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Abstract

Hazard evaluation of substances of “unknown or variable composition, complex reaction products and biological materials” (UVCBSs)
remains a major challenge in regulatory science because their chemical composition is difficult to ascertain. Petroleum substances
are representative UVCBs and human cell-based data have been previously used to substantiate their groupings for regulatory
submissions. We hypothesized that a combination of phenotypic and transcriptomic data could be integrated to make decisions as
to selection of group-representative worst-case petroleum UVCBs for subsequent toxicity evaluation in vivo. We used data obtained
from 141 substances from 16 manufacturing categories previously tested in 6 human cell types (induced pluripotent stem cell [iPSC]-
derived hepatocytes, cardiomyocytes, neurons, and endothelial cells, and MCF7 and A375 cell lines). Benchmark doses for gene-
substance combinations were calculated, and both transcriptomic and phenotype-derived points of departure (PODs) were obtained.
Correlation analysis and machine learning were used to assess associations between phenotypic and transcriptional PODs and to
determine the most informative cell types and assays, thus representing a cost-effective integrated testing strategy. We found that 2
cell types—iPSC-derived-hepatocytes and -cardiomyocytes—contributed the most informative and protective PODs and may be used
to inform selection of representative petroleum UVCBs for further toxicity evaluation in vivo. Overall, although the use of new
approach methodologies to prioritize UVCBs has not been widely adopted, our study proposes a tiered testing strategy based on
iPSC-derived hepatocytes and cardiomyocytes to inform selection of representative worst-case petroleum UVCBs from each
manufacturing category for further toxicity evaluation in vivo.
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The study of changes in gene expression in response to chemical
exposure, often referred to as transcriptomics, is now a common
approach in mechanistic and predictive toxicology (National
Research Council, 2007a; Nuwaysir et al., 1999) and in risk assess-
ment (Buesen et al., 2017; Kavlock et al., 2018; National Toxicology
Program, 2018). Because gene expression is reflective of the
dynamic tissue and/or cell(s) states, transcriptional changes are
considered to be both sensitive and early indicators of chemical-
induced perturbations; they also may inform mode of action by
providing gene- and pathway-level data (Chen et al, 2012; Cui
and Paules, 2010). Over the last 2 decades, technologies used to
query gene expression and associated data analysis methods
have evolved from microarrays to next generation sequencing-
based approaches (Kinaret et al.,, 2020). More recent toxicology
studies have used high-throughput transcriptomics methods
allowing for rapid evaluation of the effects of large numbers of
chemicals in both time-course and concentration-response study
designs (Harrill et al., 2019; House et al.,, 2017; Lamb et al., 2006;
Yeakley et al, 2017). The data from high-throughput

transcriptomic studies have been used not only to provide mech-
anistic underpinnings of the effects of chemicals on biological
systems but also to derive quantitative estimates of chemical
potency (ie, hazard) more broadly, without a narrow focus on the
meaning of perturbed pathways or genes (Harrill et al., 2021).
With the availability of high-throughput transcriptomics
methods, the use of these data in toxicology is rapidly evolving
from hypothesis-driven observational studies to quantitative risk
assessment with derivatio of points of departure (PODs). Several
studies have demonstrated concordance among gene expression
changes and the “apical” toxicity phenotypes (Geter et al., 2014;
Lobenhofer et al,, 2004; Rouquie et al., 2009; Zarbl et al., 2010).
More recent work that included a larger number of chemicals
confirmed that “apical” adverse effect-based PODs derived from
sub-chronic (months) or chronic (years) studies in rodents are
highly correlated with gene expression-based PODs derived from
short-term (days) in vivo studies in the same species (Bhat et al,,
2013; Bianchi et al., 2021; Gwinn et al., 2020; Johnson et al., 2020;
Page-Lariviere et al., 2019; Thomas et al., 2011, 2012, 2013). For
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example, longer-term apical and shorter-term in vivo transcrip-
tomic PODs are typically within one order of magnitude of each
other across chemical categories and dose ranges; some studies
showed that, transcriptomics PODs may be more protective (e,
the “effects” are detected at lower PODs) than the corresponding
apical endpoints (Thomas et al., 2011, 2012). Based on these semi-
nal studies, it was proposed that transcriptomic data from short-
term dose-response in vivo studies may be used to refine the cur-
rent regulatory toxicity testing paradigm that relies on the use of
long-term animal studies (Farmahin et al., 2017; Johnson et al.,
2022).

