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Abstract
Infertility is a serious medical, economic, and psychological problem in the society. Male factor infertility, due to defective 
spermatogenesis as a result of a failure in germ cell proliferation and differentiation, appears to be the cause of 25–50% of 
infertility cases. According to several surveys, testicular degeneration can be caused by a variety of physical, chemical, and 
microbial causes. A stem cell is a non-specialized cell which is characterized by self-renewal by mitotic cell division and 
able to differentiate to specialized cells for the various tissues of the body. The data were obtained and analyzed from dif-
ferent databases (PubMed, Google Scholar, Egyptian Knowledge Bank, Elsevier, Medline, Embase, ProQuest, and BMC). 
This review discusses the causes, symptoms, and grades of testicular degeneration and the use of different types of stem 
cells in regeneration. And its conclusion based on previous researches and trials, MSCs are considered effective therapy for 
testicular degeneration.
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Introduction

About 60–80 million couples worldwide have problems of 
infertility and about 40–50% of these cases are caused by a 
male factor [1]. Testicular degeneration (TD) is defined as 
a process in which the structure of the testis deteriorates, 
resulting in the loss of testicular function, and TD can be 
caused by a variety of physical, chemical, and microbial 
causes [2].

At all stages of life, the testis has been demonstrated to 
be very vulnerable to the harmful effects of irradiation and 
chemotherapy. Male germ cells are especially sensitive to 
various kinds of chemotherapeutic agents, and the impact of 
combination chemotherapy on the spermatogenic epithelium 
depends on the type and quantity of the medications used 
[3]. The advances in cancer treatment give the chance for 
childhood and adult cancer patients to experience 5 years 
survival rate up to 82% [4]. Cancer treatment protocols focus 

on the treatment of the disease itself, but individuals place 
an emphasis on treatment safety and efficacy [5].

Chemotherapy and radiation therapy for cancerous 
patients are highly effective but their gonadotoxic side 
effects may have a negative effect on fertility; this depends 
on the chemical agent and the dose and may cause perma-
nent or temporary gonadal damage in male patients [6]. 
Nearly 1% of all men have azoospermia which can be either 
obstructive or non-obstructive azoospermia and men that 
suffer from azoospermia represent 10 to 15% of all infertile 
cases [7].

There are many surgical and hormonal treatments in 
these cases but in the recent years, a great attention has 
been given to stem cell therapy [8]. From the moment the 
ovum is fertilized until death, these cells are present in every 
living organism. Their existence enables the body to grow 
and maintain a healthy amount of somatic cells. They also 
allow for the regeneration of organs and tissues by rebuild-
ing deteriorated or damaged somatic cells [9].

This review’s objective is to investigate the effectiveness 
of mesenchymal stem cells from various sources in the treat-
ment of male infertility. The findings of the present review 
may be crucial in determining how well MSC treatment is 
applied in clinical trials.
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Material and Methods

Data for our review was gathered from a variety of databases 
(PubMed, Google Scholar, Elsevier, Egyptian Knowledge 
Bank, Medline, Embase, BMC, ProQuest, etc.). The search 
focused on the laboratory animals: rat, mice, hamster, and 
Guinea pig at the last two decades on testicular degeneration, 
as well as therapy options including various types of stem 
cells and their clinical outcomes.

Results

Structure of the Rabbit Testes

Testis of the negative control group appeared as elon-
gated ovals with a laterally compressed range from 2.8 
to 3.2 cm in length with a sharp caudal pole and a blunt 
cranial pole located in the inguinal region inside two 
thin hairless scrotal sacs just cranial to the penis. The 
testes had a marbled appearance, slightly firm in consist-
ency, with the tunica vasculosa running longitudinally on 
the ventral free border. The testes were characterized by 
centro-axial mediastinum toward the cranial pole [10].

