into management of assets, product lifecycle, and man-
ufacturing processes on top of the industrial Internet to 

Fig. 3  DT applications. a Digital companion flight; b Digital factory
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achieve closed-loop optimization and scheduling of mul-
tiple DT systems.

The third application of DT was for the interaction 
design of complex device manufacturing. In 2017, Das-
sault used DT technology to enable product interaction 
design, testing, and optimization, allowing designers and 
customers to predict the effects of products before they 
are created, thereby improving the products based on 
digital objects [44, 45].

DT technology is rapidly developing in industrial man-
ufacturing, driven by NASA and companies such as Gen-
eral Electric, Siemens AG, and Dassault.

Industry penetration stage
With the further development of computer and network 
technologies, the application of DT has been gradually 
extended to various industries with published research 
results. Gartner Consulting listed it as one of the top 
10 strategic technologies for 2017–2019. Concurrently, 
national policies, industrial applications, and standardi-
zation related to DTs emerged (Fig. 4).

In terms of national policies, the United States has 
adopted DT as the core carrier for the implementation 
of the industrial Internet, focusing on applications in the 
military and large equipment sectors. Germany promotes 
asset management shells under Industry 4.0 architec-
ture, focusing on the digitalization of manufacturing and 
city management. The United Kingdom has established 
the Digital Construction UK Centre, targeting DT cities 

and creating national twins. In 2020, the United States 
Industrial Internet Consortium and Germany’s Industry 
4.0 platform jointly released a white paper on DTs, incor-
porating DTs into the industrial IoT technology system. 
Since 2019, the Chinese government has issued several 
relevant documents to promote the development of DT 
technology. The 14th Five-Year Plan explicitly states that 
DT technology must be developed to realize the con-
struction of digital China. DT technology has been listed 
as one of the top ten technological advances in smart 
manufacturing [46].

In industry, Microsoft partnered with Ansys to extend 
the DT function module to the Azure IoT platform. Sie-
mens built a complete DT solution system based on an 
industrial Internet platform that incorporated main-
stream products and systems. Ansys relies on DT tech-
nology to model the entire life cycle of complex product 
objects, along with simulation analysis to open up data 
flow from product design and development to produc-
tion. Alibaba aggregated multi-dimensional data from 
cities to build a “city brain” intelligent twin platform, pro-
viding an integrated solution for smart parks, which was 
implemented in the Xiaoshan District, Hangzhou. HUA-
WEI released the Wotu digital twin platform to create a 
digital innovation model for urban scenarios and busi-
nesses empowered by 5G + AI.

In terms of standardization, to promote the construc-
tion of DT standards and initiate proof-of-concept pro-
jects, international standardization organizations such 

Fig. 4  Policy support and industry penetration of DT
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as ISO, IEEE, IEC, and ITU have established technical 
committees and working groups. To better promote the 
international standardization of DTs, WG15 of ISO/
TC184/SC4 developed and validated a framework series 
of standards for manufacturing-oriented DT systems. In 
2020, ISO/IECJTC1 established the WG6 Digital Twin 
Working Group. At about the same time, the Alliance for 
Industrial Internet established an ad hoc group on DTs.

The technical system of DT
Based on an analysis of the development history and con-
cepts of DTs, it was determined that DT displays four 
typical technical features: virtual-real mapping, real-time 
synchronization, symbiotic evolution, and closed-loop 
optimization. Researchers have actively explored vari-
ous fields to implement DT systems for different types of 
tasks.

DT technology fundamentals
Data acquisition and transmission technology
A DT is a real-time dynamic surreal mapping of a physi-
cal entity system. Real-time data acquisition, transmis-
sion, and updating, play crucial roles in DTs. Numerous 
distributed high-precision sensors of various types are 
at the forefront of the entire twin system and play a fun-
damental sensory role in the entire twin system. The 
distribution of sensors and the construction of sensor 
networks are based on the principles of fast speed, safety, 
and accuracy, whereby distributed sensors are used to 
collect various types of physical quantity information on 
the system to characterize the system state [47].