Although there is growing acceptance of in vivo-derived tran-
scriptomic PODs, there is less evidence on whether gene expres-
sion data from in vitro assays has utility in decision-making on
chemical safety. In response to the charge by the National
Academies to accelerate toxicity testing (National Academies of
Sciences Engineering and Medicine, 2017; National Research
Council, 2007b), large-scale efforts to test thousands of chemicals
in hundreds of cell-based and -free assays have generated a com-
prehensive compendium of data (Richard et al, 2016, 2021;
Williams et al., 2017). Recent analyses of these data showed that
in vitro-derived apical PODs are on average more sensitive than
in vivo study-derived traditional PODs (Beal et al., 2022; Chen et al,,
2020; Paul Friedman et al., 2020). High-throughput transcriptomic
data from in vitro studies are the most recent type of information
that may be used to advance the use of alternative methods for
decision-making (De Abrew et al., 2016, 2019; Harrill et al., 2021;
Yauk et al., 2020). Examples of applications of high-throughput
transcriptomic data for decision-making range from supporting
“biological similarity” among chemicals (De Abrew et al., 2019;
Low et al., 2011), to ranking chemicals based on their “potency” to
elicit transcriptional effects (Reardon et al., 2021; Rowan-Carroll
et al., 2021), to exploring associations between high-throughput
transcriptomic and high-throughput phenotypic profiling data
(Harrill et al., 2021; Nyffeler et al., 2022). However, studies that
evaluated effects of a large number of petroleum substances on a
diverse set of human cell-based models showed that although
high-throughput toxicogenomic data provided useful mechanis-
tic information on the effects of substances in different manufac-
turing categories, they afforded only modest additional “value”
for grouping (House et al., 2021, 2022). Therefore, the debate con-
tinues as to whether transcriptomic data is adding value to other
in vitro data streams, especially because they add cost and com-
plexity.

Although recent studies have made advances in demonstrat-
ing how combined use of in vitro phenotypes and transcriptomic
data can support decision making regarding chemical safety, sev-
eral challenges remain. First, the applicability of the data on the
individual chemicals to the evaluation of multi-constituent sub-
stances and mixtures remains largely unexplored. Second, addi-
tional work on expanding both the chemical type and biological
model (ie, cell lines) domains is needed to determine value added
by each cell type and whether a representative set of models can
suffice in being protective. Third, although many studies use
transcriptomic data for grouping to inform read-across, an
equally important potential outcome can be selection of repre-
sentative (or worst-case) substances within an established group
for animal testing if existing read-across data are deficient.

To address these challenges, we used a recently published
comprehensive dataset consisting of human cell-based pheno-
typic and transcriptomic data on petroleum substances that are
prototypical “unknown or variable composition, complex reac-
tion products and biological materials” substances (UVCBs)

(House et al., 2021, 2022). These studies were conducted to test a
hypothesis that in vitro biological activity signatures, both pheno-
typic and gene expression, can be used to support grouping of
UVCBs. Overall, 141 petroleum substances from 16 manufactur-
ing categories (CONCAWE, 2020) were tested as representative
UVCBs in a compendium of 15 human cell types representing a
variety of tissues; of these, 6 cell types were also profiled for gene
expression. Petroleum substances were assayed in dilution series
to derive point of departure estimates for each cell type and phe-
notype. Some of these data were used in regulatory submissions
to justify waiving of animal testing requirements, albeit the
European Chemicals Agency did not accept the data as pre-
sented, in part because of the lack of clarity how these complex
data can be integrated and interpreted (ECHA, 2020). Therefore,
we aimed to re-analyze the data from (House et al., 2021, 2022)
with a goal of informing the selection of worst-case sample(s) in
each pre-existing manufacturing UVCB category for subsequent
toxicity evaluation and read-across. The previously reported phe-
notypic PODs and newly modeled transcriptomic PODs were used
to conduct concordance analyses, machine learning-based pre-
dictions, sensitivity testing for the selection of cell types and
assays, and to propose a tiered testing strategy. The data were
then integrated to identify substances that may best represent
the range of potential hazards for each manufacturing category.

