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Abstract
Electroencephalography (EEG) may detect early changes in Alzheimer’s disease (AD), a debilitating progressive neu-

rodegenerative disease. We have developed an automated AD detection model using a novel directed graph for local

texture feature extraction with EEG signals. The proposed graph was created from a topological map of the macroscopic

connectome, i.e., neuronal pathways linking anatomo-functional brain segments involved in visual object recognition and

motor response in the primate brain. This primate brain pattern (PBP)-based model was tested on a public AD EEG signal

dataset. The dataset comprised 16-channel EEG signal recordings of 12 AD patients and 11 healthy controls. While PBP

could generate 448 low-level features per one-dimensional EEG signal, combining it with tunable q-factor wavelet

transform created a multilevel feature extractor (which mimicked deep models) to generate 8,512 (= 448 9 19) features

per signal input. Iterative neighborhood component analysis was used to choose the most discriminative features (the

number of optimal features varied among the individual EEG channels) to feed to a weighted k-nearest neighbor (KNN)

classifier for binary classification into AD vs. healthy using both leave-one subject-out (LOSO) and tenfold cross-vali-

dations. Iterative majority voting was used to compute subject-level general performance results from the individual

channel classification outputs. Channel-wise, as well as subject-level general results demonstrated exemplary performance.

In addition, the model attained 100% and 92.01% accuracy for AD vs. healthy classification using the KNN classifier with

tenfold and LOSO cross-validations, respectively. Our developed multilevel PBP-based model extracted discriminative

features from EEG signals and paved the way for further development of models inspired by the brain connectome.

Keywords Primate brain modelling � Feature engineering � EEG signal classification � Feature extraction �
AD detection

Introduction

Fifty-five million people worldwide currently have

dementia, which will reach seventy-eight million in 2030

due to rapidly aging national populations. Dementia ranks

as the seventh leading cause of death globally, and Alz-

heimer’s disease (AD) accounts for 60 to 70% of dementia

cases (WHO Accessed on 7 Febr 2022). AD is a debili-

tating neurodegenerative disorder that causes memory loss

and cognitive decline due to atrophy and subsequent death

of brain cells (Cassani et al. 2018; Mattson 2004). Many

AD patients first present with mild symptoms, which then

progressively worsen. The diagnosis is based on a formal

evaluation of cognitive function, neuropsychiatric tests,

and interviews with the patient and family. Imaging

methods and laboratory tests are routinely ordered to

exclude other organic causes of impaired mental state (Falk

et al. 2012; Houmani et al. 2018; Isik 2010; McBride et al.

2013), which may be amenable to more definitive inter-

vention. Although not included in the standard clinical

workup of AD, early subtle and later more overt abnor-

malities (e.g., slow waves) can often be seen on elec-

troencephalography (EEG) at initial presentation and

advanced stages of AD, respectively. While not pathog-

nomonic, these EEG changes serve as corroborative evi-

dence of perturbed cortical activity. A completely normal

EEG would give the clinician pause to reconsider the

diagnosis of AD.
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EEG signals, both resting and event-related potentials,

are frequently studied in neuroscience research. Visual

interpretation of the EEG signal in AD is manually inten-

sive and requires expertise. Notwithstanding this, subtle

abnormalities may still be missed, and considerable intra-

and inter-observer variability exist. These limitations may

be addressed using artificial intelligence methods, which

can be harnessed to facilitate the objective classification of

EEG signal abnormalities. Poil et al. (2013) studied EEG

signals from 61 and 25 patients with mild cognitive

impairment (MCI) and AD, respectively. MCI is a transi-

tion state between normal and dementia that is of diag-

nostic and prognostic significance, albeit not all MCI

necessarily progress to dementia. Using logistic regression,

the authors could predict the conversion from MCI to AD

over two years with 88.00% sensitivity and 82.00%

specificity. McBride et al. (2014) developed an early AD

detection method based on support vector machines (SVM)

that attained 79.2% accuracy for three-class classification

into MCI, AD, and normal using EEG signals. Kashefpoor

et al. (2016) trained their neuro-fuzzy system- and

k-nearest neighbor (KNN) classifier-based detection model

on the EEG signals of 16 healthy subjects and 11 MCI

patients and achieved 88.89% accuracy for detection of

MCI. Ruiz-Gómez et al. (2018) used an optimal feature set

based on spectral and nonlinear analyses to study the EEG

signals of 37 AD, 37 MCI, and 37 controls and compared

three classifiers: linear discriminant analysis (LDA),

quadratic discriminant analysis (QDA) and multi-layer

perceptron artificial neural network (MLP). The best clas-

sifier was MLP, which yielded 76.47% classification

accuracy for AD versus all other cases. Khatun et al. (2019)

extracted 590 features from speech-evoked brain potentials

on single-channel EEG signals of 8 MCI patients and 15

healthy controls. Sensitivity, specificity, and F-scores of

87.9%, 84.8%, and 95.0%, respectively, for detection of

MCI, were obtained using SVM with radial basis kernel.

Yin et al. (2019) proposed a three-dimensional evaluation

algorithm for detecting MCI and attained 96.94% classifi-

cation accuracy with SVM on a dataset comprising 11 MCI

patients and 11 healthy controls. Sharma et al. (2020)

recorded continuous EEG signals of 16 dementia, 16 early

dementia, and 15 healthy subjects during finger tapping and

continuous performance tests. They obtained 92.00%

model accuracy for detection of early dementia using

tenfold cross-validation (CV). Sridhar and Manian (2020)

developed a deep bidirectional long short-term memory

network to study event-related potentials on EEG signals

among healthy controls aged 20–40, 40–60, and[ 60

years and MCI patients during auditory and olfactory

stimuli as well as imagined and conducted arm movements.