The more accurate the data returned by the sensors, 
the better is the simulation of the DT system resulting 
in more accurate simulation states and effects. DT inter-
action is a multi-dimensional and multi-timescale cou-
pling process with the ultimate goal of controlling reality 
through the virtual environment. However, differences in 
coding formats between multiple-source sensors, make 
it difficult to avoid data errors in the process of mutual 
fusion.

Presently, the specific difficulty of data acquisition in 
DT systems is that the type of sensor, accuracy, reliabil-
ity, and working environment are limited by the current 
level of technological development, consequently lim-
iting data collection methods. The key factors in data 
transmission are real-time speed and security. However, 
network transmission equipment and network structures 
are limited by the current level of technology, which can-
not meet the higher level of transmission rates. Atten-
tion should also be paid to network security in practical 
applications.

Lifecycle data management
The entire data storage and management of complex 
systems provide an important support to DT systems. 
Cloud servers for the distributed management of mas-
sive system operational data enable high-speed data 
acceptance and secure redundant backup, providing 
sufficient and reliable data sources for intelligent data 
analysis algorithms, which play an important role in 
maintaining the operation of the entire DT system [48]. 
By storing the entire lifecycle data of the system, suf-
ficient information can be provided for data analysis 
and presentation, enabling the system to perform the 
functions of historical state playback, structural health 
degradation analysis, and intelligent analysis of any his-
torical moment. The large amount of historical data 
also provide rich sample information for data mining, 
which can be used to obtain many unknown but poten-
tially valuable pieces of information on the data analy-
sis results, with a deeper understanding and cognition 
of system mechanisms and data characteristics, to real-
ize the surreal properties of DTs.

The implementation of full lifecycle data storage and 
management require distributed storage with the help 
of servers. Because DT systems require large amounts 
of real-time data, optimizing the data distribution 
architecture should be the main task, to ensure real-
time and reliable data reading performance of stor-
age and retrieval methods, which is a challenge in DT 
system applications. Considering the data security 
of industries and information protection in terms of 
equipment, building a data center or data management 
system with a secure private cloud as the core is cur-
rently a more feasible technical solution.

High‑performance computing
The implementation of the complex functions of a DT 
system relies heavily on the computing platform. Real-
time performance is an important indicator of the 
performance of DT systems. Optimizing the data and 
algorithm structures to improve the task execution 
speed of the system is important in ensuring the real-
time performance of the system. In DT applications, 
it is important to consider the comprehensive perfor-
mance of the system computing platform, the time delay 
of the data transmission network, the computing capac-
ity of the cloud computing platform, and the design of 
an optimal system computing architecture that satisfy 
the real-time analysis and computing requirements of 
the system. The level of the digital computing capabil-
ity of the platform directly determines the overall per-
formance of the system and undoubtedly the computing 
foundation of the entire system.
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Virtual modeling and simulation technology
High-fidelity virtual modeling technology is the ‘soul’ of 
DTs. A dynamic simulation reflects the fact that DT is a 
dynamic process that spans the entire product lifecycle. 
The high-fidelity virtual modeling and dynamic simula-
tions of a DT are designed to restore the various geomet-
ric rules and physical properties of relative entities in the 
computer as much as possible.

For high-fidelity virtual modeling and dynamic simula-
tion, first, the fusion of multi-domain, multi-dimensional, 
multi-timescale, and high-precision model data are 
required. Second, the system must be able to monitor the 
simulation process in real time and obtain feedback data 
for complete self-update and optimization. Multidomain 
modeling is another important aspect that refers to the 
cross-domain fusion modeling of physical systems from 
different domain perspectives under normal and abnor-
mal operating conditions. Multidomain modeling imple-
mentation starts with the initial conceptual design stage 
to understand and model the fusion design at a deep 
mechanistic level [49].

