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Mesenchymal stromal cells (MSCs) have been extensively tested for the treatment of numerous clinical conditions and have
demonstrated good safety but mixed efficacy. Although this outcome can be attributed in part to the heterogeneity of cell
preparations, the lack of mechanistic understanding and tools to establish cell pharmacokinetics and pharmacodynamics, as well as
the poorly defined criteria for patient stratification, have hampered the design of informative clinical trials. We and others have
demonstrated that MSCs can rapidly undergo apoptosis after their infusion. Apoptotic MSCs are phagocytosed by monocytes/
macrophages that are then reprogrammed to become anti-inflammatory cells. MSC apoptosis occurs when the cells are injected
into patients who harbor activated cytotoxic T or NK cells. Therefore, the activation state of cytotoxic T or NK cells can be used as a
biomarker to predict clinical responses to MSC treatment. Building on a large body of preexisting data, an alternative view on the
mechanism of MSCs is that an inflammation-dependent MSC secretome is largely responsible for their immunomodulatory activity.
We will discuss how these different mechanisms can coexist and are instructed by two different types of MSC “licensing”: one that is
cell-contact dependent and the second that is mediated by inflammatory cytokines. The varied and complex mechanisms by which
MSCs can orchestrate inflammatory responses and how this function is specifically driven by inflammation support a physiological
role for tissue stroma in tissue homeostasis, and it acts as a sensor of damage and initiator of tissue repair by reprogramming the
inflammatory environment.
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INTRODUCTION
Mesenchymal stromal cell (MSC)-based therapies present promis-
ing immunosuppressive treatment options for a range of
inflammatory diseases. However, their clinical success remains
limited due to the incomplete understanding of the mechanism
in vivo and the lack of criteria for patient selection.
The current view on MSC-mediated immunosuppression relies

on extensive in vitro evidence demonstrating that MSCs can
modulate the recipient immune system through the production of
soluble factors. Furthermore, it is well documented that the
environment to which MSCs are exposed shapes their therapeutic
potential and that these cells require an inflammatory milieu to
exert immunosuppressive effects. However, little is known about
what happens to MSCs after they are administered to patients and
how therapeutic effects can be achieved without MSC
engraftment.
Recently, new insights have revealed that MSCs undergo

extensive apoptosis within a few hours after infusion and are

subsequently efferocytosed by local myeloid phagocytes, which
are the ultimate players in the anti-inflammatory response. MSC
apoptosis has therefore been recognized as a critical mechanism
of immunosuppression in vivo, challenging the long-established
hypothesis that viable cells are required for clinical efficacy.
However, it remains unclear whether multiple mechanisms of
action can take place simultaneously and whether viable and
apoptotic cells contribute differently to the therapeutic benefit in
different contexts.
Furthermore, the strong similarity of MSCs to tissue fibroblasts

raises questions about whether stromal cell apoptosis could
represent an innate mechanism to restore tissue homeostasis
after injury. In this review, we summarize the current knowledge
on the immunomodulatory and therapeutic properties of MSCs
with a focus on MSC apoptosis as a key mechanism to elicit
immunosuppression. We also propose the concept that stromal
cell apoptosis may be important in orchestrating tissue repair
responses by reprogramming the inflammatory environment.
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MESENCHYMAL STROMAL CELLS AND IMMUNOSUPPRESSION
MSCs are a heterogeneous cell population of mesenchymal origin
that can adhere to plastic and is characterized by the expression
of a set of surface antigens. However, these criteria are not specific
and cannot distinguish these cells from other stromal cell types,
such as conventional tissue fibroblasts. Despite the ambiguity in
their identification, MSCs have extensively been shown to exert
potent immunosuppressive effects, and their use as advanced
therapy medicinal products (ATMPs) is a matter of active
investigation.
MSC-derived therapeutic activity is the result of the broad

modulation of adaptive and innate immune cells. This intercellular
communication is complex and multifactorial, and the signaling
pathways involved are initiated indirectly through soluble factors
and directly through cell–cell contact (Fig. 1).
MSCs, as well as all stromal cells, are characterized by intrinsic

functional plasticity, which allows them to promptly adapt and
respond to the surrounding microenvironment. When exposed to
an inflammatory milieu, MSCs undergo functional reprogramming
and become activated to exert their immunomodulatory func-
tions, a process called “licensing” [1]. Several inflammatory
molecules are responsible for this licensing step, including
proinflammatory cytokines such as IFN-γ, TNF-α, and IL-1β, as
well as Toll-like receptor (TLR) ligands.
By analyzing the effects of different TLR ligands, it has been

proposed that MSCs can be polarized toward a mild proinflam-
matory phenotype (MSC1) in alternative to the more conventional
anti-inflammatory profile (MSC2) adopting criteria similar to those
used to functionally classify macrophages [2]. Earlier studies
showed that TLR-3 activation induces MSCs to secrete anti-
inflammatory molecules such as IL-10, indoleamine 2,3-dioxygen-
ase (IDO), prostaglandin E2 (PGE2), and IL-1RA. In contrast, TLR-4
stimulation induces an MSC1-like secretome that includes IL-6, IL-
8, and TGF-β [2–4]. However, the MSC1-like secretome consists of

molecules that are only mildly proinflammatory, and later studies
have failed to confirm these two profiles and showed different
outcomes depending on factors such as the MSC source, TLR
ligand concentration, the use of costimulatory molecules, and the
in vitro assay used to measure the immunomodulatory activity.
For example, the combination of TLR-3 and TLR-4 stimulation was
reported to strongly inhibit or enhance MSC-mediated immuno-
suppressive effects on T-cell proliferation in different studies [5, 6].
This discrepancy could be ascribed to the differences in the
culture conditions and in the length of MSC exposure to the
stimuli. In another study, longer exposure to LPS increased the
immunosuppressive capacity of MSCs in vitro and in vivo in a
mouse model of experimental autoimmune encephalomyelitis [7].
Recent work suggested that TLR-3 activation in MSCs promoted
regulatory T cell (Treg) formation and activity while reducing Th17
differentiation in vitro. This effect was mediated by the Notch
signaling pathway through the expression of suppressive factors
such as PGE2 [8–10]. PGE2 secretion was observed also to
be induced following TLR-4 ligation through activation of the NF-
κB signaling pathway [11].
The differential effects of TLR ligands on MSCs are associated

with the downstream activation of multiple immunomodulatory
signals. Similarly, IFN-γ, TNF-α, and IL-1β are released by activated
immune cells in the inflammatory environment and can activate
intracellular signaling pathways in MSCs, which results in the
production of several molecules responsible for acquired immu-
nomodulatory functions [12–14]. Accordingly, ex vivo licensing of
MSCs improves MSC-mediated immune modulation in several
animal models of inflammatory and autoimmune diseases
through T-cell inhibition, M2 macrophage polarization, and Treg
expansion [15–18]. Therefore, ex vivo/in vitro priming of MSCs
using proinflammatory stimuli can be used to study the
mechanism of MSC-derived immunomodulation and adopted as
a strategy to enhance the therapeutic target profile of MSCs.