Accuracy rates for detecting MCI peaked at 91.93% in the

40–60 age group and declined to 69.53% in the[ 60 age

group. Siuly et al. (2020) proposed a method comprising

noise removal, segmentation, piecewise aggregate

approximation data compression, feature extraction, and

classification. They reported 98.78% accuracy for detecting

MCI using extreme learning machine classification on their

dataset of 11 MCI patients and 16 healthy controls. Hug-

gins et al. (2021) applied AlexNet deep learning model to

study 52 AD, 37 MCI and 52 healthy age-matched sub-

jects, where the individuals’ EEG signals were combined

into tiled topographical maps according to scalp electrode

positions. From training the obtained 16,197 topographic

images, the model attained an average accuracy of

98.9% ± 0.4% for three-class classification into AD, MCI

versus healthy aging. These papers illustrate that EEG has

been frequently used to research AD and MCI, with the

latter receiving more attention. Hence, this study is inter-

ested in distinguishing AD from the healthy controls.

However, this study has high computational complexity

and lower accuracy than our study.

EEG is arguably more sensitive than formal neuropsy-

chiatric testing and clinical evaluation for detecting early

cortical dysfunction associated with MCI and AD. How-

ever, signal outputs from individual sessions of continuous

EEG recordings are voluminous and onerous to interpret

manually. Automated artificial intelligence-enabled meth-

ods can improve the efficiency of high-throughput

screening and, by reducing human bias, the objectiveness

of the classification (Bargshady et al. 2022; Kabir et al.

2022; Squires et al. 2022; Tuncer et al. 2022). In this work,

we proposed an automated AD detection machine learning

model based on the recorded 16-channel EEG signals in the

dataset. We created a new graph-based local texture feature

extractor named primate brain pattern (PBP) based on a

simplified map of the neuronal pathways involved in visual

recognition and motor response in the primate brain (see

Sect. 3). While the PBP could extract histogram-based

low-level features, tunable Q-factor wavelet transform

(TQWT) (Selesnick 2011) was employed in parallel to

create subbands to generate features at a high level. The

PBP-based machine learning model mimicked deep learn-

ing models by extracting features at different levels. Iter-

ative neighborhood component analysis (INCA) (Tuncer

et al. 2020) was deployed to select the top features to create

the final feature vector for each EEG signal channel, and

the KNN (Peterson 2009) classifier to calculate the results

using both tenfold and leave-one-subject-out (LOSO) CV

strategies. Finally, iterative majority voting (IMV) was

used to compute a subject-level general result from the 16

results generated (one for each channel of EEG signal) per

subject in the dataset. The research gaps identified within

the scope of this study and the main contributions are as

follows:

Research gaps are given below:
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• The accuracy reported for AD and healthy control

group classification in the literature is relatively low

(Kashefpoor et al. 2016; McBride et al. 2014; Ruiz-

Gómez et al. 2018).

• Few studies in the literature have high computational

complexity (Huggins et al. 2021; Sridhar and Manian

2020).

• Studies generally used hold-out and k-fold CV strate-

gies (Sharma et al. 2020; Siuly et al. 2020; Yin et al.

2019). Leave- one- subject- out (LOSO) CV has

reported low accuracy in one study (Khatun et al.

2019).

Our contributions are given below:

• We present a new local texture feature extractor that

uses a directed graph to represent the complex hierar-

chical pathways that underpin the workings of visual

object recognition and motor response in the primate

brain.

• The handcrafted AD classification machine learning

model possesses linear complexity and is computation-

ally lightweight compared with deep learning models,

which have exponential complexity and require mil-

lions of parameters to be optimized.

• We fed the PBP-based features extracted from individ-

ual EEG signal channels to a shallow weighted KNN

classifier. Finally, we used IMV to compute general

results from all classification outputs at the subject

level.

• We obtained good subject-level classification accura-

cies of 100% and 92.01% with tenfold and LOSO CV

strategies, respectively. While a tenfold CV is an

established standard validation model, LOSO CV may

be better at simulating real-world classification results

of unseen data in models involving analysis of scalp

electrode EEG signals (Kunjan et al. 2021).

Material and methods

Materials

The dataset comprised 16-channel EEG signals acquired

from 12 AD patients recruited from the Alzheimer’s

Patients’ Relatives Association of Valladolid, as well as 11

healthy controls (Table 1). Folstein’s brief mental state

examination (MMSE) was used to determine the severity

of dementia in AD patients. The maximum MMSE score is

determined as 30 in the literature. In addition, 20–24 is

called mild dementia, 13–20 is moderate dementia, and 12

and below is severe dementia. Table 1 shows that the

average MMSE score is 13.1, indicating that dementia is

moderate. However, five AD patients had an MMSE score

of less than 12, suggesting severe dementia.

The EEG signals were recorded in accordance with the

international 10–20 system using Profile Study Room

2.3.411 EEG equipment (Smith et al. 2017)(https://doi.org/

10.1088/0967-3334/27/11/004). The subjects were told to

close their eyes and be relaxed for more than 5 min while

their EEG signals were recorded at a sampling frequency of

256 Hz. Subsequently, a professional physician evaluated

the recorded EEG data to pick the data with the least

movement, electromyographic activity, or electrooculo-

graphic artefacts. This dataset is available online at Open

Science Framework (https://doi.org/10.17605/OSF.IO/

JBYSN).