Most current modeling approaches involve model 
development and maturation in specific domains. Inte-
gration and data fusion methods are then used at a 
later stage to fuse the independent models from differ-
ent domains into a comprehensive system-level model. 
However, this fusion approach does not have sufficient 
depth of integration and lacks reasonable explanation, 
limiting the ability to deeply fuse models from different 
domains. The difficulty of multi-domain fusion modeling 
is that the fusion of multiple characteristics leads to a 
large degree of freedom in the system equations, whereas 
the data collected by sensors require a high degree of 
consistency with actual system data to ensure dynamic 
updating of the model based on high-precision sensing 
measurements.

Other key technologies
A DT system is characterized by numerous parameters, 
large data redundancy, and unavoidable and compli-
cated types of noise. These parameters are characterized 
by strong coupling, nonlinearity, and time variation that 
directly affect the quality of the data, which is the key for 
building DT models. Therefore, there is an urgent need to 
develop efficient big-data processing techniques.

Visualization techniques for DT systems are regarded 
as the most effective means of understanding useful 
information for making decisions, which are of consider-
able importance in building a DT system. It is difficult for 
traditional visualization methods to directly deal with the 
explosive growth of big data to express the meaning and 
value hidden in the data in a timely and effective manner.

Artificial intelligence techniques drive the develop-
ment of DT technologies. Considering the essential dif-
ferences between commercial and industrial big data, 
intelligent aspects, such as abnormal or fault state simu-
lation and injection should be considered in the quantita-
tive analysis of industrial data for enhanced deep learning 
with little or no samples. All of these aspects are current 
research features or challenges in data generation, data 
analysis, and modeling.

DT evaluation index
With the development of DT technology, DT models 
have become more diverse, placing greater demand on 
the transparency of DT model performance. The main 
problem, however, is the lack of systematic evaluation 
theories and methods to guide the construction and veri-
fication, operation and management, reconfiguration and 
optimization, migration and reuse, as well as circulation 
and delivery of DT models. This problem makes it dif-
ficult to analyze and quantify the quality, performance, 
applicability, symbiosis, adaptability, and value of DT 
models, seriously hindering the in-depth promotion and 
application of DTs.

Zhang and Tao [50] following the principles of scienti-
ficity, generality, comparability, and operability, proposed 
a quantifiable and targeted construction of an evaluation 
index system. The effectiveness, generality, efficiency, 
intuitiveness, connectivity, wholeness, flexibility, and 
intelligence of the DT model were established as evalu-
ation criteria. The evaluation index system consisted of 
one total index, eight secondary indices, and 29 tertiary 
indices, as shown in Fig. 5.

Tao et al. [51] statistically analyzed existing theoretical 
research and application practices related to DTs. DTs are 
classified into the following six categories on their func-
tions and uses: (1) DT-based physical entity design veri-
fication and equivalence analysis, (2) DT-based physical 
entity operation process visualization and monitoring, (3) 
DT-based physical entity remote operation and mainte-
nance control, (4) DT-based diagnosis and prediction, (5) 
DT-based intelligent decision-making and optimization, 
and (6) DT-based physical entity entire life cycle tracking, 
retracing, and management. By analyzing the common-
alities of the aforementioned types of DT research and 
applications, DTs are classified into six maturity levels on 
the functional services they provide according to the dif-
ferent connection interaction methods and automation 
degrees (Fig. 6).

Zhang et  al. [52] proposed a consistency evaluation 
method for DT shop models, considering the two main 
stages of before and after model assembly and model 
fusion. Before model assembly and fusion, consistency 
evaluation methods are discussed for geometric, physical, 
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Fig. 5  DT model evaluation index system [50]

Fig. 6  Maturity evaluation of DT robots [51]
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behavioral, and rule models. After model assembly and 
fusion, the study indicates how to determine whether the 
introduced relations are correct and accurate. A compre-
hensive evaluation of DT shop model is performed using 
hierarchical analysis (Fig. 7).

