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Abstract
Memristive electromagnetic induction effect has been widely explored in bi-neuron network with homogeneous neurons,

but rarely in bi-neuron network with heterogeneous ones. This paper builds a bi-neuron network by coupling heterogeneous

Rulkov neurons with memristor and investigates the memristive electromagnetic induction effect. Theoretical analysis

discloses that the bi-neuron network possesses a line equilibrium state and its stability depends on the memristor coupling

strength and initial condition. That is, the stability of the line equilibrium state has a transition between unstable saddle-

focus and stable node-focus via Hopf bifurcation. By employing parameters located in the stable node-focus region,

dynamical behaviors related to the memristor coupling strength and initial conditions are revealed by Julia- and MATLAB-

based multiple numerical tools. Numerical results demonstrate that the proposed heterogeneous bi-neuron Rulkov network

can generate point attractor, period, chaos, chaos crisis, and period-doubling bifurcation. Note that extreme multistability

are disclosed with respect to initial conditions of memristor and gated ion concentration. Coexisting infinitely multiple

firing patterns of periodic firing patterns with different periodicities and chaotic firing patterns for different memristor

initial conditions are demonstrated by phase portrait and time-domain waveform. Besides, the phase synchronization

related to the memristor coupling strength and its initial condition is explored, which suggests that the two heterogeneous

neurons become phase synchronization with large memristor coupling strength and initial condition. This also reflects that

the plasticity of memristor synapse enables adaptive regulation in keeping energy balance between the neurons. What’s

more, MCU-based hardware experiments are executed to further confirm the numerical simulations.

Keywords Extreme multistability � Phase synchronization � Memristive electromagnetic induction � Heterogeneous bi-
neuron network

Introduction

The brain was known as a heterogeneous structure, leading

to the huge diversity in the brain (Gjorgieva et al. 2016). In

the recent past, the heterogeneity was considered by

employing each neuron an individual membrane, synaptic

time constant, and initial conditions in artificial neural

network (Duarte and Morrison 2019; Lengler et al. 2013;

Padmanabhan and Urban 2010). It has been declared that

these heterogeneities can improve the task performance in

promoting robust learning (Perez-Nieves et al. 2021) and

neural coding (Sachdeva et al. 2020). Except the afore-

mentioned researches initiated in network learning and

coding issues, the heterogeneous coupling between neurons

should be taken into account in exploring neuron-based

small network dynamics. Thus, a heterogeneous bi-neuron

Rulkov network is considered in this paper, and then the

dynamical behaviors in the network is explored to solidify

the ground work in solving complex information tasks

under natural environment.

To date, numerous neuron models have been raised to

uncover the firing patterns in biological neurons, i.e. Chay

model (Chay 1985; Xu et al. 2020a), Hodgkin-Huxley

model (Hodgkin and Huxley 1990; Xu et al. 2017),

Hindmarsh-Rose model (Gu et al. 2014; Yang and Liao

2019), Morris-Lecar model (Morris and Lecar 1981; Wu

et al. 2014), FitzHugh-Nagumo model (FitzHugh 1961),
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and Rulkov model (Elson et al. 1998; Li et al. 2021a), just

to mentioned a few. Up to now, sufficient progress of the

coupling dynamics in neuron-based small networks has

been achieved. The gap junction (Pal et al. 2020), linear

couplers (Shim and Husbands 2018; Wang et al. 2021;

Semenov and Fradkov 2021), chemical connections (Bah-

ramian et al. 2021), and blinking coupling (Parastesh et al.

2022) were employed to construct the small networks.

Synchronization, a special kind of coupling dynamics, has

immersed great concern and investigated in these small

networks. It is very interesting that blinking coupling can

enhance network synchronization in comparison with the

single-variable coupling and the synchronization can be

easily achieved by a well-defined blinking period (Para-

stesh et al. 2022). Also, analytical calculation for sufficient

condition for the emergence of the static synchronization

state was reported in (Sar et al. 2022).