Fig. 1 Mechanisms of MSC-mediated immunosuppression. Licensing of MSCs is essential to induce their immunosuppressive effects and can
occur via stimulation with cytokines such as IFN-γ, TNF-α, IL-1β or TLR ligands present in the inflammatory microenvironment, or via direct
cell–cell contact with activated cytotoxic T and NK cells. 1) MSCs licensed by soluble factors become potent immunomodulatory agents by
producing an immunosuppressive secretome characterized by molecules such as IDO, PGE2, TGF-β, TSG-6, IL-10, IL-6, HGF, soluble HLA-G and
IL-1RA and the activation of PD-1/PD-L1 and Fas/FasL signaling. In addition, the combination of soluble molecules present in the
microenvironment can activate apoptotic pathways in MSCs and their subsequent efferocytosis by monocytes/macrophages. 2) MSCs
licensed by cytotoxic cells undergo rapid caspase-dependent apoptosis and are efferocytosed by monocytes/macrophages, which become
anti-inflammatory cells releasing similar immunosuppressive molecules. Apoptotic MSCs further contribute to immunosuppression by
releasing caspase-dependent immunomodulatory factors. These licensing mechanisms result in efficient immunomodulation through the
inhibition of T cells, NK cells, and DCs, M2 macrophage polarization and Treg expansion. Figure generated using BioRender.com
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Mechanistically, IFN-γ- and TNF-α-induced licensing induces
MSC expression of immunomodulatory factors through the JAK-
STAT1 signaling pathway, which results in the suppression of T-cell
proliferation [19, 20]. On the other hand, IL-1β-primed MSCs exert
immunosuppressive effects through the release of factors such as
IL-6, TNF-α-stimulated gene 6 (TSG-6), and cyclooxygenase-2
(COX-2) via the NF-κB pathway [21, 22]. As a consequence, the
combination of proinflammatory cues to which MSCs are exposed
in the microenvironment and the resulting intracellular signaling
cascade determine the range of molecules responsible for
orchestrating the immunomodulatory activity [23]. The list of
factors secreted by MSCs in response to the cytokine-dependent
licensing is long and includes different cytokines, growth factors,
and metabolic enzymes.
Among immunosuppressive cytokines, TGF-β is a potent factor

released by MSCs with a broad activity that modulates immune
cell functions. TGF-β primarily acts on antigen-presenting cells
such as monocytes, macrophages, and dendritic cells (DCs) but
also plays a role in T and NK cells. In vitro, TGF-β is secreted by
MSCs, induces macrophage polarization toward the M2 pheno-
type, and improves the phagocytic ability of macrophages via
activation of the Akt/FoxO1 pathway [24]. This phenomenon has
been further explored in a mouse model of sepsis whereby the
infusion of MSCs engineered to constituently overexpress TGF-β1
attenuated tissue damage, reduced the inflammatory response by
decreasing macrophage infiltration in organs, and induced a
phenotypic shift in macrophages from proinflammatory CD86+
cells to the pro-resolution CD206+ M2 phenotype [25]. Further
in vitro studies reported that MSCs can promote the generation of
Tregs through the release of TGF-β directly or indirectly through
the induction of M2 macrophages [26–30], and this mechanism is
crucial to reducing Th2-driven allergic responses in a mouse
model of asthma [31, 32]. In addition, MSC-derived TGF-β inhibits
CD8+ T-cell proliferation and function [33] and suppresses NK cell
proliferation, cytokine secretion, and cytotoxicity through the
induction of a regulatory senescent-like NK cell phenotype
[34, 35]. Furthermore, MSCs suppress the expression of proin-
flammatory cytokines such as TNF-α by mast cells and inhibit
B-cell maturation and IgE secretion in an atopic dermatitis mouse
model, thus suggesting the potential of MSC treatment for allergic
disorders [36].
IL-10 has also been described as one of the main cytokines

involved in the immunosuppressive signaling of MSCs. Although
its levels are low, IL-10 is expressed by other cell types in response
to MSC-derived molecules such as PGE2 and IDO. For example, M2
macrophages that are polarized by MSCs secrete high levels of IL-
10 [11, 37, 38]. In these conditions, autocrine IL-10 secretion by M2
macrophages further promotes the polarization of macrophages
into an M2 phenotype, creating a positive-feedback loop [39].
Furthermore, MSCs induce a regulatory phenotype in DCs, that
enables them to suppress T-cell activation and proliferation and
promote Treg proliferation through IL-10 secretion [40, 41]. Given
the potent immunomodulatory capacity, IL-10 is an appealing
therapeutic target, and its overexpression in MSCs has proven of
therapeutic benefit as neuroprotective and anti-inflammatory in a
rat model of ischemic stroke [42].
IL-6 represents a further cytokine in MSC immunosuppressive

repertoire. MSC-derived IL-6 has been reported to delay apoptosis
in lymphocytes and neutrophils [43, 44]. IL-6 mediates PGE2
release from MSCs and orchestrates subsequent immunosuppres-
sion in a preclinical model of arthritis. Accordingly, IL-6-deficient
MSCs could not deliver therapeutic effects in this model [39].
Furthermore, the ability to inhibit DC differentiation and induce
functional differentiation of monocytes toward IL-10-producing
cells has been attributed to this cytokine [26, 39].
In addition to IL-6, HGF expressed by MSCs has been shown to

inhibit monocyte differentiation into DCs and enhance the
differentiation of mature DCs into regulatory DCs [39, 45].