Primate brain pattern (PBP)

The connectome depicts the complex neuronal wirings

within the brain, which can be at different spatial scales

ranging from microscopic cellular resolutions to macro-

scopic anatomical segments, to facilitate understanding of

its inner workings (Kruger et al. 2012). Figure 1 shows a

topological map of the neuronal pathways linking ana-

tomo-functional segments (grouped by colors) of the pri-

mate brain involved in visual object recognition and motor

response: retina (yellow), visual cortex (blue), ventral areas

for memory, and non-motor functions (red), and dorsal

areas for balance and movement (green). By overlaying the

pathways on a grid, we obtained a directed graph, i.e., PBP,

where the vertices denoted the key anatomo-functional

brain segments and the directed edges, the interlinking

neuronal connections (Fig. 2).

We deployed PBP as a novel graph-based local texture

feature extractor in our model. Brain segments (nodes) and

neuronal connections (lines) were used to obtain the

topological map given in Fig. 2. The numbered arrows

represent neuronal connections in Fig. 2 (For example, 1

from Retina to LGN, 2 from LGN to V1, etc.). As shown in

Fig. 2, the initial and final locations of each of the 27

arrows in the PBP defined the first and second parameters

of the signum function, respectively. Each arrow represents

one bit. In this way, a 27-bit long binary sequence is

obtained. The 27-bit sequence was calculated using the

signum function (Eq. 2). However, it is quite difficult to

calculate the decimal equivalent of a 27-bit array. There-

fore, the 27-bit string is divided into 7, 7, 7, and 6-bit

strings. After that, the feature matrix was calculated using

these 4 blocks. The 27 bits thus created were then used to

generate 448 features (27; 27; 27 and 26). The steps are

detailed below:

1. Create an overlapping block with a length of 70.
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ob jð Þ ¼ signal iþ j� 1ð Þ; i 2 1; 2; . . .; len� 69f g; i
2 1; 2; . . .; 70f g

ð1Þ

where ob is the overlapping block with a length 70;

signal, the EEG signal; and len, the length of signal.

2. Transform the created ob to 10 9 7 sized matrices (m)

to apply our proposed pattern.

3. Extract binary features by deploying signum function

and the corresponding parameters (see Fig. 2).

sig f ; sð Þ ¼ 0; f � s\0

1; f � s� 0

�
ð2Þ

where sigð. . .Þ represents the signum function; and f

and s, the first and second parameters, respectively.

The binary feature extraction process of the proposed

model is tabulated in Table 2.

The sequence of the bit generation process is

tabulated in Table 2. Herein, the ‘‘No’’ column shows

the numbered graph in Fig. 2, while the ‘‘Equation’’

column shows the cells in Fig. 2. For example, No-1 in

Table 2 represents transition-1 from cell (10,4) to cell

(9,4). Another example, No-27 in Table 2 denotes

transition-27 from cell (4,6) to cell (1,7). In this way,

the signum function is applied to the EEG signal values

in the cells thanks to the mapping technique.

4. Generate four map signals from the extracted bits.

map1 ið Þ ¼
X7

j¼1

bitðjÞ � 2j�1 ð3Þ

map2 ið Þ ¼
X7

j¼1

bitðjþ 7Þ � 2j�1 ð4Þ

Table 1 Summary of subject

information in the dataset

created by Alzheimer’s

Patients’ Relatives Association

of Valladoli

AD HC

Number of subjects 12

(5 men, 7 women)

11

(7 men, 4 women)

Age 72.8 ± 8.0 years 72.8 ± 6.1 years

MMSE score 13.1 ± 5.9 30

EEG channels F3, F4, F7, F8, Fp1, Fp2, T3, T4, T5, T6, C3, C4, P3, P4, O1, O2, Fz, Cz and Pz

Fig. 1 Topological map of

anatomo-functional brain

segments (nodes) and neuronal

connections (thin black lines)

involved in visual recognition

and motor response (Kruger

et al. 2012). The nodes have

been labelled as follows: LGN
lateral geniculate nucleus; V1-
V4 visual cortexes; PIT:

posterior inferotemporal area;

AIP anterior intraparietal sulcus;

LIP lateral intraparietal sulcus;

VIP ventral intraparietal sulcus;

MIP medial intraparietal sulcus;

CIP central intraparietal sulcus;

MT middle temporal visual area;

MST middle temporal crescent;

7a: posterior half of area; AIT
anterior inferotemporal cortex;

FEF frontal eye field; SC striate

cortex; F5 motor planning

execution; PMD dorsal

premotor area
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map3 ið Þ ¼
X7

j¼1

bitðjþ 14Þ � 2j�1 ð5Þ

map4 ið Þ ¼
X6

j¼1

bitðjþ 21Þ � 2j�1 ð6Þ

where map1, map2, map3 and map4 are the map signals

generated from the first, second, third, and fourth-bit

groups. These maps are coded with 7,7,7 and 6 bits,

respectively.

5. Extract four histograms from the four map signal

created. These histograms are named h1, h2, h3 and h4.

The maximum number of patterns that can be obtained

using 7 bits is 128. A similar situation is 64 for 6 bits.

Therefore, the lengths of these histograms are 128

(= 27), 128 (= 27), 128 (= 27), and 64 (= 26),

respectively.

6. Merge the four histograms into a feature vector with

448 (h1?h2?h3?h4=128 ? 128 ? 128 ? 64)

features.