Zamora E Jl and Felipe-Pérez Ye [11] mentioned that 
the tunica albuginea had the connective tissue septum 
that entered the testicular parenchyma, separating it into 
lobules partially or completely. Each lobule was made 
up of four to six seminiferous tubules, which was cov-
ered by stratified epithelium of spermatogenic cells and 
Sertoli cells. The spermatogonia are located in the basal 

membrane as tiny, oval, or spherical cells with various 
degrees of chromatin condensation in their nuclei. These 
cells formed primary spermatocytes, which undergo first 
meiotic division, giving secondary spermatocytes that 
had the second mitotic division swiftly producing sper-
matids. The authors added cells that produced testoster-
one found in the connective tissue between seminiferous 
tubules. These cells were known as Leydig cells and they 
had spherical nuclei and acidophilic cytoplasm.

Zamora E Jl and Felipe-Pérez Ye [11] recorded the 
number of germinal cells reduced at the end of the 
seminiferous tubules, but the number of Sertoli cells 
increased. The transition zone or segment that connected 
the seminiferous tubule to the straight tubule was lined 
entirely by Sertoli cells. Straight tubules appeared in a 
network of anatomical canals known as the rete testis, 
which can be lined by simple flat, cubic, or columnar 
epithelium.

Normal Parameters of Semen in Laboratory Animals 
(Table 1)

Castro, Berndtson [17] determined that plasma and tes-
ticular testosterone levels were correlated significantly 
with seminiferous tubular diameter, number of Sertoli 
cells per tubules cross sections, and ratio between germ 
cells and Sertoli cells. Both plasma and tissue levels of 
testosterone correlated highly with percentage volume 
of Leydig cell nuclei (0.82–0.78 respectively) and the 
number of Leydig cells per gram of testis (0.83–0.82 
respectively). Plasma testosterone level correlated with 
the total number of Leydig cells per testis (0.71). High 

Table 1   Normal semen parameters in laboratory animals

Rabbit Rat Mice Guinea pigs

Count/concentration 210.5 × 106/ ml in winter and 
156.11 × 106/ ml in summer

60.8 ± 0.20 × 106 sperm/rat 106.5 ± 42.5 × 106 60.00 ± 1.90 × 106 /cauda 
epididymis

250.20 ± 5.40 × 106 /g 
cauda epididymis

Motility 56% in winter and 40.6 in 
summer

48.4 ± 2.03% Rapid motility grade A 
20.18 ± 7.08%

-Slow motility grade B 
22.64 ± 5.0%

90.00 ± 5.35%

Viability/live sperm 
concentration

180.8 × 106/ ml in winter and 
129.9 × 106/ ml in summer

85.1 ± 3% 75.09 ± 9.42% -

Testosterone level 11.0 ± 0.02 ng/ml 2.76 ± 0.27 ng/ml 3.25 ± 1.582 ng/ml 1.2–1.4 ng/ml
Testis weight 3.60 ± 0.09 g 1.40 ± 0.821 g 659 ± 52 mg per 100 g of body 

weight
0.23 ± 0.01 g/100 g of BW)

Authors [12, 13] [14] [15] [16]
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level was observed between % volume of Leydig cell 
nuclei and number of Leydig cell per gram (0.94) and 
less extent between % volume of Leydig cell nuclei and 
total number of Leydig cells per testis (0.60).

Testicular Degeneration

TD is not a well-known disease that has a large economic 
impact. A significant percentage of morphologic abnormali-
ties of spermatozoa, poor motility, a low number of normal 
sperm per ejaculate, and decreased testicular size are all 
symptoms of TD. TD can be unilateral or bilateral, depend-
ing on whether the underlying cause is confined such as a 
locally aggressive malignancy, or widespread [18].

Causes of Testicular Degeneration

TD develops as a result of a recognized testicular 
trauma. Testicular injuries, heat, cold, radiation, tox-
ins, or ischemia, certain dietary deficiencies, exogenous 
androgen injection, infection, autoimmune illness, sperm 
outflow blockages, and neoplasia are all possible causes 
of testicular injuries [2]. Several arthropod-borne viruses 
can also cause testicular degeneration [19]; several cases 
of TD and testicular atrophy have been reported as a 
result of heavy metal exposure [20]. Microbial orchitis 
can range from a little infection of the affected testis 
to significant suppuration or organ necrosis, and can 
be caused by an ascending infection, hematogenous 
microbial dissemination, or direct microbial penetra-
tion into the organ. It frequently occurs in conjunction 
with epididymitis or as a result of pre-existing traumatic, 
viral, or parasite injury [21]. One of the major causes 
of testicular toxicity and degeneration at all stages of 
life is chemotherapy and radiation therapy [3], testicular 
degeneration can be classffied acording to the number of 
affected seminiferous tubules [22] (Table 2).