Regulatory DCs have strong phagocytic activities and inhibit
T-cell proliferation in vitro and in an acute lung injury model. MSCs
engineered to overexpress HGF reduced DC accumulation and
maturation in vivo [45]. HGF secreted from MSCs induces
monocytes to produce high levels of IL-10, and this monocyte
population suppresses activated CD4+ T-cell proliferation and
modulates the T-cell cytokine profile from Th1 to Th2 [38, 39]. In
addition, MSCs have been shown to modulate in vitro the
conversion of fully differentiated Th17 cells into functional Tregs
through an HGF-dependent mechanism, altering the Th17/Treg
cell balance and reducing the levels of IL-17 and IL-6 but
increasing the expression of IL-10 [46].
Importantly, the immunosuppressive MSC secretome includes

IDO, which promotes the conversion of tryptophan into kynur-
enine, depleting the environment of an essential amino acid and
favoring the accumulation of its toxic kynurenine metabolites. As a
result, MSC-derived IDO suppresses immune cell activation and
proliferation, which affects a wide range of targets, including
T cells, B cells, NK cells, and DCs [12, 47–50] In addition, IDO
activity promotes the differentiation of monocytes into M2
macrophages, resulting in IL-10 release [47]. In vivo, IDO increases
the formation of Tregs and promotes immunological tolerance
through a Th2 cytokine profile in a kidney allograft model [51, 52].
The IDO pathway is also prominently induced when MSCs
undergo apoptosis in vivo and in vitro, which is a mechanism
that is critical for their therapeutic function [53, 54].
PGE2 also plays an important role as an MSC effector molecule.

PGE2 is constitutively secreted by MSCs at low levels, but its
secretion increases in response to inflammatory mediators such as
IFN-γ, TNF-α, and IL-1β [55, 56]. PGE2 induces M2 macrophage
polarization in vitro and its effects have been demonstrated in a
mouse model of sepsis, whereby is responsible for increasing IL-10
and decreasing TNF-α and IL-6 expression in macrophages
[11, 57]. Similarly, coculturing MSCs with macrophages and
mature DCs results in the polarization of macrophages and
mature DCs toward an anti-inflammatory and phagocytic pheno-
type through the PGE2 axis, and the induction of this regulatory
phenotype is abolished when PGE2 is inhibited [58]. PGE2 also
exerts inhibitory effects on CD8+ T-cell proliferation and this has
been confirmed using MSCs from multiple sources [59]. Further-
more, PGE2 suppresses Th17 cells in MSC-peripheral blood
mononuclear cell (PBMC) cocultures, thus modulating the Th17/
Treg balance [27]. This PGE2-dependent inhibition of CD4+ T cells
differentiation into Th17 cells is consistent with previous studies
showing that MSCs inhibit the production of IL-17, IL-22, IFN-γ,
and TNF-α by fully differentiated Th17 cells via a mechanism that
is at least partly mediated by PGE2 [60]. Finally, the inhibitory
effects of MSCs on the proliferation and cytotoxicity of NK cells are
dependent on PGE2 and IDO. Interestingly, there is evidence that
this inhibition is increased when cells are in direct or close contact,
suggesting the presence of additional mechanisms [50, 61].
Another soluble molecule with potent anti-inflammatory

activities that is used by MSCs is TSG-6. TSG-6 is a 30 kD
glycoprotein with anti-inflammatory properties that inhibits the
TLR-2/NF-κB signaling pathway. It has been shown that the
expression of this molecule correlates with the efficacy of MSCs in
controlling sterile inflammation in mouse models of corneal injury,
bleomycin-induced lung damage, and zymosan-induced peritoni-
tis [62]. Interestingly, MSCs can self-activate caspase-dependent IL-
1 signaling to enhance the secretion of TSG-6 [63], thus linking a
therapeutically critical immunomodulatory molecule to the
apoptotic cascade.
IL-1RA, a competitive inhibitor of IL-1α and IL-1β, has also

been reported to be expressed in MSCs, and this factor inhibits
the secretion of TNF-α by activated macrophages and promotes
M2 polarization in vitro and in vivo. MSC-derived IL-1RA
also suppresses CD4+ T‐cell activation and B‐cell differentiation
[64–66].
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MSCs have been shown to directly interfere with the function of
cytotoxic cells. MSCs can target NK cell-mediated cytolysis and IFN-
γ secretion by releasing soluble forms of HLA-G in an IL-10-
dependent manner [67]. HLA-G, a non-classical HLA Ib molecule, is
a specific ligand of KIR2DL4 (CD158d), which is mainly expressed
by CD56bright/CD16dim/− NK cells. Other HLA-G receptors include an
immunoglobulin-like transcript (ILT)2 (CD85j, LILRB1), which is
expressed by lymphoid cells. HLA-G also binds to CD160 on NK
cells, endothelial cells, and T lymphocytes. As a result of these
interactions, soluble HLA-G molecules inhibit the cytolytic func-
tions of NK cells and T lymphocytes by downregulating perforin
and Stat3 [68]. Finally, soluble HLA-G molecules interfere with the
secretion of several chemokines by NK cells [69] and promote Treg
expansion [67, 70].
Further mechanisms by which MSCs impair T-lymphocyte

function involve direct cell–cell contact via receptor‒ligand
interactions, such as through PD-1/PD-L1 signaling. This mechan-
ism also induces M2-like polarization of monocytes and induces
the expression of PD-L1 in macrophages [71–73]. In addition, by
activating the Fas-FasL pathway, MSCs induce T-cell apoptosis, as
demonstrated in an autoimmune model using FasL-knockout
MSCs. The mechanism has been further elucidated in vitro
through the transient knockdown of FasL, which revealed that
activation of the Fas pathway induced MSC expression of MCP-1,
promoting T lymphocyte recruitment and TGF-β expression in
macrophages [74]. The transient effect of Fas-FasL pathway
activation on T cells in a graft-versus-host disease (GvHD) model
was improved by overexpressing FasL on MSCs in vitro and
in vivo, suggesting an interesting therapeutic strategy for the
treatment of GvHD [75, 76].
In addition to the classical cytokine-based licensing of MSCs,

cell–cell contact mechanisms contribute to MSC activation and
subsequent immunomodulation. Recent evidence demonstrated
that activated cytotoxic cells mediate indirect immunomodulatory
effects on MSCs by inducing them to undergo apoptosis [53]. As a
result, apoptotic MSCs are phagocytosed by monocytes/macro-
phages, which acquire an anti-inflammatory phenotype [54]. This
cytokine-independent pathway for the induction of M2 macro-
phage polarization has also been confirmed in vivo [77, 78]. This
mechanism resolves the long-standing conundrum of why the
majority of systemically infused MSCs rapidly disappear despite
their long-lasting immunomodulatory and therapeutic effects. In
fact, after initially being trapped in the lungs, most cells become
undetectable within 24 h following their infusion [77, 79].
Importantly, the critical role of apoptosis is consistent with the
several immunosuppressive molecules that have been identified
in previous studies, and a large proportion of these factors can be
directly or indirectly triggered after caspase activation. Finally,
these findings further highlight the key role of monocytes/
macrophages as the ultimate mediators of the immunosuppres-
sive effects of MSCs [53].