Proposed model

The PBP could only extract low-level histogram-based

handcrafted features. To overcome this limitation, we

combined TQWT and PBP to create a multilevel feature

extractor (see Fig. 3), mimicking deep learning models.

From each EEG signal, TQWT with high oscillatory

parameters (q-factor: 3.5, redundancy value: 4, and the

number of levels: 17) was used to create 18 subbands; and

PBP to extract 448 features from every subband in addition

to the raw EEG signal. All extracted features were con-

catenated to form a feature vector of length 8,512

(= 448 9 19). INCA was then applied to the latter vector

to choose the most discriminative features to feed to a

shallow KNN classifier for classification using two vali-

dation strategies, tenfold CV and LOSO. Finally, IMV was

used to compute a single subject-level result from all 16

model classification outputs of the input 16-channels EEG

signals.

Step-wise explanation of the process is given below.

Step 1: Apply TQWT to EEG signal to generate

subbands.

sb ¼ TQWTðsignal; 3:5; 4; 17Þ ð7Þ

where TQWTð:; :; :; :Þ is the TQWT subband calculation

function, which requires the input of the signal and

parameters, i.e., q-factor, redundancy value, and the num-

ber of levels, that the users can assign. In this respect,

TQWT is a flexible wavelet transformation. By using

TQWT, high-level features have been generated. We have

Fig. 2 Primate brain pattern with 27 directed edges created by

overlaying the topological map of the brain network in Fig. 1 on a

grid

Table 2 Sequential extraction

of 27 bits using signum function

with hyperparameters

corresponding to the initial and

final spatial positions of each

directed edge of the primate

brain pattern

No Equation No Equation No Equation

1 sig m 10; 4ð Þ;m 9; 4ð Þð Þ 10 sig m 5; 1ð Þ;m 5; 4ð Þð Þ 19 sig m 4; 4ð Þ;m 2; 5ð Þð Þ
2 sig m 9; 4ð Þ;m 8; 4ð Þð Þ 11 sig m 4; 2ð Þ;m 4; 4ð Þð Þ 20 sig m 4; 4ð Þ;m 3; 5ð Þð Þ
3 sig m 8; 4ð Þ;m 7; 4ð Þð Þ 12 sig m 2; 1ð Þ;m 4; 2ð Þð Þ 21 sig m 4; 4ð Þ;m 3; 6ð Þð Þ
4 sig m 7; 4ð Þ;m 5; 1ð Þð Þ 13 sig m 2; 1ð Þ;m 4; 4ð Þð Þ 22 sig m 3; 5ð Þ;m 2; 5ð Þð Þ
5 sig m 7; 4ð Þ;m 6; 3ð Þð Þ 14 sig m 6; 3ð Þ;m 4; 6ð Þð Þ 23 sig m 3; 6ð Þ;m 2; 5ð Þð Þ
6 sig m 7; 4ð Þ;m 5; 4ð Þð Þ 15 sig m 5; 4ð Þ;m 3; 6ð Þð Þ 24 sig m 2; 5ð Þ;m 1; 7ð Þð Þ
7 sig m 6; 3ð Þ;m 5; 1ð Þð Þ 16 sig m 5; 4ð Þ;m 4; 4ð Þð Þ 25 sig m 3; 6ð Þ;m 1; 7ð Þð Þ
8 sig m 5; 1ð Þ;m 2; 1ð Þð Þ 17 sig m 4; 4ð Þ;m 3; 4ð Þð Þ 26 sig m 4; 6ð Þ;m 3; 6ð Þð Þ
9 sig m 5; 1ð Þ;m 4; 2ð Þð Þ 18 sig m 3; 4ð Þ;m 2; 5ð Þð Þ 27 sig m 4; 6ð Þ;m 1; 7ð Þð Þ
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used high oscillatory transformations using TQWT since

the best performance has been acquired by using these

parameters according to the experiments. The used oscil-

latory and redundancy values were given in the TQWT

manual (Selesnick 2011), and the number of levels (J) has

been calculated using 70 (the length of the used overlap-

ping block for PBP).

Step 2: Extract features from subbands and EEG signals

by deploying the PBP function.

f 1 ¼ PBPðsignalÞ ð8Þ
f hþ1 ¼ PBP sbhð Þ; h 2 f1; 2; . . .; 18g ð9Þ

Step 3: Create the final feature vector by merging the

generated features.

X jþ 448 � t � 1ð Þð Þ ¼ f t jð Þ; t 2 1; 2; . . .; 19f g; j
2 1; 2; . . .; 448f g ð10Þ

Step 4: Choose the most discriminative features by

deploying INCA. INCA, developed by Tuncer et al. (2020),

is an iterative version of the neighborhood component

analysis feature selection function that uses two parame-

ters: loss value generator and range of the features. In this

method, the weights of the features are determined by

NCA. After that, classification is made starting from the

most weighted feature, and reclassification is performed by

increasing the number of features in each iteration. At the

point where the best classification performance is reached,

the optimum number of features is determined but NCA

cannot select the optimal feature vector. Therefore, an

improved version of the NCA must be used. In this

research, INCA feature selector has been used. INCA is a

parametric feature selection function. To control the cost of

unlimited iterative searching, we define the INCA iteration

range in the model as 100 to 1000; i.e., the feature selector

will evaluate 901 feature vectors by using this range.