Chemotherapy

Chemotherapy and radiation therapy both cause germ 
cell death, resulting in oligo- to azoospermia and tes-
ticular atrophy. The type of therapy (especially alkylating 
drugs), treatment length, intensity, and drug combina-
tion are all important factors in determining the extent 
and duration of testicular harm. Chemotherapy-induced 
testicular damage appears to differ depending on the 
patient’s age at the time of treatment [23].

Chemicals are used to treat a wide variety of cancers. 
However, these drugs carry the potential of causing ovar-
ian or testicular damage. Testicular cells are particularly 
sensitive since they go through a number of processes 
(e.g., mitotic, meiotic, synthetic, morphogenic) that 
chemotherapeutic agent’s target [24]. Although gonadal 
dysfunction may be transitory after therapy, recovery is 
generally unpredictable, and damage is permanent in some 
patients [25].

Chemotherapeutic drugs have enhanced great effect in 
cancer treatment. All anti-cancer drugs may cause perma-
nent or temporary damage on different organs [26–28].

Chemotherapeutic drugs are classified into five main 
groups: alkylating agents such as cisplatin, cyclophos-
phamide, procarbazine, anti-metabolites such as metho-
trexate and 5-fluorouracil, antibiotics such as adriamy-
cin, bleomycin, and mitoxantrone, antimicrobials such 
as vinblastine and vincristine, enzymes such as L-aspar-
aginase [29].

Tumors are characterized by uncontrolled cell division 
so the chemotherapeutic drugs affect tumors by stop-
ping cell division but this mechanism cannot differentiate 
between cancerous and normal cells causing damage and 
destruction to normal cells and tissues by apoptosis after 
chemotherapy [30–34].

Cisplatin is considered an important platinum-based 
chemotherapeutic drug which is used in the treatment 
of many tumors [35] but despite its high efficacy, it has 
major side effects in many organs such as the kidney and 
testis [36–38] In many animals models, cisplatin caused 
reproductive imbalance including germ cell depletion 
and testicular atrophy [36–39], also Leydig cell dysfunc-
tion and testicular steroidogenic disorder [40].

Animals treated with cisplatin suffer from decrease in 
fertility represented by decrease total number of sperms and 
decrease in semen viability and motility also increase in per-
centage of abnormal sperms [3].

Pathophysiology of Testicular Degeneration  The chemo-
therapeutic drugs such as alkylating agents especially cis-
platin can cause oxidant/antioxidant imbalance, which lead 
to oxidative damage of many cellular elements like DNA, 
proteins, and lipids [36, 37, 41]. Antioxidant defense sys-
tems such as catalase (CAT), superoxidedismutase (SOD), 
and reduced glutathione (GSH) are considered the pro-
tecting mechanism in tissues against the reactive oxygen 
species (ROS) damage [42]. Reactive oxygen species are 
routinely produced in the mitochondria of the testes and 
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subsequently scavenged by the antioxidant defense systems 
[43]. However, several substances, such as cisplatin, can 
disrupt this balance by disrupting the pro-oxidant–antioxi-
dant balance, resulting in cell malfunction [44].

The exposure to cisplatin leads to excessive produc-
tion of free radicals, which alters the bio membranes 
and causes severe damage [45]. Low levels of ROS are 
suggested to have a positive effect on fertility by enhanc-
ing sperm maturation processes like capacitation but 
in cases of cisplatin exposure, its levels increase that 
causing impairment of fertility and embryo development 
[46].

In rat, [47] mentioned that testes injected with cis-
platin had considerable reduction in weight and size of 
testis and decrease in the daily sperm production as well 
as the percentage of viable and motile sperms. Moreo-
ver, the testosterone levels decreased in cisplatin-treated 
groups in comparison with normal rats (Sherif et  al. 
2018).