REGULATED CELL DEATH AND INFLAMMATION
The emerging concept that MSC-mediated immunomodulation is
derived from the activation of cell death pathways informs novel
molecular players and instructs new approaches to enhance MSC
therapeutic efficacy. Importantly, it provides insights into the role
of cell death-mediated immunomodulation in the context of MSC
therapy and opens questions on the impact of different types of
MSC death on the immune system.
It has long been shown that dying and dead cells are potent

immunomodulatory agents in the microenvironment through a
variety of mechanisms ranging from the intricate process of
efferocytosis to the active secretion of immunomodulatory
molecules. Their effects on the immune system are numerous
and reflect the different ways in which cells initiate and execute
their own death.

In general, cell death can occur in two ways: as a passive and
unregulated process caused by tissue injury referred to as
accidental cell death or as a result of highly regulated mechanisms
involving different signaling cascades to elicit a variety of effector
functions, which is referred to as regulated cell death (RCD). The
accidental form of cell death, also known as necrosis, occurs when
the cellular stress is so severe (e.g., highly toxic compounds,
starvation, DNA damage) that the cell fails to maintain intracellular
homeostasis. These conditions rapidly lead to cell swelling,
rupture of the plasma membrane and the subsequent passive
release of intracellular contents into the microenvironment, thus
inducing inflammation and resulting in tissue damage.
In the case of RCD, the scenario is more complex. Many types of

RCD have been described thus far, and their molecular signatures
are well defined [80]. Generally, RCD can be classified as
immunogenic or immune-silent based on its ability to trigger
adaptive immune responses and contribute to the exacerbation or
resolution of inflammation.

Necroptosis and pyroptosis: the immunologically active forms
of cell death
Necroptosis is a programmed form of necrosis initiated by the
activation of death receptors such as Fas and tumor necrosis
factor receptors (TNFR1 and TNFR2), Toll-like receptors (TLR-3 and
TLR-4), and nucleic acid sensors in a context in which caspase
activation is inhibited [81]. The necroptotic signaling cascade
ultimately results in the activation of mixed lineage kinase
domain-like pseudokinase (MLKL) and its insertion into the plasma
membrane, which mediates membrane rupture and the leakage
of intracellular contents [82].
Similar to necroptosis, pyroptosis also results in the loss of

plasma membrane integrity [83]. Pyroptotic cell death is initiated
by danger- or pathogen-associated molecular patterns (DAMPs or
PAMPs), which interact with intracellular sensors to activate
protein complexes called inflammasomes. Inflammasomes are
responsible for activating caspase-1, which in turn cleaves and
activates the proforms of the inflammatory cytokines IL-1β and IL-
18. Caspase-1 further cleaves the gasdermin D (GSDMD) protein,
which forms pores in the cell membrane, allowing the release of
IL-1β and IL-18 [83].
Through the release of danger signals and cytokines from

necroptotic and pyroptotic cells, the immune system is alerted to
the potential danger and activates a large variety of innate
proinflammatory pathways that result in the generation of innate
and adaptive immunity, culminating in the establishment of
immunological memory.
Interestingly, a recent study investigating the secretome of

human myeloid cells undergoing TNF-induced apoptosis and
necroptosis revealed that necroptotic but not apoptotic cells use
lysosomal exocytosis to release intracellular contents [84]. This
strategy, which had already been described as a membrane repair
mechanism, could be a modality to communicate with immune
cells and deliver proinflammatory cues before cell disintegration.
In a different study, cytokine production continued in necroptotic
cells following the loss of plasma membrane integrity, providing
further evidence that dying cells contribute to the amplification of
the inflammatory response through differently regulated mechan-
isms [85].
Activation of the immune system is a downstream effect of

these types of RCD and is fundamental during microbial
infections. In these circumstances, necroptosis and pyroptosis
serve as mechanisms to enhance host defense [86–88]. Further-
more, immunogenic RCD has been demonstrated to be involved
in the pathogenesis of a number of inflammatory diseases, as well
as in the tumor microenvironment [89].
In the context of cancer, necroptotic cell death is strongly

connected with antitumor immunity, and necroptotic cells have
been explored as a treatment to fight cancer progression.
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Necroptotic cancer cells can potently activate DCs through the
release of IL-1α and DAMPs in vitro [90, 91] and promote T-cell
activation through robust cross-priming, resulting in tumor attack
in vivo [92, 93]. In addition, the use of necroptotic cells as a
vaccination strategy efficiently induced antitumor immune
responses [91]. These studies demonstrated that the antitumor
immune effect of necroptotic cells was derived mainly from the
activation of the proinflammatory NF-κB pathway, indicating the
substantial role of dying cell-derived proinflammatory molecules
in stimulating immunity. Similarly, the induction of pyroptosis in
tumors enhances the phagocytosis of pyroptotic cancer cells by
tumor-associated macrophages and activates cytotoxic immune
cells, thereby intensifying tumor immune responses [94]. Con-
sistently, by using a biorthogonal chemical system, a different
study demonstrated that the selective induction of pyroptosis in
less than 15% of tumor cells in vivo resulted in massive tumor
regression that was dependent on the infiltration of NK and T cells
[95]. However, pyroptotic cell death can have the opposite effect
on the tumor microenvironment. It has been suggested that
pyroptosis in immune cells but not cancer cells is associated with
tumorigenesis and cancer progression through the development
of chronic inflammation and the inhibition of antitumor cytotoxi-
city [83].
To our knowledge, no studies have yet directly investigated the

effect of necroptotic and pyroptotic MSCs on the immune system.
Interestingly, MSCs appear to be resistant to pyroptosis following
stimulation with conventional PAMPs and require a more complex
environment enriched in soluble factors from pyroptotic macro-
phages [96]. On the other hand, early studies showed that MSCs
activate the complement cascade and are rapidly eliminated after
exposure to serum, thus raising concerns about whether this
limited lifespan could result in impaired activity in vivo [97, 98]. It
is likely that complement-mediated killing affects MSC-mediated
immunosuppression by inducing inflammatory RCD [99]. In this
regard, assessing the hemocompatibility of MSC products before
intravascular infusion could be a valuable step forward in
improving clinical efficacy [100].