Weighted KNN is used here to calculate the misclassifi-

cation rate of each feature vector, and those with the

minimum misclassification rates will be selected as the

optimal feature vectors. The dataset has 16 channels, and

INCA is applied to each channel. INCA chooses a variable

number of features from each channel to determine the

optimal feature vector. The number of selected features for

each channel is tabulated in Table 3.

The dimensions of the chosen optimal features per the

channels are given. These selected optimal feature vectors

are then fed to the classifier.

Step 5: Classify the chosen features by deploying KNN

with the following attributes:

k: 10,

Distance weight: Squared inverse,

Distance: Euclidean,

Fig. 3 Illustration of the proposed classification model. AD
Alzheimer’s disease; Concat: concatenation; EEG electroencephalog-

raphy; f extracted features; INCA iterative neighborhood component

analysis; PBP primate brain pattern; sb: subband; TQWT tunable

Q-factor wavelet transform (TQWT)

Table 3 The number of selected features per channel

No Number of features No Number of features

1 153 9 396

2 120 10 672

3 134 11 103

4 165 12 192

5 107 13 437

6 107 14 834

7 120 15 283

8 210 16 189
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These attributes have defined them as weighted KNN

classifiers. Two validation techniques were used in this

study. These are the tenfold CV and the LOSO CV,

respectively. In the tenfold CV method, the entire dataset is

divided into ten equal groups, and each group is used in

both the test and training phases. In LOSO CV, subject-

based grouping is done. In other words, a subject is tested

in each iteration. Then, the remaining subjects are used for

training.

Step 6: Apply IMV to the calculated results to obtain the

general results. The used EEG dataset has 16 channels. By

deploying Steps 1–5, channel-wise results are calculated.

The calculated 16 prediction vectors are then used to cal-

culate the general results. IMV, developed by Dogan et al.

(2021), is used to conduct optimal majority voting. In IMV,

prediction vectors and accuracy values of all channels are

used. The method calculates a general result using the

prediction vectors of the channels with the highest accu-

racy. A minimum of three channels must be used for

majority voting. After that, majority voting is performed in

each iteration until the total number of channels is reached.

At the last stage of the application, classification accuracies

are calculated using voted prediction vectors. The pseu-

docode of IMV is given below.

Experiments

The PBP-based EEG classification model was implemented

in MATLAB (2021b) environment on a personal computer

with Intel� CoreTM i9-9900 Processor (16 GB memory,

3.6 GHz) using Microsoft Windows 10.1 Professional

operating system. (None of the cores of the graphical

processing unit was been used to implement the model.)

Standard performance metrics were used to evaluate model

classification performance: sensitivity, specificity, and

accuracy. The channel-wise results of tenfold and LOSO

CV, without IMV, are summarized in Table 4. The best

classification accuracy was obtained by deploying a tenfold

CV on the 15th channel EEG signal.

The best result for each metric is shown in bold font.

The best single-channel classification accuracy rates with

tenfold CV (99.40%) and LOSO CV (88.54%) were

obtained from the 15th and third EEG signal channels,

respectively. Using IMV, the best general classification

results with tenfold CV (100% sensitivity, 100% speci-

ficity, and 100% accuracy) and LOSO CV (97.25% sensi-

tivity, 84.03% specificity, and 92.01% accuracy) were

obtained by using the top 7 and 9 channels, respectively.

Confusion matrices of the best-voted results are shown in

Fig. 4.

Our combined ML classification model possessed linear

time complexity that can be decomposed into four funda-

mental phases below.

Feature extraction TQWT and PBP were sequentially

used to generate feature vectors. TQWT is a multilevel

transformation that decreases the signal length at each

level. PBP is a handcrafted local texture feature extractor

with time complexity (PBP) = O nð Þ, where n is the length

of the used signal. The time complexity of this stage is

O nlognð Þ.
Feature selection The INCA feature selector uses an

iteration and loss value generator. The computation com-

plexity is O ilkð Þ Where i is the number of iterations; l, the

01: Sort by descending and obtaining qualified indexes ( ).

02: for h=3 to 16 do // 16 defines number of channels

03: for i=1 to length( ) do

04: for j=1 to h do

05: ;

06: end for j

07: // Generate voted prediction vector.

08: end for i

09: end for h

10: Compute classification accuracies using the voted prediction vectors ( ).

11: Choose the maximum accurate result as an optimal voted result.       

Algorithm 1. Iterative majority voting procedure. 

Input: Prediction vectors of all channels ( ) and accuracies ( ) of all channels.

Output: The optimal voted result.
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computational complexity of the used classifier; k, the

computational complexity multiplier of the neighborhood

component analysis (Goldberger et al. 2004a).

Classification KNN classifier was used both as a loss

value calculator in the INCA feature selector and the

model’s classification method. The time burden of the

classification phase is O lð Þ.
Iterative majority voting This is the simplest phase of

the classification model. We used an iteration to obtain the

maximum voted accuracy. In IMV, the mode function was

used to calculate voted results and has a time complexity

equal to O ið Þ.

In total, the model’s time complexity is

O nlognþ ilk þ 1 þ ið Þ ffi O nlognþ ilkð Þ, which is linear,

as mentioned.

Discussion

We have presented a new PBP local feature extractor based

on a connectome-inspired directed graph derived from a

simplified topological map of the neuronal pathways

involved in visual object recognition and motor response in

the primate brain. This was combined with TQWT for

multilevel texture feature extraction. INCA was applied to

choose the most valuable features in each of the 16 EEG

signal channels using the KNN classifier as the loss value

generator. In this dataset, the number of the features in the

optimal feature vectors is selected by INCA for channels

(see Table 2). KNN was used to classify the selected fea-

tures using tenfold and LOSO CV, which yielded 100%

and 92.01%, respectively, after IMV of all 16-channel EEG

signal classification results. Indeed, these general accura-

cies rates were numerically higher than the best channel-

wise accuracies of 99.40% and 88.54% attained with ten-

fold and LOSO CV, respectively.