Besides, the electric field coupling method utilizing

capacitor (Liu et al. 2019) and electromagnetic coupling

method employing memristor (Zhang and Liao 2017; Bao

et al. 2019; Xu and Zhu 2020) were presented. In these

literatures, synchronous behaviors, multiple vibrational

resonances, chaotic dynamics, multistability, and collective

behaviors were revealed in theoretical and numerical sur-

veys. Among these coupling methods, the memristor cou-

pling method has its own feature, since the memristor is a

special nonlinearity owning internal state. What’s more, a

flux-controlled memristor has been utilized to characterize

the electromagnetic induction induced by membrane

potential of a single neuron (Yang et al. 2021) or by the

difference between membrane potentials of two adjacent

neurons (Xu and Zhu 2020). The physical mechanism of

memristive electromagnetic induction in biology has been

declared by Ma et al. in (Lv and Ma 2016). It has been

declared that memristive synapse has similar field effect

and biophysical properties as the chemical synapse (Wu

et al. 2022). In other words, memristive synapse can trigger

similar neuron electrical activities as activated by chemical

synapse. What’s more, memristive synapse has adaptive

characteristic due to the plasticity of memristor, which is

helpful in achieving fast energy balance between coupling

neurons (Xie et al. 2022). In this paper, a flux-controlled

memristor is employed as a coupled synapse to depict the

electromagnetic induction induced by membrane potentials

difference between the two heterogeneous Rulkov neurons.

No matter which coupling methods they employed, most

of these neuron-based small networks were composited by

homogeneous neurons. Various types of synchronization

can be easily achieved in these networks, such as complete

synchronization (Bao et al. 2020; Wouapi et al. 2021;

Mehrabbeik et al. 2021), phase synchronization (Zhang

et al. 2020; Ma et al. 2017), and lag synchronization (Wang

and Shi 2012). What’s more, complete synchronization

induced by pulse (Nakamura and Tateno 2019) and phase

synchronization (De and Balakrishnan 2020; Yao et al.

2021; Li et al. 2021b) have also been explored in non-

identical neuron-based networks. It has been acknowledged

that complete synchronization is hard to realize without

externally applied stimulus in heterogeneous neuron-based

network. Thus, only the phase synchronization in the pro-

posed heterogeneous bi-neuron Rulkov network is inves-

tigated in this paper. Besides, the proposed bi-neuron

network can be regarded as a memristive system possessing

a line equilibrium state. That’s fully resulted by the

involvement of an ideal memristor (Bao et al. 2019b). The

stability of the line equilibrium state is really associated to

the initial condition of the memristor (Xu et al. 2021b; An

and Qiao 2021). This might trigger extreme multistability

with coexisting infinitely multiple firing patterns. To our

knowledge, such extreme multistability has not yet been

raised in bi-neuron network with electromagnetic induc-

tion. The contributions and novelty can be summarized as

follows. 1) To better characterize electromagnetic induc-

tion effects between heterogeneous neurons, a memristor

synapse-coupled Rulkov bi-neuron network with line

equilibrium state is presented. 2) Extreme multistability

with coexisting infinitely multiple firing patterns are dis-

closed. 3) A MCU-based experimental measurement plat-

form is built and hardware experiments are executed to

confirm the generation of coexisting infinitely multiple

firing patterns.

The rest of this paper is arranged as follows. A mem-

ristor synapse-coupled Rulkov bi-neuron network is pro-

posed and then its equilibrium state stability is explored.

Dynamical behavior related to memristor synapse is stud-

ied and dynamics related to the initial conditions of gated

ion concentrations are disclosed. What’s more, the

numerical explorations of phase synchronization are

depicted. Furthermore, MCU-based experimental mea-

surements are executed to confirm the numerical simula-

tions. Finally, our conclusion is summarized.

Memristor synapse-coupled Rulkov bi-
neuron network

To more efficiently reflect the continuous dynamical evo-

lution process of a biological neuron, a two-dimensional

(2D) continuous Rulkov model is built (Xu et al. 2021b).