Apoptosis: the immune-silent form of cell death
Apoptosis is the most characterized type of RCD and has been
investigated for over 30 years. Apoptotic cell death is initiated by
triggers ranging from developmental cues to cellular stressors or
cytotoxic immune cells and can be mediated by two distinct
pathways: the intrinsic and extrinsic pathways [101]. The intrinsic
pathway is activated when toxic substances compromise the
intracellular environment, leading to mitochondrial damage. In
these circumstances, proapoptotic proteins in the B-cell lym-
phoma-2 (BCL-2) family, such as BCL-2-associated X (BAX), BCL-2
homologous antagonist killer (BAK), and BCL-2-related ovarian
killer (BOK), become activated and translocate to the mitochon-
drial membrane, forming pores and causing mitochondrial outer
membrane permeabilization (MOMP) [102]. This event results in
the rapid release of danger signals into the cytoplasm, such as
cytochrome c and mitochondria-derived activator of caspases
(SMAC), and the formation of a multiprotein complex called the
apoptosome [103]. The apoptosome subsequently triggers the
activation of the initiator caspase-9, which in turn cleaves several
other procaspases and induces the caspase cascade [104, 105].
Furthermore, antiapoptotic proteins in the BCL-2 and BAX family,
such as BCL-2 and BCL-XL and proteins belonging to the inhibitor
of apoptosis (IAP) family (IAP1/2 and XIAP), act as intracellular
inhibitors of apoptosis by sequestering the BAX and BAK
complexes or interfering with the activation of caspases,
respectively [106–108]. However, the release of SMAC from the
mitochondria efficiently inhibits the activity of IAP proteins [109].
Thus, the fine, intricate balance among apoptotic proteins within
the intracellular environment determines cell fate during intrinsic
apoptosis.

In the extrinsic pathway, the initial apoptotic triggers are
provided by the microenvironment and surrounding cells. Similar
to necroptosis, extrinsic apoptosis is initiated by the binding of the
cell death receptors TNFR1 and TNFR2, Fas, and the TNF-related
apoptosis-inducing ligand (TRAIL) receptors DR4 and DR5 to their
respective ligands TNF-α, FasL and TRAIL [101]. Upon binding, the
receptors oligomerize and recruit additional molecules to form
the death-inducing signalling (DISC) complex. Depending on the
initial trigger, the DISC complex exhibits distinct functions. In the
case of stimulation by TNF-α, the DISC complex, which is also
known as complex I, initiates survival activities through the NF-κB
signaling pathway. However, when NF-κB and MAPK signaling are
inhibited, a second complex is formed that activates the initiator
caspase-8 and caspase-10, thus triggering the effector caspase
cascade [110]. In some cell types, activation of the extrinsic
pathway is not sufficient to trigger cell death, and the combina-
tion of intrinsic and extrinsic pathways is needed. In these cells,
caspase-8 cleaves and activates the BH3 interacting-domain death
agonist (BID), which activates BAX and BAK, promoting MOMP and
the formation of the apoptosome [111].
Activation of the caspase cascade leads to an irreversible series

of events that characterize the apoptotic process, which include
cell shrinkage, membrane blebbing, DNA fragmentation, and the
release of apoptotic bodies. Caspases are also responsible for the
cleavage and activation of the enzyme Xkr8, which flips
phosphatidylserine (PtdSer) to the outer leaflet of the plasma
membrane, thus promoting the engulfment of apoptotic cells by
professional phagocytes [112]. The entire apoptotic process
maintains the integrity of the cell membrane and avoids the
release of dangerous cellular components into the environment,
thus causing minimal damage to the surrounding tissues.
Apoptosis was long considered an immune-silent mechanism of

cell removal based on the fact that apoptotic cells do not trigger
adaptive immune responses. It is now clear that apoptotic cells
can actively engage with the immune system and elicit
immunosuppression. A wide body of evidence identifies the
efferocytosis of apoptotic cells by professional phagocytes as the
main effector mechanism of apoptotic cell-driven immunomodu-
lation. Indeed, the engulfment of apoptotic cells can educate
phagocytes toward an anti-inflammatory phenotype [113–115],
and this has been used as a therapeutic strategy to treat a number
of inflammatory conditions [116].
In addition to the efferocytosis mechanism, apoptotic cells also

directly contribute to immunosuppression by actively releasing
anti-inflammatory and immunomodulatory molecules. For
instance, apoptotic cells express or release several factors,
including IL-10 [117], TGF-β [118], CCR5 [119], thrombospondin-1
[120], and Annexin1 [121], that can skew immune responses in
favor of immunosuppression. A recent study characterized the
metabolic profile of the apoptotic cell secretome and its effects on
neighboring cells [122]. The authors showed that different
apoptotic cell types release specific metabolites via a regulated
mechanism that involves caspase-dependent pannexin 1 chan-
nels. The apoptotic secretome induced gene signatures related to
inflammation, wound healing, and tissue repair in phagocytes and
attenuated inflammation in models of arthritis and lung trans-
plantation in vivo [122].
Mechanistically, at least some of the immunosuppressive effects

of apoptotic cells are attributed to the activation of caspases.
Several studies have demonstrated that these proteases can also
have nonapoptotic effects, including anti-inflammatory effects. In
the context of intrinsic apoptosis, the caspase cascade is required
to inhibit mitochondrial DNA-induced type I interferon production
[123, 124] and TNF-α secretion from dying cells [125]. Likewise, the
activation of apoptotic caspases is responsible for the neutraliza-
tion of high-mobility group box-1 protein (HMGB1) stimulatory
activity [126]. These studies revealed that caspases in the intrinsic
pathway are not essential for cell death to occur; they instead
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guarantee that the apoptotic process is not immunogenic by
suppressing proinflammatory cytokine release from dying cells.