DT model framework
DT framework research began in 2015. Kraft [53] pro-
posed a DT analysis framework for the United States Air 
Force, providing engineering analysis capabilities and 
decision making support throughout the lifecycle of an 
air vehicle. A DT merges physical modeling and experi-
mental data to generate an authoritative digital repre-
sentation of the system at each stage of weapon system 
equipment and operation. Qi et  al. [54] illustrated and 
highlighted a framework for a DT in manufacturing ser-
vice by examining how manufacturers use various com-
ponents of DTs in the form of services. Malik and Bilberg 
[55] proposed a framework to support a DT framework 
for human-machine co-design and build control. Xiao 
et  al. [56] proposed and explored modeling concepts, 
methodological ideas, and theoretical frameworks based 

on DT systems for strategic enterprise scenarios based on 
smart manufacturing.

The Beijing University of Aeronautics and Astronau-
tics digital twin research team created a five-dimensional 
DT model [13, 57–63] based on Professor Grieves’ three-
dimensional model [42]. The five-dimensional DT model 
is expressed in Eq. 1:

where PE refers to the real physical entity; VE refers to 
the virtual equipment created using a computer; Ss refers 
to the services provided by the DT; DD refers to the data 
collected by various types of sensors; and CN refers to 
the connection between the components (Fig. 8).

The MDT is a generic reference architecture for differ-
ent applications in different domains. Xu [64] applied 
a five-dimensional model to the proposed edge-com-
puting-based dynamic scheduling model (ECDTJ-DC 
model) of a DT workshop manufacturing process, along 
with a data collection and analysis model and dynamic 
scheduling knowledge model, both based on ECDTJ-DC 
for a DT workshop. Tao et al. [13] used a DT framework 

(1)MDT = (PE,VE, Ss,DD,CN )

Fig. 7  The consistency evaluation method for multi-dimension models
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to understand degradation and anomalous events, to pre-
dict unknown events in advance. Thus, services related to 
complex products are provided to users and manufactur-
ers, including services in the nine categories (Fig. 9).

The TSL ternary model of DT is proposed on the cur-
rent analysis and practical requirements (Fig.  10). The 
model uses the concept of DT theoretical framework on 
TSL model.

where T refers to the time element reflecting the entire 
lifecycle of the development of the object, including 
white, grey, and black data at different time points; S 
refers to the spatial element, reflecting the composition 

(2)DT = (T , S, L)

and structure of the object, including the geometric 
structure and its positional relationship model; L refers 
to the logical element reflecting the relationship between 
the object and the external environment, including the 
mechanism and rule models set by the user according to 
needs and experience; (T, S) refers to the combination of 
space and time, reflecting the movement of objects; (T, L) 
refers to the logic and time that reflects the evolution of 
objects; (S, L) refers to the space and logic reflecting the 
way objects exist.

The purpose of DT is to obtain the current state of the 
system, predict subsequent changes of the system, and 
guide its operation. Depending on the purpose of the 
DT, six functions can be derived: (1) Simulation: virtual 

Fig. 8  The five-dimensional DT model [42]

Fig. 9  Services related to complex products [13]
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testing, virtual verification, and operation preview; (2) 
Monitoring: operation monitoring, status monitor-
ing, and fault diagnosis; (3) Evaluation: performance 
and status evaluation; (4) Prediction: quality, fault, 

performance, and life prediction; (5) Optimization: 
design, configuration, performance, and process optimi-
zation; and (6) Control: operation, remote, and coopera-
tive control.

Fig. 10  The TSL model of DT
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The five-dimensional DT model was derived in a DT 
workshop and gradually extended to other fields of appli-
cation. This provides a common reference model for 
application support of DTs in different fields. However, 
this model lacks the classification and elaboration of 
model types and cannot reflect changes in models over 
time. The TSL ternary model is a virtual model derived 
from the spatial model of a real object, such as the geo-
metric structure and positional relationship, and logical 
model, such as the mechanism and rules. The TSL ter-
nary model emphasizes the time-varying property of the 
model to make it more consistent with the actual situa-
tion so that the physical world can be fully portrayed in 
the digital world.