The 2D continuous Rulkov model has a simple mathe-

matical expression and can generate periodic spiking

behavior. To explore the electromagnetic induction effects

between two such neurons, a memristor synapse-coupled

heterogeneous bi-neuron Rulkov network is built as
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dx1
dt

¼ a1
1þ x21

� x1 þ y1 þ kWðuÞðx1 � x2Þ;

dy1
dt

¼ �rx1 � b;

dx2
dt

¼ a2
1þ x22

� x2 þ y2 � kWðuÞðx1 � x2Þ;

dy2
dt

¼ �rx2 � b;

du
dt

¼ x1 � x2;

8
>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>:

ð1Þ

where x1 and x2 are the fast variables representing the

membrane potentials of the two neurons. y1 and y2 are two

slow variables standing for the gated ion concentrations on

membrane. kW(u)(x1 - x2) stands for the electromagnetic

induction current induced by the difference of membrane

potentials x1 and x2, where k is the coupling strength and

W(u) is the memductance of the memristor controlled by

its inner state variable u. a1, a2, b, and r are four model

parameters with non-negative values. In particular, r is the

changing rate of gated ion concentration. The model

parameter b stands for the externally applied influence.

Herein, we set b = 0 without the consideration of exter-

nally applied influence. In following sections, we deter-

mine the model parameters a1 = 12, a2 = 6, r = 6, and

select k as adjustable parameter. Herein, a1 = a2 means

that the two neurons are heterogeneous.

Setting the left side of (1) to 0, the equilibrium state can

be analytically calculated as

E ¼ x1; y1; x2; y2; uð Þ ¼ 0;� a1;0;� a2;cð Þ; ð2Þ

where c is an arbitrary constant corresponding to the initial

position on the u-axis. This declares that (1) has a line

equilibrium state along the memristor state variable axis.

The stability of the equilibrium state is characterized by

the characteristic roots of Jacobian matrix for a dynamical

system at that equilibrium state. The Jacobian matrix of (1)

at E is obtained as

JE ¼

kc� 1 1 �kc 0 0

�r 0 0 0 0

�kc 0 kc� 1 1 0

0 0 �r 0 0

1 0 �1 0 0

2

6
6
6
6
4

3

7
7
7
7
5
: ð3Þ

Then the characteristic polynomial equation is calcu-

lated as

det 1k� JEð Þ ¼ kðk2 þ kþ rÞ½k2 þ ð1� 2kcÞkþ r� ¼ 0:

ð4Þ

The characteristic roots of Eq. (4) determine the stabil-

ity of the line equilibrium state. The parameters k, c, and r
restrict the characteristic roots of Eq. (4). Herein, we

mainly consider the electromagnetic induction effect

related to the memristor synapse parameters k and c with

r = 6. Model (1) always has a zero-root due to the exis-

tence of ideal memristor. The non-zero characteristic roots

and stability types for different parameter range of kc are

listed in Table 1, where USF, SNF, and HBP stand for

unstable saddle-focus, stable node-focus, and Hopf bifur-

cation point, respectively. Then, the stability distributions

of equilibrium point E in the c - k parameters plane are

drawn as shown in Fig. 1. The parameters k and c are

respectively varied in [0, 0.8] and [- 6, 6]. The lines

colored in red, black, and blue represent the boundaries of

different stability regions, respectively. The parameters

k and c within the magenta rectangle plotted in dash-line,

i.e. k [0.45, 0.7] and c [- 0.1, 0.5], are considered to

explore the electromagnetic induction effect in the fol-

lowing sections. The equilibrium state is a stable node-

focus in the parameter ranges, which implies that the firing

patterns generated in model (1) might be hidden (Bao et al.

2019b, Xu et al. 2021a). The line equilibrium state is not

always stable in the full parameter plane. With those

considerations, the generated firing pattern in model (1)

might be named as local hidden dynamics. This is an open

issue for the potential researchers.

Dynamics related to memristor synapse

Julia-based ODE45 algorithm is employed to simulate the

two-dimensional (2D) bifurcation plots. The fixed time-

step and time-interval are set to 0.01 s and [3 ks, 4 ks]

respectively. The Wolf’s Jacobian-based method with fixed

time-step 0.1 s and time-end 20 ks is utilized for computing

the finite-time Lyapunov exponent.