THE PARADIGM SHIFT: MSC APOPTOSIS AS CRITICAL
MECHANISM OF IMMUNOSUPPRESSION
The long-standing hypothesis of the immunomodulatory effects
of MSCs being dependent on viable cells is now challenged by the
emerging evidence that cell viability is not critical and may be
marginal to the therapeutic efficacy of MSCs. Early in vitro and
in vivo studies indicated the effectiveness of apoptotic
MSCs (ApoMSCs) in eliciting immunosuppression. Lu et al. initially
observed that the supernatant from macrophages that had
phagocytosed dead MSCs significantly improved the survival of
cardiomyocytes in hypoxic conditions [127]. Moreover, in a rat
sepsis model, the injection of ApoMSCs improved survival and
reduced the levels of plasma TNF-α and circulating Th1 cells [128].
This principle has been further explored, and the efferocytosis of
ApoMSCs has been shown to shift macrophages toward an M2
phenotype, thereby reducing TNF-α and nitric oxide (NO)
production while increasing IL-10 secretion [129].
We have previously demonstrated that cytotoxicity, which is

measured by the ability to induce apoptosis in MSCs, is not only
critical for the immunosuppressive effects of MSCs but is also
predictive of the therapeutic benefit of MSCs in patients affected
by severe steroid-refractory GvHD [53]. Further mechanistic
evidence was generated in a mouse model of GvHD and
corroborated by recent in vitro studies and has demonstrated
that, following efferocytosis of ApoMSCs, macrophages upregulate
and secrete molecules such as PGE2, PD-L1, IL-10, and IDO [54]. In
a comparable study, viable umbilical cord-derived MSCs were
identified in the lung following systemic infusion and were
phagocytosed by monocytes and redirected to the bloodstream
and the liver. The phagocytosis of MSCs induced monocyte
reprogramming to an M2 phenotype and induced Treg cell
formation in a mixed lymphocyte reaction in vitro [77].
Similar effects of ApoMSCs have also been demonstrated in a

mouse model of asthma in which injection of live and ApoMSCs
decreased eosinophil infiltration and lung tissue inflammation
[130]. In contrast to our previous data, live MSCs were also cleared
from the lungs of recipient mice that were genetically deficient for
T, B, and NK cells, suggesting that MSC apoptosis can occur in the
absence of some cytotoxic cells in vivo. However, macrophages
and granulocytes, which persisted in this model, can also secrete
cytolytic granules and possibly replace the absence of conven-
tional cytotoxic immune cells [131, 132]. The study corroborated
the evidence that the rapid clearance of ApoMSCs from the lung is
driven by phagocytic cells such as neutrophils and monocytes/
macrophages [130]. Most recently, a new therapeutic strategy of
inducible apoptosis in MSCs was tested in a preclinical animal
model of inflammatory bowel disease. Inducible caspase-9 was
introduced into MSCs as a suicide gene switch and was activated
8 h after MSC injection. Although survival was superior in the live
MSC group, induced ApoMSCs generated similar levels of
infiltrating leukocytes and serum levels of proinflammatory
cytokines, indicating a similar mechanism of action and the use
of inducible apoptosis as a potential MSC therapy [133].
In light of the critical role of MSC apoptosis in achieving

therapeutic efficacy, it is interesting to observe that almost all the
inflammatory molecules that contribute to MSC licensing have
been shown to be strictly involved in the induction of apoptotic
pathways. For instance, in addition to the well-known proapopto-
tic activity of TNF-α, IFN-γ can sensitize cells to apoptotic stimuli
by upregulating many apoptosis-related genes, such as FAS and
interferon-regulatory factor 1 (IRF1) [134, 135]. Moreover, TLR
activation can induce apoptosis via different mechanisms,
including myeloid differentiation factor 88 (MyD88)-mediated
FADD and caspase-8 signaling [136], molecular adaptor Toll/IL-1R

domain-containing adapter inducing IFN-beta (TRIF) signaling
[137], and the dsRNA-dependent protein kinase (PKR)-induced
death pathway [138]. Collectively, these data suggest a link
between cytokine-dependent licensing and the induction of cell
death, whereby apparently distinct mechanisms drive a common
downstream effector function.

STROMAL CELL APOPTOSIS AS A NEW THERAPEUTIC TARGET
PROFILE
The promise of the beneficial multitasking activities of MSCs and
the ease of their isolation for GMP manufacturing have attracted
much attention and resulted in several studies that tested MSCs
for the treatment of several types of disease. Unfortunately,
clinical successes have been very limited. One of the main reasons
is that clinical trials were executed before obtaining a thorough
understanding of the mechanism of action, the disease target
profile, and the criteria for patient selection. As of the time of the
preparation of this manuscript, 1777 clinical trials have been
recorded in the context of inflammatory diseases; 547 were
completed, but only 40 were in phase 3. It is not surprising that
such an inconclusive experience has been discouraging and
somehow detracted from the real value of MSCs as therapeutic
agents. There is now more information to reinterpret the available
results and propose new approaches to focus on clinical
conditions that may truly benefit from MSCs.
One of the major insights produced in the last few years is MSC

“licensing”, which is the need for MSCs to be exposed to the
appropriate inflammatory microenvironment to acquire their
immunomodulatory and therapeutic properties. A better under-
standing of the correct cues to elicit such a response can provide
an invaluable molecular classifier to identify disease target profiles
and stratify patients for treatment. Although much information is
available about the stimuli that trigger MSC immunosuppressive
activity, these findings have rarely been applied to clinical
practice. We have extensively discussed the roles of TLR ligands
and cytokines that enable MSC properties. A combination of these
licensing factors plays a critical role in the pathogenesis of
different conditions and is likely to impact MSC functions and
clinical responses. The concentration and type of these molecules
also change during the course of the disease, highlighting the
importance of profiling not only the disease but also the disease
stage at which patients receive MSCs. A very interesting clinical
study was performed on 105 patients affected by persistently
active rheumatoid arthritis who had failed standard treatment. The
patients were randomized to receive MSCs or placebo. Of the 52
patients who received MSCs, the 28 who were classified as
responders exhibited a transient increase in serum IFN-γ (>2 pg/
ml) levels in comparison with those who did not respond [139].
These data are consistent with the well-established link between
IFN-γ and the upregulation of IDO in MSCs. Another study
examined MSCs for treating GvHD in 10 patients and showed that
mean plasma levels of interleukin 2 receptor alpha (IL-2Rα) and
TNFR1 in acute GvHD patients before MSC infusion were high in
responders and persistently decreased after MSC treatment [140].
The recent discovery that in vivo MSC apoptosis plays a critical