Case: DT iron‑making blast furnace
Blast furnace smelting is an important process in steel 
production. The interior of the blast furnace consists of 
four phases: gas, powder, liquid and solid. Coupled with 
complex heat, mass, and chemical reactions, the blast 
furnace is recognized as one of the most complex metal-
lurgical reactors. The operation status of the blast furnace 
plays an important role in an enterprise’s safe production, 
cost reduction, and efficiency. In the field of blast fur-
nace smelting, many challenges remain: (1) Establishing 
a high-precision DT of the complex interior of a blast 
furnace based on the ternary expression of mechanism, 
data-driven, and geometric models; (2) Establishing a 
library of industrial boiler DT instances for the large blast 
furnace structure with numerous sensors and a large 
amount of historical operation data; and (3) Visualization 
of blast furnace status monitoring and improvement in 
real-time interaction.

The authors applied a new generation of informa-
tion technology to build a DT model of an iron-making 
blast furnace on a steel company project (Fig. 11). The 
space-model was modeled on an equal scale by scien-
tific calculations in strict accordance with the design 
drawings and on-site field mapping. In the logic-model, 
heat transfer, mass transfer, chemical reaction, and rule 
models of coke, coal, and fuel ratios in the steel smelt-
ing process are established. In the time-model, white, 
grey, and black data at different time nodes are saved. 
The DT realizes several functions, such as simulation 
of steel smelting, operation monitoring of steel smelt-
ing, state evaluation of blast furnace, prediction of 
steel smelting quality, configuration optimization of 
smelting raw materials, and collaborative control in the 
smelting process.

DT application system
Currently, DT technology is widely used in aero-
space, bridge construction, transportation, healthcare, 

intelligent manufacturing, human-machine collabora-
tion, metal smelting, physical networks, energy, power, 
as well as training and education industries.

Yang et al. [65] classified the service types of DT sys-
tems into three categories: equipment/component, pro-
duction line/process, and factory/city. The architecture 
of DT system can also be classified into unit-level, sys-
tem-level, and system-of-systems level. A unit-level DT 
system is built based on manufacturing units, including 
virtual manufacturing objects and resources. A system-
level DT system is built by combining multiple manu-
facturing units through a communication network. A 
system-of-systems level is built by connecting system-
level and unit-level DT manufacturing systems through 
an intelligent platform.

Considering the focus of application requirements, a 
DT is classified according to the scope covered by the 
DT object into three categories: unit-level, process-
level, and system-level DTs (Table 2).

Unit‑level DT
The unit-level DT is designed for individual parts and 
products. Users create their DT to perform virtual test-
ing and performance prediction to improve the safety 
and reliability of the equipment. Unit-level DTs are typ-
ically used in the following applications:

Aerospace  Tuegel et al. [43] retested aircraft structural 
life prediction to take advantage of high performance 
numerical computation. A conceptual DT model for air-
craft structural life prediction and structural integrity 
verification was proposed. Li et al. [66] predicted and vis-
ualized fatigue crack extension by establishing a diagnos-
tic and prognostic probabilistic model for aircraft wings. 
Bayer et al. [67] developed a metamodeling approach for 
dynamic systems, producing models that could be used 
for fast stochastic analyses and dynamic real-time experi-
ments. Millwater et  al. [68] performed a fracture prob-
ability treatment of critical component locations for the 
reliability, safety, and economy of the fuselage DT and its 
practical equivalents.

Bridge construction  Omer et al. [69] proposed a bridge-
inspection method. The bridges were digitized using 
LiDAR. A case study involving a typical masonry bridge 
was evaluated using VR. Shim et al. [70] proposed a new 
generation of bridge preventive maintenance systems. A 
DT model was used for more reliable decision making. A 
3D information model-based maintenance information 
management system was combined with a digital inspec-
tion system using image processing, by continuously 
exchanging and updating the data from each stakeholder.
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Transportation  Venkatesan et al. [71] created an intel-
ligent DT using the MATLAB/Simulink software, which 
was previously used for health monitoring and prog-
nostic analysis of electric vehicle motors. Shcherba et al. 