In the model, we chose to use a modified KNN,

weighted KNN, as a loss vector calculator during INCA

feature selection and as the classifier for binary classifica-

tion of each EEG signal into AD vs. normal. Before

choosing the KNN method, it was tested in other classi-

fiers, and its performances were observed. In the classifier

determination phase, the classifiers in the MATLAB

(2021b) Classification Learner Toolbox have been tested.

The classification performance of the weighted KNN

compared favorably against other classifiers (bi-layered

ANN (Khan et al. 2022), logistic discriminant (Cinbis et al.

2011), subspace KNN (Xing et al. 2018), weighted KNN

(Zuo et al. 2008), kernel Naı̈ve Bayes (Sharma and

Mukhopadhyay 2021), logistic regression (Li and Jimenez

2018), cubic SVM (Jain et al. 2018), medium tree (Lamba

et al. 2020)) in the MATLAB (2021b) classification learner

when deployed with a tenfold CV on the common 15th

channel EEG signal (Fig. 5).

As given in Fig. 5, the best classification result was

obtained with the kNN algorithm. For this reason, kNN

method was used as a loss vector calculator in iterative

feature selection and classifier in the study. The classifi-

cation performance of the presented PBP-based model was

also compared against other AD detection models using the

same dataset in the literature Table 5. As can be seen, our

proposed model attained satisfactory results of over 92%

accuracy rates with the two validations model. Of note, the

100% AD classification accuracy achieved using a tenfold

CV is the among all studies.

Table 4 Channel-wise classification results (%) of model using ten-

fold and leave-one-subject-out cross-validations

Tenfold CV Leave-one-subject out CV

Channel Sen Spe Acc Sen Spe Acc

1 95.25 87.07 92.01 82 79.47 81

2 98.50 85.17 93.21 94.25 64.64 82.50

3 96.25 93.16 95.02 91 84.79 88.54

4 95.25 92.78 94.27 78 69.58 74.66

5 96.75 71.48 86.73 94 56.27 79.03

6 94.75 92.40 93.82 85.75 68.82 79.03

7 98.50 91.25 95.63 77.25 26.62 57.16

8 93.50 58.94 79.79 85.75 33.46 65.01

9 91.25 92.40 91.70 88 76.05 83.26

10 98.50 98.48 98.49 76.50 55.13 68.02

11 97.50 99.24 98.19 87.50 74.90 82.50

12 97.75 93.92 96.23 77.50 56.27 69.08

13 96.75 50.95 78.58 93.50 34.60 70.14

14 97.75 93.54 96.08 80.25 71.86 76.92

15 99.25 99.62 99.40 89.25 48.67 73.15

16 95 98.48 96.38 63.25 58.17 61.24

**AD Alzheimer’s disease; Acc accuracy; CV cross-validation; HC
healthy control; MCI mild cognitive disorder; Sen sensitivity; Spe:

specificity

Fig. 4 Confusion matrices of the computed voted results using tenfold

cross-validation (a) and leave-one-subject-out cross-validation (b).

AD, Alzheimer’s disease
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As can be seen from Table 5, the studies performed by

Abásolo et al. (2006), Escudero et al. (2006), and Simons

et al. (2018) generally make entropy-based calculations.

Although these methods have low computational com-

plexity, the achieved accuracy values are low. When other

studies using the same dataset were examined, a TQWT-

based method was proposed by Puri et al. (2022b). An

accuracy value of 96.20% was achieved with this method.

This accuracy value is 100% and higher in our study. In

addition, empirical mode decomposition and Hjorth

parameters are used in another method proposed by Puri

et al. (2022a, b, c). In this paper, an accuracy of 92.90%

was achieved with the tenfold CV method. In the previous

study by the same author (Puri et al. 2022c), spectral

entropy and Kolmogorov complexity were used and pro-

vided an accuracy of 95.6%. In our study, 100% accuracy

was achieved with the tenfold CV method. In addition, the

LOSO CV strategy was applied in this study, and an

accuracy of 92.01% was obtained in subject-based classi-

fication. As seen from the Table, our method produces high

accuracy values and LOSO CV results that are important

for real-world applications. In addition, the developed

model has low computational complexity, making it usable

for real-world applications.

The benefits and limitations of the presented PBP-based

model are listed.

Benefits:

• A public AD EEG dataset was used in this work. We

have chosen to work on AD detection as it is the most

commonly seen dementia.

• The connectome of the primate brain-inspired us to

create a novel PBP for handcrafted feature extraction.

This was combined with TQWT for multilevel feature

generation. INCA was used to choose highly distinctive

features that were fed to weighted KNN for classifica-

tion. Finally, IMV was used to obtain the optimal voted

(general) result.

Fig. 5 Comparison of accuracies of different classifiers on the

common 15th channel EEG signal using tenfold CV. The classifiers

were deployed with default settings. ANN, bi-layered ANN; D,

logistic discriminant; E subspace kNN; kNN, weighted kNN; NB,

kernel Naı̈ve Bayes (NB); R, logistic regression; SVM, cubic SVM;

T, medium tree

Table 5 Comparison of the proposed model with other Alzheimer’s

disease detection models using the same dataset in the literature

Study Year Method Split ratio Results

(%)

Abásolo et al.