Meligy, Abo Elgheed [1] showed that the H&E sec-
tions of testes in rat taken from cisplatin-treated groups 
had severe distortion of most seminiferous tubules which 
observed the reduction on germinal epithelium thickness 
with irregular empty spaces and widely separated, with 
few or no sperms seen. The germinal epithelium was 
deficient in other tubules with development of multinu-
cleated giant cells. Vacuolation and exfoliation of germ 
cells were also seen, congested blood vessels were found 
in the interstitium, with a sub capsular congested blood 
vessel, and the testicular capsule becomes thicker and 
more irregular.

In rabbit, the administration of cisplatin resulted in a 
marked elevation in the levels of malondialdehyde (MDA) 
and reduction of testis antioxidant enzymes represented by 
GSH and glutathione peroxidase, CAT activity compared 
with control animals (Benzer et al. 2011).

Sherif, Sabry [48] recorded that the effect of cispl-
atin exposure on the cellular stress markers in rat testes 
showed a significant increase in testicular malondialde-
hyde by 142.7% and decrease in both reduced glutathione 
by 42.1% and superoxide dismutase by 56.9% levels com-
pared to normal rats.

Benzer et  al. (2011) observed that the MDA, which 
formed as a final product of the peroxidation of lipids, 
served as an index of the intensity of oxidative stress. The 
testes’ MDA levels were increased in cisplatin-treated group 
(about 10–12 nmol/g) when compared to the control one 
(4–6 nmol/g).

Faria et al. (2007) mentioned that certain enzymes cat-
alytically eliminate free radicals and other reactive sub-
stances; this provides endogenous protection against oxida-
tive stress. Catalase and glutathione peroxidase were among 
these enzymes.

Reddy, Madhu [47] reported that cisplatin treatment in 
the testes of rats proved a major decrease in activities of 
superoxide dismutase and catalase with an increase in the 
levels of H2O2 and lipid peroxides.

Benzer et al. (2011) recorded that the activity of cata-
lase enzyme was decreased on cisplatin administration 
group (60–80 k/g protein) compared to control animals 
(120–140 k/g protein), where k is the first-order rate 
constant. Also, they added that glutathione peroxidase 
activity was reduced on group treated with cisplatin as 
(15–20 IU/g protein) from the normal level (30–35 IU/g 
protein). Moreover, they noted the glutathione was con-
sidered a compound involved as coenzyme in oxida-
tion–reduction reaction, which its level was decreased 
in cisplatin-treated group (1.75–1.80 nmol/g) that differs 
from control group (1.80–1.90 nmol/g).

Stem Cell Therapy

Stem cells have extensive renewal ability and produce 
daughter cells that undergo further differentiation [49]. 
These cells have many sources such as bone marrow, 
peripheral blood, dental pulp, hair follicle, and adipose 
tissue which is considered one of the easiest sources of 
stem cells isolation [50–52]. Also, Wharton’s jelly, which 
is isolated from umbilical cord blood and tissue, is used 
to isolate the most primitive mesenchymal stem cells 
(MSCs) (Tables 3, 4, 5, 6, and 7) [9, 53].

The main purpose of any stem cell therapy is repair dam-
aged tissues that do not have the ability to heel by itself; 
this gives hope to many patients to cure their diseases and 
replace dying cells [54].

MSCs’ therapeutic function is based on their ability to 
differentiate into cells that need to be replaced, as well as 
their immunomodulatory and paracrine activities, also their 
antioxidant effect  which aid in the healing of diverse tissue 
[53, 55].

Stem cells can be classified by the extent of its differ-
entiation into four main cell types. These are totipotent, 
pluripotent, multipotent and unipotent. Totipotent have 
the ability to differentiate into all cell types as zygote 
cell which is formed at egg fertilization. Pluripotent 
cells, such as embryonic stem cells and cells derived 
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from the mesoderm and endoderm, have the ability to 
differentiate into nearly all cell types. Multipotent have 
ability to differentiate into a related family of cells as 
adult stem cells that can become red and white blood 
cells or platelets. Unipotent have the ability to only 
produce cells of their own type as (adult) muscle stem 
cells [9, 53, 54].

Prządka, Buczak [9], Vikartovska, Humenik [53], and 
Kalra and Tomar [54] added other classifications according 
to the source of stem cells into two types: early or embry-
onic stem cells (ESCs) which is found in the inner blastocyst 
cell mass and adult stem cells (ASCs) which is found in 
adult body tissues.