The initial conditions [x1(0), y1(0), x2(0), y1(0),

u(0)] = [10-9, 0, 10-9, 0, u(0)] are utilized to explore the

dynamical effect related to the memristor synapse. The

coupling strength k and memristor initial condition u(0) are
adjusted in the regions [0.45, 0.7] and [- 0.1, 0.5]

respectively. The 2D bifurcation plot and dynamical map

are figured out in Fig. 2. The 2D bifurcation plot is plotted

by inspecting the periodicity of membrane potential x1 and

dynamical map is described by the largest Lyapunov

exponent (LLE). In Fig. 2a, the different colors on the

color bar are utilized to distinguish different firing patterns.

The marks PA, CH, and P1 * P8 stand for point attractor,

chaotic behavior, and period-1 to period-8, respectively.

The 2D bifurcation plot demonstrates that the firing pat-

terns generated in model (1) are very associated to the

coupling strength and memristor initial condition. The 2D

bifurcation plot mainly has a banded structure and some

dynamical behaviors have narrow parameter ranges. These

narrow ranges for the corresponding dynamical behaviors

are hardly visible, but they are confirmed by checking the
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data for bifurcation plot. In Fig. 2b, the red regions with

positive LLE stand for chaotic behaviors, the black regions

with LLE = 0 present periodic behaviors, and the grey

region with LLE\ 0 stands for point attractor. Figure 2b

declares that the dynamical map further confirms the firing

patterns revealed by 2D bifurcation plot.

To further uncover the bifurcation behavior with respect

to the coupling strength k and memristor initial condition

u(0), MATLAB-based 1D bifurcation plot and Lyapunov

exponents (LEs) are numerically simulated. When the

coupling strength k increases in the interval [0.45, 0.7], the

1D bifurcation plot of the local maxima of x1 (denoted as

x1max) and LEs are figured out in Fig. 3a, where the tra-

jectories are triggered by [x1(0), y1(0), x2(0), y2(0),

u(0)] = [10-9, 0, 10-9, 0, 0]. When gradually increasing

k from 0.45, the trajectory of model (1) starts with point

attractor and then jumps to period-1 at k = 0.4886. The

trajectory runs into period-2, period-4, and period-8 at

k = 0.5176, 0.5236, and 0.5246 via period-doubling bifur-

cations, respectively. Then the trajectory enters into chaos

via further period-doubling bifurcations and then drops to

period-3 due to the occurrence of chaos crisis at

k = 0.5280. Thereafter, the trajectory goes to chaos again

via period-doubling bifurcation route and drops to periodic

behavior. The 1D bifurcation plot demonstrates that this

process happens many times until k = 0.6802. Afterwards,

the trajectory of model (1) runs in period-1. The first two

LEs are plotted in the bottom of Fig. 3a, which can

effectively confirm the dynamics evolution with respect to

the coupling strength k. When the memristor initial con-

dition u(0) increases from - 0.1 to 0.5 with k = 0.5, the

1D bifurcation plot and LEs are potted in Fig. 3b. The

bifurcation behaviors with respect to the memristor initial

condition u(0) are similar to these with respect to coupling

strength k.

The numerical simulations in Fig. 3 demonstrate that

model (1) can produce rich dynamical behaviors, including

point attractor, period, chaos, chaos crisis, and period-

doubling bifurcation with the adjustments of k and u(0).
Notably, the occurrence of period-doubling bifurcation

routes with respect to memristor initial condition declares

the existence of coexisting infinitely multiple firing pat-

terns. From the biological point of view, these results can

explain the appearance of coexisting firing patterns in

neurophysiological experiments for biological systems

since they display functional flexibility (Pisarchik and

Table 1 Characteristic roots and stability types for different parameters

Parameter range Non-zero characteristic roots Stability types

kc� 1þ2
ffiffi
6

p

2
Two positive real roots, and a pair of conjugate complex roots with negative real part USF

1
2
\kc\ 1þ2

ffiffi
6

p

2
two pairs of conjugate complex roots With opposite real parts USF

kc ¼ 1
2

A pair of conjugate complex roots with negative real part, and a pair of pure imaginary roots HBP