(2006)

2006 Spectral entropy

and sample

entropy

– Acc.:77.27

Spe.:90.91

Sen.:63.64

Auc.:83.47

Escudero et al.

( 2006)

2006 Multiscale

entropy

– Acc.:90.91

Spe.:90.91

Sen.:90.91

Auc.:93.39

Simons et al. (

2018)

2018 Fuzzy entropy – Acc.:86.36

Sen.:90.91

Spe.:81.82

Auc.:85.95

Puri et al.

(2022b)

2022 TQWT, Katz’s

fractal

dimension,

Tsallis entropy,

Relyi’s entropy,

and kurtosis,

ensemble

bagged tree

Tenfold

CV

Acc: 96.20

Sen.:90.49

Spe.:97.50

Pre.:93.48

FScr.:95.09

Mcc.:87.37

Puri et al.

(2022a, b, c)

2022 Empirical mode

decomposition

and Hjorth

parameters

using Kruskal–

Wallis test,

Least Square

SVM

Tenfold

CV

Acc: 92.90

Sen.:94.32

Spe.:94.34

Pre.:94.33

FScr.:94.32

Auc.:98.93

Puri et al.

(2022c)

2022 Spectral Entropy

and

Kolmogorov

Complexity,

SVM

Tenfold

CV

Acc.:95.6

Pre.:95.2

Rec.:95.2

FScr.:95.1

Auc.:98.3

Our model Primate brain

pattern

1. Tenfold

CV

2. LOSO

CV

tenfold CV

Acc: 100

Sen: 100

Spe: 100

LOSO-CV

Acc: 92.01

Sen: 97.25

Spe: 84.03
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• tenfold and LOSO CV were used to compute channel-

wise and general results.

• Our model attained high accuracy for detection of AD

vs. healthy control: 92.01% and 100% classification

accuracies using LOSO CV and tenfold CV,

respectively.

• The model has an undemanding linear computational

complexity of Oðnlognþ ilkÞ.
• The presented PBP-based model is efficient and

straightforward. Therefore, researchers/developers can

use this model to solve their classification problems.

Limitations:

• The EEG dataset comprising 663 observations in 23

subjects is relatively modest.

• We used a conventional classifier in our experiments to

test the classification capability of the generated

features. Hyperparameters of the classifier can be

further optimized, or a more powerful classifier can

be deployed instead.

This model can be tested on a larger EEG dataset as

future works. Similarly, the proposed system could

also be evaluated with other neurological diseases

such as Parkinson’s disease, epilepsy, and stroke.

Future work to develop a deep learning model as the

classification unit and a cloud system for AD detec-

tion is also under consideration. We have used LOSO

to better approximate real-world classification results

with the model (Kunjan et al. 2021), which provides a

more realistic expectation of its performance when

deployed for screening AD in the clinic.

Conclusions

We have developed an AD detection model that may be

incorporated into automated AD diagnosis systems to help

clinicians screen for the disease. The model is computa-

tionally lightweight and can be easily implemented on

standard hardware. Key elements of the model include

multilevel feature extraction, iterative feature selection,

classification, and IMV. The model yielded 92.01% and

100% accuracies using LOSO and tenfold CVs, respec-

tively, which attests to its discriminative utility for AD vs.

healthy classification. In addition, we are the first to seek

inspiration from and have successfully used the primate

brain’s connectome to develop a machine learning classi-

fication model. Hopefully, our experience and results with

this connectome-inspired graph-based model will motivate

other researchers to experiment with this promising new

approach.
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Appendix

Tunable Q-factor wavelet transform (TQWT)

As a representative wavelet transform expressing wavelets

in the frequency domain, discrete-time signals of finite

length are analyzed using radix-2 FFTs (Selesnick 2011).

Compared to traditional Q-fixed wavelet transforms,

TQWT has the excellent feature of estimating the Q factor

easily and continuously adjusting it depending on the dif-

ferent oscillations of different signals. Moreover, success-

ful error feature generation using TQWT-based parsing

relies on appropriate TQWT parameters such as parsing

level, Q factor, and redundancy (Kong et al. 2018). As

noted, TQWT takes three parameters (Q: oscillatory value,

r: redundancy, J: number of level). The first parameter is Q

and it assigns number of oscillations. If Q is 1, there is no

oscillations.

TQWT contains two filter banks and these two-channel

filter banks consist of a low-pass and a high-pass channel.

The low-pass channel has a low-pass filter (LPF) followed

by a low-pass scaling factor (LCF). The high-pass channel

has a high-pass filter (HPF) followed by a high-pass scaling

factor (HCF). The ratio of the center frequency (CF) of

each subband to the bandwidth is equal to the Q factor used

to implement the TQWT. The following expressions can be

used to calculate the MF and bandwidth of a subband

(Selesnick 2011):

CF Jð Þ ¼ ðLCFÞJ 2 � ðHCFÞ
4ðLCFÞ

� �
fs ð1Þ

BandwidthðjÞ ¼ ðHCFÞðLCFÞJ�1

4
ð2Þ

Equations 1 and 2 define the effect of scaling factors on

the center frequency and bandwidth is observed. Herein j

represents the subband number where 1 B J B J ? 1 fs is

the sampling frequency. The Q factor is controlled by R,

and its connection is given in Eqs. 3 and 4 (Zhang et al.