role in the therapeutic activity in GvHD and that this process is
mediated by activated cytotoxic cells has provided novel insights
into patient selection for treatment. The detection of anti-MSC
cytotoxic activity in patient peripheral blood is associated with
clinical responses to MSCs [53] and may represent a unique and
reliable biomarker to stratify patients for treatment [141]. We
examined the in vitro cytotoxic activity of PBMCs obtained from
31 steroid-resistant acute GvHD patients collected the day before
MSC treatment. We found that PBMCs from responders exhibited
significantly higher cytotoxicity against MSCs than those from
non-responders and that the cytotoxic assay was predictive of
response with 91.7% sensitivity and 90.0% specificity. Increased
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cytotoxicity was significantly associated with clinical response and
median overall survival in multivariate logistic regression analysis
(p < 0.001) [142].
Therefore, a focus on selecting diseases characterized by the

infiltration of cytotoxic T cells, NK cells, or other innate lymphoid
cells could be a sensible starting point. This is a frequent
occurrence not only in alloimmune conditions such as GvHD
and graft rejection but also in autoimmune disorders such as
inflammatory bowel disease [143], multiple sclerosis [144], and
psoriasis [145]. Furthermore, several sterile, nonimmunological
tissue injuries are characterized by the infiltration of cytotoxic
cells. For example, a persistent cardiac T-cell response initiated by
myocardial infarction is linked to subsequent adverse ventricular
remodeling and the progression of heart failure [146]. Similarly,
CD8+ T and NK cells infiltrate the brain with different dynamics
following ischemic stroke [147].
The currently available data strongly suggest that, rather than

concentrating on characterizing the properties of MSCs that might
not be relevant to their therapeutic efficacy, such as their
differentiation ability or non-specific surface markers, the path
to deliver effective immunomodulatory therapeutic effects should
be developed around our understanding of the complex
molecular and cellular milieu of target diseases and how this
milieu varies among patients and across disease stages. Such an
approach will enable the best patient selection and enhance the
impact on clinical outcomes.

STROMAL CELL APOPTOSIS AS AN INNATE MECHANISM OF
TISSUE REPAIR
It is well established that apoptosis is a key mechanism in normal
tissue homeostasis. Apoptosis controls cell numbers in rapidly
regenerating organs [148], regulates development in which cell
overproduction is required for fine tuning [149], and contributes
to correct tissue healing [150]. In the context of tissue injury, the
efferocytosis of apoptotic cells can effectively reprogram phago-
cytic cells toward a pro-resolution phenotype that is essential for
driving tissue repair, which is the case in every tissue. For example,
a specific subset of macrophages identified as CD11bhiF4/
80intLY6Clow cells can regulate tissue remodeling following liver
injury. These restorative macrophages have increased the
production of matrix metalloproteinases (MMPs) and decreased
expression of proinflammatory cytokines and chemokines, and
their depletion in vivo impaired healing in a model of hepatic
fibrosis. Importantly, the authors demonstrated that these
macrophages derive from proinflammatory monocytes that
undergo a phenotypic switch after phagocytosis [151]. In a recent
study, Vagnozzi et al. demonstrated that intracardiac injection of
dying cells enhanced heart function after ischemia‒reperfusion
injury. The beneficial effect was achieved through the induction of
a specific subset of macrophages in the heart, which was
accompanied by a reduction in the extracellular matrix in the
injured area and the activation of cardiac fibroblasts [152]. In a
separate study, efferocytosis of apoptotic cells upregulated MYC
via activation of the mTOR2/Rictor pathway and promoted the
proliferation of TGF-β- and IL-10-secreting macrophages in mouse
models of peritonitis and atherosclerosis regression. In vivo
silencing of the Rictor pathway blocked the expansion of
proresolving macrophages and impaired tissue repair after injury
[153]. In addition to the extensive data on the functional
reprogramming of macrophages after the efferocytosis of
apoptotic cells, further evidence reveals a similar effect on other
types of professional and nonprofessional phagocytes. For
instance, enhanced efferocytosis of dying cells by phagocytic
DCs accelerated the healing of chronic wounds in a mouse
model of type 2 diabetes [154]. Likewise, dermal fibroblasts
acquired a pro-healing phenotype after the engulfment of
apoptotic cells [155].

A separate body of evidence further reveals the substantial
contribution of apoptosis to the normal homeostasis of tissues. It
has become clear that apoptotic cells not only educate
phagocytes to become anti-inflammatory and restorative cells
but also engage with other neighboring cells in the tissue through
caspase-dependent signaling. Apoptotic cells release caspase-
dependent mitogenic factors and trigger a process called
apoptosis-induced proliferation (AiP) in surrounding cells, con-
firming the crucial impact of apoptosis on tissue remodeling after
injury. Highlighting the importance of such a mechanism is the
fact that AiP is conserved among different organisms. In
Drosophila, AiP is mediated by different signaling cascades that
are controlled by initiator and executioner caspases [156, 157]. In
mice, the release of growth signals from apoptotic cells stimulates
the proliferation of progenitor and stem cells and promotes
wound healing and tissue regeneration. Mechanistically, regen-
eration is accomplished via the production of caspase-3- and
caspase-7-dependent PGE2 by apoptotic cells [158]. A similar role
of AiP has been described within the tumor microenvironment.
Caspase-3-dependent PGE2 release by apoptotic cancer cells was
shown to promote tumor repopulation after chemotherapy and
radiotherapy [159, 160]. Of note, in vivo administration of COX-2
inhibitors was sufficient to decrease the recurrence of chemore-
sistance in treated animals [160]. Furthermore, new studies shed
light on additional AiP-related molecular pathways. Ankawa et al.
demonstrated that apoptotic hair follicle stem cells (HFSCs)
contributed to skin healing and regeneration after injury by
inducing WNT3 expression. The authors observed that caspase-9
deletion in HFSCs slowed the apoptotic process, resulting in the
delayed clearance of apoptotic cells. Slowly dying HFSCs had
increased activation of capsase-3 and produced high levels of
Wnt3, which induced stem cell proliferation [161]. Consistent with
these results, Wnt8a-containing apoptotic bodies released by
dying stem cells were shown to enhance the proliferation and
maintenance of normal homeostasis in epithelial tissues [162].
Taken together, these studies underscore the multiple roles of