1�2
ffiffi
6

p

2
\kc\ 1

2
Two pairs of conjugate complex roots with negative real parts SNF

kc� 1�2
ffiffi
6

p

2
Two negative real roots, and a pair of conjugate complex roots with negative real part SNF

c

k

USF

USF

SNF

SNF
1 2 6

2
kc +=

1
2

kc =
1 2 6

2
kc −=

Considered
range

Fig. 1 Stability distributions in

the c–k parameters plane for

parameters a1 = 12, a2 = 6,

r = 6, and b = 0 in model (1)

(Color figure online)
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Feudel, 2014; Pisarchik et al. 2018). On the other hand,

these results reflect that extreme multistability with coex-

isting infinitely multiple firing patterns in biological neu-

rons can be reproduced by considering the participation of

electromagnetic induction.

To demonstrate the coexisting infinitely multiple firing

patterns, the phase portraits in the x1–x2 and y1–y2 phase

planes and the time-domain waveforms of membrane

potentials x1 and x2 for different initial conditions are

numerically simulated as shown in Fig. 4. The time-step

0.01 s and time interval [3.9 ks, 4 ks] are utilized in cal-

culating the phase portrait and time-domain waveform.

Herein, the parameters a1 = 12, a2 = 6, r = 6, and k = 0.5

and initial conditions [x1(0), y1(0), x2(0), y2(0),

u(0)] = [10-9, 0, 10-9, 0, u(0)] with adjustable u(0) are
exhibited as an example. Note that only some examples for

different u(0) are used to demonstrate the coexisting infi-

nitely multiple firing patterns, since it is impossible to

exhaustive them all. It is demonstrated that model (1) can

truly trigger coexisting infinitely multiple firing patterns.

The amplitudes of firing patterns for the two neurons are in

the same scale with small u(0), i.e. u(0) B 0.0661, but

they are in different orders for u(0) bigger than the value.

What’s more, the dynamical behaviors for the two neurons

are different in some regions of u(0), just like the cases

shown in Fig. 4d and f. Therefore, the selection of the

expected firing patterns can be effectively realized by

controlling the memristor initial condition.

Fig. 2 The 2D bifurcation behaviors in u(0)–k hybrid parameter plane for parameters a1 = 12, a2 = 6, r = 6, and initial conditions [x1(0), y1(0),
x2(0), y1(0), u(0)] = [10-9, 0, 10.-9, 0, u(0)]. a The 2D bifurcation plot, b dynamical map (Color figure online)

k

x 1
m

ax

LE1Zero line

LE2

LE
s

x 1
m

ax

LE1Zero line

LE2

LE
s

φ(0)
(a) (b)

Fig. 3 The 1D bifurcation behaviors of bifurcation plot (up) and

finite-time LEs (bottom) with respect to k and u(0) respectively.

a Coupling strength k increasing from 0.45 to 0.7 with a1 = 12,

a2 = 6, r = 6, and initial conditions [x1(0), y1(0), x2(0), y1(0),

u(0)] = [10-9, 0, 10-9, 0, 0], b memristor initial condition u(0)
increasing from - 0.1 to 0.5 with a1 = 12, a2 = 6, r = 6, k = 0.5, and

initial conditions [x1(0), y1(0), x2(0), y1(0), u(0)] = [10-9, 0, 10.-9, 0,

u(0)] (Color figure online)
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Dynamics related to the initial conditions
of gated ion concentrations