Materials and methods

Chemicals, cells, experimental design, and gene
expression data

This study used data previously reported in (House et al., 2021,
2022). Briefly, dimethyl sulfoxide (0.25%-0.5% final concentration
depending on a cell type) and cyclohexane extracts of 141 petro-
leum substances that were supplied by Concawe (Brussels,
Belgium) (Figure 1, Table 1, and Supplementary Table 1) were
used to expose (in a dilution-series) 6 human cell types represent-
ing diverse human organs/tissues (Figure 1 and Table 2). We used
both induced pluripotent stem cell (iPSC)-derived cells as well as
established cell lines. These in vitro models had to be reproducible
(ie, a particular cell/donor can be obtained from a commercial
source) and suitable for evaluation of both “functional” and
“cytotoxicity” endpoints so that the specificity of the effects of
tested compounds could be assessed. Four of these cell types
(hepatocytes, endothelial cells, neurons, and cardiomyocytes)
were  human-iPSC-derived  (FujiFilm-Cellular =~ Dynamics
International, Madison, Wisconsin). Two cell types (A375 and
MCF7) were from ATCC (Manassas, Virginia). In total, 20
phenotype-based points of departure (pPODs) across all 6 cell
types that passed the QC steps as described in (House et al., 2021)
were included in the current study without additional processing
(Table 2, Supplementary Tables 2 and 3). The method for pPOD
derivation based on serial 1-log;, dilutions (4 dilutions and
vehicle control) was detailed elsewhere (House et al, 2021).
Briefly, vehicle control-scaled data for each substance and phe-
notype were fitted to a curve with a nonlinear logistic (Hill) func-
tion to determine POD values, defined as the concentrations at
which the fitted curve exceeds 1 standard deviation (SD) above or
below the mean of vehicle-treated controls (Sirenko et al., 2017).
The choice of 1 SD “benchmark response” was based on the U.S.
EPA guidance for dose-response modeling and determination of
the point-of-departure values (U.S. EPA, 2012), as well as empiri-
cal testing of various thresholds as detailed in (Sirenko et al,
2017), which showed that a choice of 1 SD generates consistently
high classification accuracy. The data on weight percentages of
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Figure 1. Overview of the study design and data analyses of the in vitro effects of 141 petroleum UVCBs of the 6 cell types.

polycyclic aromatic compounds (PAC) in all tested samples were
also from (House et al., 2021).

Transcriptional benchmark dose estimation

Gene expression analyses and data processing and filtering are
described in detail elsewhere (House et al., 2022). All gene expres-
sion data (from human S1500+ TempOSeq assay, BioSpyder, San
Diego, California) and experimental metadata are available from
the public repository Gene Expression Omnibus (GSE186121).
Normalized gene expression counts data analyzed herein did not
include samples with <100K total counts and probes with <5%
counts across all samples. The overall workflow for transcrip-
tomic data analyses (3 dilutions and vehicle control) is shown in
Figure 1. Specifically, normalized counts (counts + 1 to zero-
protect the data for further analyses on the logarithmic scale)
were processed using the BMDExpress (v.2.3) software (Phillips
et al.,, 2019). First, data were pre-filtered with Williams trend test
(p-value <.05 within each transcript and substance) and an abso-
lute fold change >1.5 (compared with vehicle controls); probes