MSCs are characterized as allogeneic, autologous, or 
xenogeneic cells depending on the donor–recipient rela-
tionship. Allogeneic cells come from a donor and are trans-
planted into a recipient of the same species. Autologous 
cell transplant is conducted on the same person and neces-
sitates postponement of the process, whereas xenogeneic 
cells are transplanted from a donor who is not of the same 
species as the recipient [9].

One of the main features of stem cells is its ability to 
give rise to specialized cells by a process called differenti-
ation which is controlled by signals inside and outside the 
cells; the internal signals are controlled by genes inside 
the cell while the external signals include chemicals which 
are secreted by other cells. In the recent years, stem cell 
biology has been focused on the antioxidant effect and its 
application in the repair of tissue damage caused by ROS 
[42, 56].

Roushandeh, Bahadori [57] mentioned that MSCs are 
type of multipotent stem cells isolated from tissues as 
bone marrow, fat, and amniotic membrane. [42, 53, 58, 
59] observed that mesenchymal stem cells are charac-
terized by specific surface antigen expression and their 
osteogenic, chondrogenic, and adipogenic differentiation 
ability and had the facility to self-renew.

The therapeutic ability of MSCs is based on its anti-
inflammatory, anti-fibrotic, regenerative abilities; all of 
this could improve damages and degeneration in tissues 
[60]. Moreover, Fazeli, Abedindo [61] added that it was 
used in the treatment of many diseases such as healing of 
wounds, neurological and lung diseases, diabetes, cystic 
fibrosis, asthma, and cases of infertility. Lodi, Iannitti 
[62] noted that even if the use of MSCs has great thera-
peutic abilities, their uses in therapy are associated with 
some concerns as stem cells have the same renewal ability 

and plasticity with cancer cells; this may cause tumor 
development.

Adipose-derived stem cells (ADMSCs) are considered 
an excellent source of multipotent adult stem cells as their 
retrieval is very easy, also their isolation from subcutaneous 
adipose connective tissue and lipoaspirate [9, 63]. In addi-
tion, they have great proliferative ability producing huge 
number of cells and can be expanded for longer period of 
time [9, 64].

MSCs have the ability to protect the testis by different 
mechanisms; [8] cited that they have antioxidant and ROS-
scavenging properties. [65] noted that MSCs have the abil-
ity to modulate the immune and inflammatory status caused 
by the cisplatin administration and he added that they have 
anti-apoptotic effects due to the over expression of the key 
anti-apoptotic protein Bcl2. Moreover, [66] mentioned that 
MSCs promote tissue regeneration by releasing growth fac-
tors and cytokines that encourage remaining spermatogonic 
cells to proliferate and finish their division.

Meligy, Abo Elgheed [1] reported that the histologi-
cal sections and electron microscope results showed great 
enhancement in the testicular structure of groups treated with 
(1 × 106) suspension of adipose-derived stem cells after cis-
platin treatment compared to untreated groups. Also, groups 
which have been treated with stem cells showed normal lev-
els of testosterone when compared to untreated groups.

The fertility that will be returned in stem cells treated 
groups may be either for the effect of stem cells in main-
taining remaining spermatogonia stem cells in testis or 
that stem cell has the ability to differentiate into spermat-
ogonia stem cell like cells which later form sperms [67].

Preclinical studies using mesenchymal stem cells  
for the treatment of testicular degeneration

Table 2   Grading of testicular degeneration conducted on male albino 
Wister rats [22]

Grade Number of affected tubules

Grade 1  < 10%
Grade 2 10–25%
Grade 3 25–50%
Grade 4 50–75%
Grade 5  > 75%
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Table 4   Summary of rats’ ADMSCs research

Author 
Year
Reference

Model Source and 
dose

Route and timing Main findings

Cakici, 
Buyrukcu[67]

Male Wistar rats
(Busulfan-induced 

testis)

ADMSCs Intra-testicular
After induction 

of infertility

- The spermatogenesis process was stopped after treatment with 
Busulfan

- Following the Busulfan treatment, samples without ADMSCs, scanning 
of sections revealed atrophy, complete and incomplete spermatocytic 
arrest, and a Sertoli cell–only appearance