In this section, coexisting infinitely multiple firing patterns

depend on the initial conditions of gated ion concentrations

are explored. The control parameters are employed as the

typical ones. The initial conditions [x1(0), y1(0), x2(0),

y2(0), u(0)] = [10-9, y1(0), 10
-9, y2(0), 0] are assigned,

and y1(0) and y2(0) are adjusted in the regions [- 0.5, 3]

and [- 3, 0.5] respectively. Figure 5 shows the local

attraction basins (Yu et al. 2022) and dynamical maps in

the y1(0)–y2(0) initial condition plane. The marks UH, PA,

CH, and P1 * P8 on the color bar stand for unbounded

behavior, point attractor, chaotic behavior, and period-1 to

period-8, respectively. The local attraction basin demon-

strates that the rich firing patterns are triggered by initial

conditions of gated ion concentrations. What’s more, the

local attraction basin also has a banded structure and some

dynamical behaviors have narrow parameter ranges as

shown in Fig. 5a. In Fig. 5b, the red regions with LLE[ 0,

the black regions with LLE = 0, the grey region with

LLE\ 0, and the white region with no LE stand for

chaotic behaviors, periodic behaviors, point attractor, and

unbounded behavior in the dynamical map, respectively.

The dynamical map can further confirm the dynamical

behaviors revealed by the local attraction basin. Therefore,

the memristor synapse-coupled heterogeneous bi-neuron

Rulkov network not only can generate coexisting infinitely

multiple firing patterns depending on the memristor initial

condition, but also can generate these behaviors associating

to the initial conditions of gated ion concentrations.

As predicted in Fig. 5, coexisting infinitely multiple

firing patterns are triggered by the initial conditions y1(0)

and y2(0). The 1D bifurcation plots and first two finite-time

LEs are depicted in Fig. 6 to reveal the bifurcation

behaviors. The initial conditions [x1(0), y1(0), x2(0), y2(0),

u(0)] = [10-9, y1(0), 10
-9, 0, 0] and [10-9, 0, 10-9, y2(0),

0] are employed in Fig. 6a and b respectively. The 1D

x1, x2

y 1
,y

2

t (ks)

x 1
x 2

x1, x2

y 1
, y

2

t (ks)

x 1
x 2

(a) (b)

x1, x2

y 1
,y

2

t (ks)

x 1
x 2

x1, x2

y 1
,y

2

t (ks)

x 1
x 2

(c) (d)

x1, x2

y 1
,y

2

t (ks)

x 1
x 2

x1, x2

y 1
, y

2

t (ks)

x 1
x 2

(e) (f)

Fig. 4 Phase portrait (left) and time-domain waveforms (right) for

different initial conditions [x1(0), y1(0), x2(0), y2(0), u(0)] = [10-9, 0,

10.-9, 0, u(0)] with a1 = 12, a2 = 6, r = 6, and k = 0.5. a Period-1

firing patterns for u(0) = 0.01, b period-2 firing patterns for

u(0) = 0.04, c chaotic firing patterns for u(0) = 0.06, d period-2

and period-3 firing patterns for u(0) = 0.25, e chaotic firing patterns

for u(0) = 0.30, f period-1 and period-2 firing patterns for

u(0) = 0.48 (Color figure online)
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bifurcation plots of the local maxima of x1 (denoted as

x1max) and x2 (denoted as x2max) are figured out in the up

and middle. The first two finite-time LEs are plotted in the

bottom. With the initial conditions y1(0) and y2(0) varying

in [- 0.5, 3] and [- 3, 0.5], the bifurcation behaviors are

similar with those revealed in Fig. 3. What’s more, model

(1) can produce rich dynamical behaviors such as period,

chaos, chaos crisis, and period-doubling bifurcation. Note

that the local maxima amplitudes of x1 and x2 are different.

This reflects that firing patterns of the two neurons are

running in different dynamic amplitudes. What’s more,

extreme multistability is triggered since the existence of

period-doubling bifurcation or reverse period-doubling

bifurcation with respect to initial condition (Bao et al.

2016).

Phase synchronization

Unlike the complete synchronization, phase synchroniza-

tion has been revealed in non-identical coupled neuron

model described by the same mathematical form (Wang

et al. 2010) or described by completely different coupled

neurons (Yao et al. 2021; Li et al. 2021b). In these litera-

tures, the burst phase is defined as

hðtÞ ¼ 2npþ 2p
t � tn

tnþ1 � tn
; tn\t\tnþ1ð Þ: ð5Þ

where tn is the nth burst emerging time. tn?1 - tn is time

interval of the nth burst. The phase increases 2p accom-

panying with each generated burst. Thus, the phase syn-

chronization can be identified by detecting the phase

difference

DhðtÞj j ¼ h1ðtÞ � h2ðtÞj j; ð6Þ

where the absolute value is utilized to restrict the phase

difference as positive values and the phase synchronization

is achieved with its value tending to a constant.