2001).
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LCF ¼ 1 � HCF

R
ð3Þ

HCF ¼ 2

Qþ 1
ð4Þ

Iterative neighborhood component analysis
(INCA)

In order to explain INCA better, we first gave information

about NCA in this section. Neighborhood component

analysis (NCA) is a technique for reducing dimensions and

selecting features. In machine learning applications, it is

crucial to measure features. In classification studies, NCA

is widely used as one of the most successful learning

algorithms. Using NCA, classification operations are car-

ried out by learning the projections of the vectors that

optimize the nearest neighbor classifier’s accuracy criteria.

As another option, the NCA can select a linear projection

that optimizes the performance of the nearest neighbor

classifier within the projection area (Goldberger et al.

2004a.

NCA is a method that aims to learn the Mahalanobis

distance to be used in classification and performs the

classification using this distance. While the NCA method

calculates Mahalanobis distance, it learns the projection

matrix and prevents the inverse operation of the matrix.

This method uses the Mahalanobis distance formula

described below to define the Mahalanobis distance.

disðyi � yjÞ ¼ ðPTyi � PTyjÞ
TðPTyi � PTyjÞ ð5Þ

In this equation, P is defined as the projection matrix

that transforms the data. Thus, NCA moves from learning

the Mahalanobis distance to learning the P matrix.

A data in the training data determines the class label by

choosing another data as a neighbor. Data with transformed

probability values are defined using softmax regression

with euclidean distances.

pij¼
expð�kPTyi � PTyjk

2ÞP
k 6¼1 expð�kPTyi � PTyjk

2Þ
; pii ¼ 0 ð6Þ

Based on the stochastic selection rules, the probability

of correctly classifying the data is calculated, and the set of

data in the same class is displayed.

pi¼
X

j 2 cipij ð7Þ

Ci¼ jjzj ¼ zi
� ��

ð8Þ

NCA then calculates the P matrix by maximizing the

number of correctly classified points.

f Að Þ ¼
X
i

pi ¼
X

i
X

j 2 cipij ð9Þ

The f value that changes according to the P matrix gives

rise to the following gradient rule.

of

oA
¼ 2

X
iðpi

X
kpikðyi � yjÞðyi � yjÞT

X
j

2 cipijðyi � yjÞðyi � yjÞTP ð10Þ

Thus, a gradient-based optimizer is used.

INCA is an improved version of the NCA feature

selector and it is an iterative version of the NCA. The main

objective of the INCA feature selector is to choose the

optimized number of features. To choose optimal feature

vector, we used a loop and loss function. The steps of the

INCA are given below.

Step 1 Calculate the qualified indexes by deploying the

NCA algorithm.

Step 2 Define a loop range to decrease time complexity.

Step 3 Choose feature vectors iteratively by using the

created loop.

Step 4 Apply the used loss function to the selected

feature vectors and create a loss array.

Step 5 Select the feature vector with minimum loss

value.

kNN

The KNN algorithm is one of the more common algorithms

used in general and one of the most widely known and

widely used algorithms. Given unlabeled test data, kNN

finds the closest k in the data set and then assigns the most

appropriate label (Guo et al. 2003).

KNN performs object classification according to the

closest training examples. A majority vote of its neighbors

classifies an object.

Two situations should be considered in the kNN algo-

rithm. The first of these is the correct choice of k, which

affects performance. When k values are large, it may ignore

small but important patterns. The other case is to calculate

the distance between test samples and neighbors (Zhang

2016). The most popular measure of distance in distance

functions are euclidean, manhattan, and Minkowski.

X1, X2, …, Xn and Y1, Y2, …, Yn represent the feature

vector where n is the dimension of the feature space. The

mathematical representation of the Euclidean distance is

given in Eq. 11.

diseuclideanðX; YÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn

i¼1
ðXi � YiÞ2

q
ð11Þ

The mathematical representation of the manhattan dis-

tance, which calculates the difference of two data points in

absolute value, is given in Eq. 12.

dismanhattanðX; YÞ ¼
Xn

i¼1
ðXi � YiÞ
�� �� ð12Þ
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The mathematical representation of the Minkowski

distance, where p [ (0, !) for a constant p, is given in

Eq. 13.

disminkowskiðX; YÞ ¼ ð
Xn

i¼1
ðXi � YiÞ
�� ��pÞ1=p

ð13Þ

Mode-based majority voting

Majority voting relies on the principle of normalization,

which is derived from the sum of the probabilities given by

the classifiers. As a result of this classification, the highest

probability class combination result is obtained within the

normalized result (Suen and Lam 2000).
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Siuly S, Alçin ÖF, Kabir E, Şengür A, Wang H, Zhang Y, Whittaker

F (2020) A new framework for automatic detection of patients

with mild cognitive impairment using resting-state EEG signals.

IEEE Trans Neural Syst Rehabil Eng 28:1966–1976

Smith K, Abásolo D, Escudero J (2017) Accounting for the complex

hierarchical topology of EEG phase-based functional connectiv-

ity in network binarisation. PLoS ONE 12:e0186164

Squires M, Tao X, Elangovan S, Gururajan R, Zhou X, Acharya UR

(2022) A novel genetic algorithm based system for the schedul-

ing of medical treatments. Expert Syst Appl 195:116464

Sridhar S, Manian V (2020) Eeg and deep learning based brain

cognitive function classification. Computers 9:104

Suen CY, Lam L (2000) Multiple classifier combination methodolo-

gies for different output levels. International workshop on

multiple classifier systems. Springer, pp 52–66
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