- In portions of stem cell–treated tissues, however, the tubules looked 
to be filled with spermatogenetic cells, but at a low rate. The pres-
ence of spermatozoa was discovered

Atalla, Saleh 
[71]

Male albino rats
(Calcium chloride–

induced testis)

ADMSCs
Dose
 (106 cells)

Intra-testicular
After 1 week 

from cacl2 
injection

- The remaining indigenous spermatogenic stem cells in the testis 
respond to ADMSCs as a stimulatory agent

- OCT4, SOX2, Rex1, and FoxD3 are pluripotent markers that affect 
spermatogenesis were expressed by adipose tissue–derived mesen-
chymal stem cells (ADMSCs)

- ADMSCs may secrete significant quantities of vascular endothelial cell 
growth factor, which inhibits apoptosis, insulin-like growth factor-1, which 
promotes stem cell proliferation and hepatocyte growth factor, which 
inhibits apoptosis These released cytokines may stimulate the expression 
of mRNA and proteins in the testes, allowing them to heal

Meligy, Abo 
Elgheed [1]

Adult male albino 
rats

(Cisplatin-induced 
testicular dam-
age)

ADMSCs
Dose
(1 × 106)

Intra-testicular
5 days after 

induction

- Cisplatin-treated testis showed a significant change in structure, 
with the seminiferous tubules becoming twisted and the germinal 
epithelium’s thickness decreasing up to being depleted. Germinal 
epithelium depletion, with the exception of germ cells in the basal 
compartment, was attributed to germ cell sloughing and basal com-
partment capacity decrease

- MSCs successfully restored testicular tissue and function
- The testicular structure of the stem cell–treated group was significantly 

improved when compared to Cisplatin-treated groups, according to light 
and electron microscopic results from this study. In addition, the hormo-
nal tests revealed that testosterone levels had returned to normal

Table 5   Other types of stem cells in rats

Author 
Year
Reference

Model Source and dose Route and timing Main findings

Hussein, 
Mohamed 
[41]

Male Wistar rats
(Cisplatin-

induced 
testicular 
toxicity)

Spermatogonial 
stem cell (SSC)

Dose
1 × 106

Intra-testicular
On the 6th day after 

CP injection

- CP treatment alone resulted in a considerable rise in MDA levels as 
compared to the control group. The injection of stem cells to CP-
treated rats decreased the elevated MDA levels

- In CP-treated rats, there was a considerable decrease in CAT and 
GSH-Px activity compared to controls, which was significantly 
restored by stem cell treatment

- The testicular weight, diameter of seminiferous tubules, height of the 
germinal epithelial lining of the seminiferous tubules, sperm count, 
and motility of male rats treated with CP all decreased significantly 
when compared to control whereas Concurrent treatment of stem 
cells with CP improved all parameters and reduced CP's harmful 
effects

Hsiao, 
Ji[72]

Sprague–
Dawley rats 
(testicular tor-
sion–induced 
germ cell 
injury)

MSCs from 
human orbital

Fat tissues 
(OFSCs)

Dose
3 × 104

Intra-testicular
2.5 h after torsion

MSCs provide therapeutic advantage by preventing testicular apopto-
sis, lowering intra-testicular oxidative stress, and increasing testoster-
one secretion, which protects spermatogenesis from torsion-induced 
germ cell injury

- The majority of donated cells surround Leydig cells and release stem 
cell factor to aid spermatogenesis, although others may develop into 
Leydig cells
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Table 6   Summary of mice stem cell research

Author 
Year
Reference

Model Source and dose Route and timing Main findings

Fang, Chao[73] Wild-type Kunbai mice
(Buslfan-induced testis)

MSCs were iso-
lated from the 
bone marrow 
of male dairy

Goat fetuses 
at 3rd month 
gestation

Dose
20 μl of the 

gMSCs (30 to 
50 × 106 cells 
/ml

Via the efferent 
ductules of the 
testis

- Goat MSCs exhibited male germ 
cell and spermatocyte markers, 
indicating that they had the ability to 
develop into male germ cells and aid 
spermatogenesis in endogenous germ 
cell-depleted patients via xenotrans-
plantation