To illustrate the phase synchronization behavior in bi-

neuron network (1), the memristor initial condition u(0)
and coupling strength k are adjusted in the regions [- 0.8,

0.8] and [0.1, 0.8] respectively. In the u(0) - k hybrid

parameter plane, the phase synchronization behavior is

depicted by checking the phase difference DhðtÞj j versus
time t. In Fig. 7a, the different regions padded by different

colors stand for different phase synchronization behaviors,

i.e. red for complete phase synchronization, light-blue for

finite-time phase synchronization, and yellow for phase

non-synchronization. Note that the stability point behavior

of the two neurons are marked as phase non-synchroniza-

tion. The two heterogeneous neurons become complete

phase synchronization for the memristor coupling strength

and initial condition in the red regions.

To further demonstrated the different phase synchro-

nization behaviors, the phase difference with respect to

time are plotted for four sets of parameters belonging to

different regions as shown in Fig. 7b. When k = 0.5 and

u(0) = - 0.3, the phase difference equals to zero and then

rises monotonically. This manifests that two neurons are

finite-time phase synchronization. When k = 0.5 and

u(0) = 0.5, the phase difference tends to infinite, which

declares that two neurons are phase non-synchronization.

Whereas for k = 0.5 and u(0) = 0.01, as well as k = 0.8

and u(0) = 0.8, the phase differences tend to constants

representing the achievement of complete phase synchro-

nization. It is revealed that complete phase synchronization

and finite-time phase synchronization are found. What’s

more, complete phase synchronization can be achieved in

very short time, which is benefit by the fast energy balance

between memristor synapse coupling neurons (Xie et al.

Fig. 5 Local attraction basin and dynamical map in y1(0)– y2(0) initial condition plane with a1 = 12, a2 = 6, r = 6, k = 0.5, and initial conditions

[x1(0), y1(0), x2(0), y2(0), u(0)] = [10-9, y1(0), 10.
-9, y2(0), 0]. a Local attraction basin, b dynamical map (Color figure online)
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2022). The plasticity of memristor synapse enables adap-

tive regulation in keeping energy balance between the

neurons (Zhou et al. 2022). Besides, with the memristor

synapse connection having adaptive characteristic between

the two neurons, the proposed model (1) demonstrates

explosive transition (Majhi et al. 2022) to complete phase

synchronization as shown in the up of Fig. 7b. Actually,

the memristor synapse is a functional connectivity to

realize the transformations of energy, matter, or informa-

tion between the two neurons, which refers to the under-

lying dynamical processes (Gosak et al. 2022).
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(a) (b)

Fig. 6 The 1D bifurcation behaviors of bifurcation plots for the local

maxima of x1max and x2max (up and middle) and finite-time LEs

(bottom) with the variations of y1(0) and y2(0) respectively. The other
parameters are a1 = 12, a2 = 6, r = 6, k = 0.5. a Initial condition

y1(0) increasing from - 0.5 to3 with initial conditons [x1(0), y1(0),
x2(0), y2(0), u(0)] = [10-9, y1(0), 10

-9, 0, 0], b initial condition y2(0)
increasing from - 3 to 0.5 with initial conditions [x1(0), y1(0), x2(0),
y2(0), u(0)] = [10-9, 0, 10.-9, y2(0), 0] (Color figure online)
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Fig. 7 Phase synchronization behavior explored by checking the

phase difference with respect to memritor initial u(0) and coupling

strength k. The other parameters are fixed as a1 = 12, a2 = 6, r = 6,

and initial conditions [x1(0), y1(0), x2(0), y2(0), u(0)] = [10-9, 0,

10.-9, 0, u(0)]. a Phase synchronization in the u(0) - k hybrid

parameter plane, b different phase synchronization behaviors versus

time, those are, finite-time phase synchronization (up-left), phase non-

synchronization (up-right) and complete phase synchronization

(down-left and down-right) (Color figure online)
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MCU-based experimental confirmation

Hardware platform for implementing neuron-based net-

work can obtain real biological system functionalities and

widen their engineering application. Herein, a MCU-based

hardware platform is developed for implementing the bi-

neuron network (1), upon which the experimental mea-

surements are executed to verify the numerical simulations.