[72] applied a DT to vehicle crash detection. The dam-
age-theory-based GISSMO failure description method 
was applied to the entire vehicle model, obtaining a good 
correlation with full-scale crash tests at high strain rates. 

Fig. 11  DT blast furnace based on TSL model
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Korostelkin et al. [73] developed a DT body to reduce the 
cost of off-road vehicle body-quality inspection. Local 
and overall body stiffness, strength constraints, and crash 
safety requirements were considered.

Healthcare  DT and healthcare have been combined to 
provide a new and efficient healthcare delivery method. 
However, achieving personal health management for 
the entire life cycle of patients and integrating the physi-
cal world of healthcare with the virtual world to achieve 
truly intelligent healthcare remain the two key challenges 
in the era of precision medicine. Liu et al. [74] proposed 
a novel, generic, and scalable framework for a DT-based 
cloud health system to monitor, diagnose, and predict all 
aspects of an individual’s health. Pizzolato et al. [75] dis-
cussed the integration of real-time neuromusculoskeletal 
system models with finite elements of musculoskeletal 
tissues. In this study, a model of the neuromusculoskele-
tal system was developed to optimize muscle stimulation 
patterns, track functional improvements, monitor safety, 
and provide enhanced feedback during exercise-based 
rehabilitation.

Process‑level DT
Process-level DT systems involve the development 
of processes consisting of multiple parts or products. 
Users create DTs and use DT models for simulation and 

control to improve performance, such as controllability 
and visualization. Process-level DTs are typically used 
in the following applications:

Intelligent manufacturing  The manufacturing industry 
has moved away from purely physical-mechanical process-
ing and entered an era of interaction and iteration between 
physical and digital worlds [76, 77]. Therefore, integra-
tion of the physical and digital manufacturing spaces is 
required. The development of DT technology facilitates 
the realization of this goal [12, 78]. Liu et  al. [79] used a 
DT for marine diesel engine production process evalua-
tion to improve product quality and shorten the develop-
ment cycle. Three core technologies were developed: a 
real-time mapping mechanism between data collected in 
machining and process design information, construction 
of a DT-based machining process evaluation framework, 
and process evaluation driven by DT data. Rauch and Pie-
trzyk [80] introduced DTs into the manufacturing process 
of high-strength steel strips. A virtual rolling line consist-
ing of basic equipment, such as a heating furnace, descaling 
machine, rolling stand, laminar flow cooling, and coiler was 
designed. Yerra and Pilla [81] proposed a new assembly line 
layout using virtual factory simulation tools to break down 
the traditional automotive manufacturing process and lay-
out. Based on a DT, Dong et al. [82] proposed a relational 
functional model for a hierarchical functional backtracking 
product redesign method.

Table 2  Status of research on DT application systems

Hierarchy of 
application 
system

Application areas of the system Reference Function of the application system

Unit-level DT Aerospace [43, 66–68] Life prediction
Damage prediction

Bridge construction [69, 70] Building structural health monitoring
Life prediction

Transportation [71–73] Virtual testing
Vehicle health monitoring

Healthcare [74, 75] Surgical or medical simulation

Process-level DT Intelligent manufacturing [12, 76–82] Production process simulation
Diagnosis of machine faults
Monitoring and forecasting of production tools or machines

Human-machine collaboration [55, 83–87] Optimization of industrial human–machine collaboration

Metal smelting [88, 89] Production process simulation

Physical networks [90–92] Implementation of Industry 4.0, IoT and cyber-physical production systems

System-level DT Smart factory [93–97] Improving the efficiency of shop floor manufacturing equipment
Optimizing production planning and resource allocation
Operational monitoring and troubleshooting

Training and education [98–101] Optimizing distance learning or online teaching

Energy and power [58, 102–106] Optimizing production planning and resource allocation
Operational monitoring and troubleshooting