- This shows that these cells provide a 
new source of male germ cells that 
could be exploited in the creation of 
male germ cells for various reproduc-
tive investigations

Abd Allah, Pasha[74] Mice
(Buslfan-induced testis)

Human umbili-
cal cord blood 
stem cells and 
UCB-MSCs

Dose
1 × 105 cells

Intra-testicular - After mice were given Busulfan via 
interperitoneal injection to induce 
azoospermia, their testes showed 
severe shrinkage, deformed seminif-
erous tubules (most of which did not 
contain sperms), and widely sepa-
rated spermatogenic cells, indicating 
degeneration

- The normal architecture of the testis 
was restored after MSC transplan-
tation, according to histological 
inspection of the tissues. A thin con-
nective tissue capsule encased it. The 
stratified germinal epithelium lined 
the seminiferous tubules, which were 
tightly packed

- In the group treated with HSCs, 
despite enhanced vascularity 
indicated by congested blood arter-
ies, most seminiferous tubules still 
revealed dilated lumens not contain-
ing sperms with a substantial drop in 
spermatogenic cells
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Conclusion

Infertility is a serious medical, economic, and psychological 
problem in the society; one of the main causes of infertility 
among males is testicular degeneration with chemotherapeu-
tic agents. The animal model was most widely used for stem 
cell treatment trials with a satisfactory therapeutic result; 
MSCs have proven to have extensive renewal ability based 
on its ability of differentiating into cells that needs to be 
replaced. Finally, we can say based on previous researches 
and trials, MSCs area considered effective therapy for tes-
ticular degeneration. The development of stem research 
together with using 3D culture, exosomes, and scaffold 
delivery systems may increase the hope in getting most 
benefits from stem cell treatment of testicular degeneration.

Abbreviations  ADMSCs:  Adipose-derived mesenchymal stem 
cells; ASCs: Adult stem cells; BM-MSCs : Bone marrow mesen-
chymal stem cells; CAT​: Catalase; CP: Cisplatin; ESCS: Embry-
onic stem cells; GSH: Reduced glutathione; GSH-Px: Glutathione 
peroxidase; MDA:  Malondialdehyde; MSCs:  Mesenchymal stem 
cells; OFSCs: Orbital fat stem cells; ROS: Reactive oxygen species; 
SC: Stem Cells; SOD: Superoxide dismutase; SSCs: Spermatogonial 
stem cell; TD: Testicular degeneration; UCB-MSCs: Umbilical cord 
blood-mesenchymal stem cells
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Table 7   Hamster and Guinea pig stem cell research

Author 
Year
Reference

Model Source and dose Route and timing Main findings

Vahdati, Fathi [75] Hamsters (Buslfan-induced 
azospermia)

BM-MSCs
Dose
(106 cells)

Injected into the 
lumen of the 
seminiferous 
tubules

35 days after the 
last Busulfan 
injection

- Spermatogenesis could be induced by injecting 
BM-MSCs

- Transplantation of BMSCs into hamster 
seminiferous tubules resulted in fast healing of 
pathological abnormalities in testicular tubules

- Because BM-MSCs are hypo-immunogenic and 
have immunosurveillance or immunosuppres-
sive qualities, they may be a good candidate for 
allogeneic cell transplantation

Hajihoseini, Vahdati [76] Male outbred Dunkin–Hart-
ley guinea pigs induced 
azospermia by Busulfan

BM-MSCs
Dose
(106 cells)

Injected into the 
lumen of the 
seminiferous 
tubules

35 days after the 
last Busulfan 
injection

- BM-MSCs injection in Busulfan-induced azoo-
spermic guinea pigs could induce spermatogen-
esis

- Busulfan-treated Guinea pigs were examined 
histo-pathologically before and after receiving 
bone marrow–derived mesenchymal stem cells 
(BM-MSCs). The absence of germinal layer 
cells in the seminiferous tubules of Busulfan-
treated testes indicates the spermatogensis; 
however, most seminiferous tubules appeared to 
have spermatogenic cells after treatment with 
BM-MSCs

http://creativecommons.org/licenses/by/4.0/
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