The hardware platform is mainly built by a 32-bit

STM32F407 microcontroller (Bakiri et al. 2018; Njitacke

et al. 2021), two 16-bit DAC8563 D/A converters, a

DSOX6004A oscilloscope, and other peripheral circuits.

The snapshot of the experimental measurement platform

for the MCU-based hardware platform is shown in Fig. 8.

The 32-bit STM32F407 microcontroller is employed to

implement the discrete-time model of (1) obtaining by

fourth-order Runge–Kutta algorithm (Xu et al. 2020). The

16-bit DAC8563 D/A converters convert the digital signals

to analog voltage ones in the voltage level [0 V, 5 V]. The

peripheral circuits realize the voltage level conversion to

[- 10 V, 10 V]. Note that the dynamic amplitudes of y1
and y2 are out of this range. Thus, they are rescaled to one-

tenth with respect to their original ones and then the results

are outputted to the connected DSOX6004A oscilloscope.

All the programs are coded in the form of C language

compiled in the Keil lVision5 and then downloaded to the

MCU. The model parameters and initial conditions are

employed as those utilized in Fig. 4. When the power

supply is turn on, the phase trajectories can be captured by

DSOX6004A oscilloscope in XY mode. Then, time-do-

main waveforms of the analog voltage signals can be

synchronously captured. Note that the outputs of the

peripheral circuits are analog voltages Vx1, Vy1, Vx2, and

Vy2 corresponding to the state variables x1, y1, x2, and y2 in

(1), respectively. The experimentally measured results for

different memristor initial conditions are captured by

screen shot as shown in Fig. 9. For better visualization, the

colors for phase trajectories and time-domain waveforms

are changed by Photoshop software. It shows that the

experimentally measured results are in good agreement

with the numerical simulation results as shown in Fig. 4,

which indicates the feasibility of the hardware platform for

the heterogeneous bi-neuron Rulkov network with mem-

ristive electromagnetic induction.

Conclusion

In this paper, extreme multistability and phase synchro-

nization in a heterogeneous bi-neuron Rulkov network with

memristive electromagnetic were numerically and experi-

mentally studied. The bi-neuron network possesses a line

equilibrium state located in the memristor inner state axis.

The stability of the line equilibrium state really depends on

the memristor coupling strength and initial conditions, and

there has unstable saddle-focus, stable node-focus, or Hopf

bifurcation point. Dynamical behaviors related to the

memristor coupling strength and initial conditions were

revealed for the parameters located in stable node-focus

region. The results demonstrate that rich firing patterns are

emerged in the bi-neuron network. Especially, perfect

period-doubling bifurcation are generated with respect to

the initial conditions of memristor and gated ion concen-

trations, thereby leading to that the extreme multistability

with coexisting infinitely multiple firing patterns are trig-

gered. Moreover, phase synchronization of the bi-neuron

network was numerically explored with respect to the

memristor coupling strength and initial condition. The

numerical results declare that phase synchronization can be

achieved with large memristor coupling strength and initial

condition, whereas finite-time phase synchronization and

phase non-synchronization exist in the other parameters’

regions. This is very different from the conditions for

complete synchronization in memristor synapse coupled

Hindmarsh-Rose bi-neuron network (Bao et al. 2019a) and

FitzHugh-Nagumo bi-neuron network (Xu and Zhu 2020).

What’s more, these numerical results were effectively

confirmed by MCU-based experimental measurement. The

numerical and experimental explorations can provide

insights for understanding the firing patterns in heteroge-

neous bi-neuron network with memristive electromagnetic

induction.

Fig. 8 The snapshot of MCU-based experimental measurement

platform (Color figure online)
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