Intelligent transportation [107] Increasing traffic condition awareness to aid driving decisions
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Human‑machine collaboration  Oyekan et  al. [83] 
investigated the effectiveness of using virtual environ-
ments to develop human-robot collaboration strategies 
in response to the unpredictability of accidents during 
human-robot collaboration. Malik and Bilberg [55] pro-
posed a DT framework to support the design, construc-
tion, and control of human-robot collaboration. Bilberg 
and Malik [84] designed a DT of a flexible assembly cell 
to enable robots to collaborate in assembly tasks. Hu [85] 
developed a DT with real-time interactive information 
gain and visualization templates through bidirectional 
data flow and real-time optimization to reduce the uncer-
tainty of the sensory-motor processes. Lee et  al. [86] 
developed and tested a DT deep reinforcement learning 
(DRL) method to explore the potential of DRL for adap-
tive task assignments in robotic construction environ-
ments. Li et al. [87] proposed a DT-based safety control 
framework and corresponding control methods to test 
and analyze potential safety hazards.

Metal smelting  Gupta and Basu [88] used a DT to 
continuously generate new data to gain insight into alu-
minum smelter performance, predict potential chal-
lenges, suggest operational remedies, and generate pro-
cess controls. Llamas et al. [89] used simulation models 
for Zn production to evaluate material recovery, resource 
consumption, and environmental impacts of different 
processing routes.

Physical networks  Dai and Burns [90] proposed an 
online adaptive approach based on a DT for long-lived, 
uninterrupted cyber-physical system reliability problems. 
A DT model and historical data were used to achieve 
real-time tuning. Arafsha et al. [91] created a DT of phys-
ical devices, mirroring their attributes and sensory infor-
mation in the cyber world for real-time analysis. Dong 
et  al. [92] used the DT of a real web environment for 
offline training on a central server to optimize user asso-
ciation and complete resource allocation.

System‑level DT
System-level DTs cover the complete process of exist-
ence and development of entities. Users create their DT 
and use it for simulation, prediction, and scheduling to 
improve the controllability and visualization of the twin 
system. Process-level DTs are typically used in the fol-
lowing applications:

Smart factories  Söderberg et  al. [93] investigated the 
application of DTs for product development and pro-
duction engineering. The control and optimization of 
the production process were achieved using a real-time 

simulation. Sierla et al. [94] used a DT to develop assem-
bly plans and coordinate production resources. Fang et al. 
[95] proposed a new method for job shop scheduling 
based on a DT to achieve real-time and accurate schedul-
ing. Longo et al. [96] used DT technology to control the 
production cost and process quality of manufacturing 
systems. Zhang et al. [97] proposed a dynamic resource-
allocation model for a DT-driven smart shop to achieve 
real-time data collection and dynamic simulation.

Training and education  DT technology provides users 
with new experiences that are impossible to realize in the 
real world. Nikolaev et al. [98] created a DT for real prod-
ucts. Innovative product design courses based on real-
world case studies have also been developed. Kim et  al. 
[99] used DT technology to integrate the real world into 
VR, and realized efficient teaching and learning based on 
VR on a mobile platform. Toivonen et al. [100] created a 
generic learning environment for flexible manufacturing 
systems that allowed students to familiarize themselves 
with fully automated production systems, developing and 
testing programs in a virtual environment. Verner et  al. 
[101] proposed a connected environment that integrates 
robots, DTs, and virtual sensors.

Energy power  Tao et al. [58] used DT technology to pre-
dict and manage the health of a wind turbine. Biglarbe-
gian [102] completed reliability sensing of GaN devices 
in high-frequency power converters using a DT. Zhou 
et al. [103] completed the online analysis of a power grid 
for the development of a new real-time online power 
grid analysis system. Zhou et al. [104] established a real-
time online analysis platform based on DT technology 
to shorten the online analysis cycle of power grids. He 
et al. [105] verified the reliability of DT-based power sys-
tem trend analysis. Francisco et al. [106] developed daily 
building energy benchmarks based on strategic periods, 
using smart meter power data to quantify the differences 
from traditional annual energy benchmarking strategies.