apoptosis in the remodeling of tissues after damage and reveal
the importance of apoptotic cell death in the homeostasis of
tissue repair.
The emerging evidence that the therapeutic activity of MSCs is

mediated through apoptosis raises the question of whether such a
mechanism has physiological importance. Phenotypically and func-
tionally, MSCs exhibit striking similarities to tissue fibroblasts [163],
which are present in virtually every tissue of the body, although in
different versions and subsets. Furthermore, following a sterile
inflammatory lesion of any nature, the injured tissue is infiltrated by
NK cells and cytotoxic T lymphocytes (CTLs) that are loaded with
cytolytic granules. This infiltration is associated with the migration of
monocytes/macrophages to the site of injury, suggesting that their
reprogramming through the phagocytosis of cytotoxic cell-induced
apoptotic stromal cells may represent a physiological event that
controls inflammation and consequently prompts tissue repair (Fig. 2).
There are a few indirect pieces of evidence supporting this

possibility. The failure of CTLs or NK cells to kill target cells by
perforin/granzyme-induced apoptosis causes severe immune
dysregulation. Early studies have shown that perforin deficiency
is associated with macrophage activation syndrome and refractory
systemic inflammation [164]. Furthermore, in familial hemopha-
gocytic lymphohistiocytosis, perforin-deficient infants suffer a fatal
cytokine storm due to macrophage overactivation. Similarly, it has
been observed that in response to in vitro activation, perforin-
deficient chimeric antigen receptor (CAR)-T cells produce higher
amounts of proinflammatory cytokines than wild-type CAR T cells
[165]. In a mouse model of nonalcoholic steatohepatitis, the
disease was more severe in perforin-deficient mice than in wild-
type mice fed a high-fat diet. Perforin deficiency was associated
with the M1 polarization of infiltrating monocytes and an increase
in proinflammatory cytokines in CD8+ T cells [166].

C. Giacomini et al.

576

Cellular & Molecular Immunology (2023) 20:570 – 582



Although these data suggest that T cells directly control
macrophage activation, the hypothesis that activated cytotoxic T
or NK cells also provide apoptotic cells for functional reprogram-
ming in macrophages is a plausible complementary mechanism.
Accordingly, it has been shown that the adoptive transfer of
fibroblast activation protein α (FAPα)-specific CAR T cells reduces
cardiac fibrosis and abnormal cardiac remodeling and restores
cardiac healing and function [167]. Although fibroblast depletion
plays a critical role, it cannot be excluded that CAR-T-induced
apoptotic fibroblasts also contribute to healing by reprogramming
a deranged inflammatory environment.
The ultimate role of macrophages in restoring tissue homeostasis

via ApoMSCs supports our hypothesis and has been confirmed in
other studies. In the context of liver injury, recent evidence has
demonstrated that MSCs can alleviate liver fibrosis in vivo by
inducing a phenotypic switch in macrophagess from profibrotic to
proresolving via the release of IL-10 and IL-4. MSCs undergo
extensive apoptosis after infusion and release large amounts of
apoptotic bodies, which in turn are phagocytosed by restorative
macrophages, resulting in MMP12 expression and further con-
tributing to the resolution of liver fibrosis [168]. In a different study,
Ko et al. reported that MSC-derived extracellular vesicles enhanced
the phagocytic activity of macrophages and induced the expression
of amphiregulin. MSC-educated macrophages could preserve
tissue-specific stem cells, limit inflammatory immune responses
by inducing Tregs and control tissue homeostasis in models of
autoimmune and sterile injuries in vivo [169].
Finally, we have generated evidence that MSC apoptosis

stimulated by activated cytotoxic cells is independent of the
immunological synapse and is mediated by the release of cytotoxic
granules, and MSCs behave as innocent bystanders [53]. Interest-
ingly, we have observed that MSCs, as well as fibroblasts, are
uniquely sensitive to these effects, while cells from other lineages
are largely unaffected (Giacomini et al., manuscript in preparation).
These data support the hypothesis that at least a subset of tissue

stromal cells may be specifically designed to sense injury-associated
inflammation. After undergoing apoptosis, stromal cells deliver
signals to reprogram the negative inflammatory microenvironment,
thereby orchestrating tissue repair and homeostasis.

CONCLUDING REMARKS
The encouraging safety profile of MSCs has not been matched by
clear and consistent clinical efficacy. This discrepancy can be largely
attributed to the poor insights into the mechanisms responsible for
their therapeutic activity and the inability to determine reliable
pharmacodynamics. Furthermore, the different culture conditions
and preconditioning of MSCs to evoke their therapeutic properties
have not been supported by any companion diagnostic assessment
to provide information for release criteria and potency. Here, we
have reviewed and proposed the concept that in vivo MSC
apoptosis is a key driver of MSC-mediated immunosuppression
and the restoration of homeostasis in injured tissues. This MSC
licensing can be achieved by stimulation with inflammatory soluble
molecules, as well as direct interactions with cytotoxic cells and
results in potent activation of MSC immunomodulatory abilities
through the production of an immunosuppressive secretome and
the polarization of macrophages into anti-inflammatory/pro-regen-
erative cells following MSC efferocytosis.
Importantly, the MSC apoptosis cascade-based mechanism of

action lends itself to stratifying patients for treatment, monitoring
therapeutic efficacy, and informing new approaches to generate
consistently effective MSCs. Overall, these new insights into the
mechanism of MSC-derived therapeutic activity will prompt
further preclinical investigations to support better designs of
new MSC-based clinical trials. Ultimately, we hope that a greater
understanding of the way ApoMSCs regulate immunomodulation
and tissue repair will lead to the development of novel, safe, and
efficacious MSC ATMPs for the treatment of these unmet clinical
conditions.

Fig. 2 Stromal cell apoptosis as an innate mechanism of tissue homeostasis. Following injury, monocytes and macrophages rapidly migrate to
the site of injury, where they become activated and start recruiting additional immune cells. Subsequently, the tissue is infiltrated by CTLs and
NK cells that release perforin/granzyme B-loaded cytolytic granules to induce the surrounding tissue stromal cells to undergo apoptosis. The
phagocytosis of apoptotic stromal cells efficiently reprograms macrophages into a pro-resolving phenotype that orchestrates the resolution of
inflammation and tissue repair responses. Figure generated using BioRender.com
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