Intelligent transportation  Kumar et  al. [107] built an 
intelligent infrastructure system which fills the gap in 
vehicle perception and extends the horizon by creat-
ing a form of a DT model for current traffic conditions. 
Ground-truth data were generated using aerial imagery 
and Earth observation methods to evaluate the spatial 
accuracy and recall of the DT model.

Conclusions
A DT serves as a digital representation of units, pro-
cesses, and systems. This enables the linking of various 
stages, thereby increasing efficiency, reducing failure 
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rates, and shortening development cycles. DT provides 
a new and effective means of observing, recognizing, 
understanding, controlling, and transforming the physi-
cal world.

Despite the strategic importance of the DT, designing 
DT systems remains a complex process for organizations 
in any industry. There is a huge gap between the promis-
ing prospects depicted by the DT and realistic technol-
ogy level in industry and equipment. In this study, DT 
technology related application research was analyzed and 
it was concluded that there are three main challenges:

(1)	 The virtual modeling technology of DTs must be 
enhanced. DT engineering remains a complex pro-
cess in any type of industry. It involves not only the 
spatial modeling of the geometric structure and 
positional relationships of objects but also the logi-
cal modeling of mechanistic and regular models of 
these entities. This development process requires 
interdisciplinary cooperation among the various 
engineering fields. However, there are differences 
in scholars’ understanding of the same entity in 
different fields, and the degree of collaboration 
among experts in multiple fields has a significant 
impact on the consistency of the DT with physical 
entities. In addition, dedicated tools and platforms 
exist for each field, such as Simulink in MATLAB, 
Twin Builder in ANSYS, Azure in Microsoft, and 
3D Experience in Dassault. However, the combina-
tion of tools and methods from different domains 
is inadequate. Presently, holistic and convergent vir-
tual modeling techniques and tools that can be use-
ful throughout the digital life cycle are lacking.

(2)	 The evaluation criteria for DTs should be more rig-
orous. Depending on the creation method, multiple 
types of DTs can be generated for the same object. 
Some scholars have actively explored the evaluation 
criteria of DTs [50, 51]. However, systems that eval-
uate the degree of development of existing DTs and 
clarify the direction of DT construction to guide 
upgrading and optimization, are still lacking.

(3)	 The theoretical foundation of DTs must be 
strengthened. Although DTs have received consid-
erable attention in recent years, this is an emerging 
research direction, and the concept is developed 
only after practice. However, the emerging research 
direction of “practice first, concept later,” which is 
often attached to information technology, big data, 
artificial intelligence, and IoT in the development 
process, lack a relevant theoretical basis in research. 
The research results are directly applied to various 
engineering practices [108]. Although this approach 

helps promote DT technology, it lacks theoretical 
foundation.

DT technology has good prospects in intelligent man-
ufacturing and equipment maintenance. It is gradually 
receiving attention from both military and civilian sec-
tors, including robotics, aerospace, new energy, and other 
industries. All of these sectors have started to explore 
technical systems, key technologies, and application 
potentials of DTs.

The future development trend of DT is predicted to fol-
low two directions:

(1)	 Integration of related technologies. The implemen-
tation of DT technology relies on industrial infor-
mation systems, artificial intelligence, big data, and 
other technologies. However, despite the rapid 
development of these technologies, DT technol-
ogy is still active and emerging. Better utilization of 
research results of other related technologies in DTs 
will be one of the main research directions in the 
future.

(2)	 Continuous improvements in industrial applica-
tions. With the development of industrial technol-
ogy and requirements, equipment design, testing, 
operation, maintenance, and other life cycle costs 
have increased significantly. Concurrently, the com-
plexity of equipment has considerably increased the 
chances of performance degradation and functional 
failure. Inspired by practical considerations, DTs of 
complex equipment will become the focus of future 
research. Various engineering practitioners are 
exploring and experimenting with optimization and 
refinements so that the scope of DT applications 
can be expanded.

This paper summarizes the development history, defi-
nition, and application areas of DTs, thereby proposing 
the definition of a DT and DT model based on TSL. It is 
expected that the analysis and summary of this study will 
provide further ideas and references for the development 
and application of DT technology.
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