that did not pass the criteria at any dose were removed from fur-
ther analysis. Next, data were analyzed using Hill, power, linear,
polynomial (2 and 3), and exponential (2, 3, 4, and 5) models. The
models that were chosen as best fit varied slightly among the cell
types, but the linear, exponential 2, and polynomial 2 models
were selected over 90% of the time, indicating no concerns about
overfitting (Supplementary Figure 1). A benchmark response of 1
SD was used. The best-fit model for each transcript/sample was
selected based on the following settings: (1) maximum iterations
of 250; (2) confidence level of 0.95; (3) constant variance; (4) Hill
models with a k parameter <1/3 of the lowest positive dose were
flagged and then the next best model with a p-value >.05 was
used; and (5) a nested chi-squared cutoff value of 0.05 to select
the best polynomial models followed by minimum Akaike
Information Criterion value and a goodness-of-fit p-value >.05.
All benchmark dose (BMD) output data files from BMDExpress
are available as Supplementary Files 1-12. The last data process-
ing step using BMDExpress output detailed above was to cap the
BMD values at the highest dose tested, and to remove transcripts
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Table 1. Petroleum substance categories (CONCAWE, 2020) examined in this study

Category Abbreviation N of samples
Untreated distillate aromatic extracts UDAE 4
Straight-run gas oils SRGO 6
Vacuum gas oils, hydrocracked gas oils, and distillate fuels VHGO 107
Cracked gas oils CGO 82
Unrefined/acid treated oils UATO 4
Heavy fuel oil components HFO 27¢
Treated distillate aromatic extracts TDAE 2
Residual aromatic extracts RAE 2
Bitumens/oxidized asphalt BIT 5
Other gas oils OGO 4
Foots oils FO 3
Kerosines/MK1 diesel fuel KER 10°
Other lubricant base oils/highly refined base oils BO 33
Paraffin and hydrocarbon waxes/slack waxes WAX 10°
Low boiling point naphthas (gasolines) NAPHTHA 107
Petrolatums P.LAT 3
* Categories that contain 8 or more substances that were used for “worst case scenario” analysis.
Table 2. Cell types and in vitro phenotypes used in this study
Cell Phenotype Exposure duration Abbreviation
iPSC-hepatocytes Positive cytoplasmic staining 48h CAM
Cellular mean area 48h CMA
Mitochondrial integrated intensity 48h MII
Positive mitochondrial staining 48h posMT
iPSC-cardiomyocytes Total cells 24h TC
Peak amplitude average 90 min amp
Peak decay rise ratio 90 min decay.rise
Peak spacing coefficient of variation 90 min spacing
iPSC-endothelial cells Branch points 18h BrPo
Mean tube length 18h MTL
Nuclei mean intensity 24h NI
Positive mitochondrial staining 24h posMT
iPSC-neurons Cells with significant growth 72h CSG
Mean cell body area 72h MCBA
Total cells 72h TC
Total number of processes 72h TotPr
A375 Alamar blue fluoresecnce 24h AlmrB
Caspase-Glo® 3/7 luminescence 24h CaspGlo
MCEF7 Alamar Blue fluoresecnce 24h AlmrB
ROS-Glo™ H,0, assay 24h Glo

that had BMD to BMD lower bound (BMDL) ratio >20. Vehicle con-
trol samples were assigned a “dose” one log;o unit below the low-
est dose tested to allow plotting on the logarithmic scale, but for
the analyses themselves, actual dose values were used.

Pathway analyses

Pathway analyses were performed using C2Reactome ontology
gene sets and XGR R package (version 1.1.8) (Fang et al., 2016). For
these analyses, the “background list” was composed of all tran-
scripts that were retained after low-count removal for a given cell
type as detailed in (House et al., 2022). Pathway enrichment was
conducted with a false discovery rate (FDR) of 5% as a threshold
for significantly enriched gene sets.

Derivation of transcriptomic data-based points of
departure

Many statistical approaches for derivation of transcriptomic
data-based points of departure (tPODs) are available (Farmahin
et al., 2017) and this area of computational toxicology is rapidly
evolving. It has been acknowledged that the specific methods
used to derive the tPODs are of critical importance and need to be

calibrated to be protective of toxicity while balancing sensitivity
and specificity (Johnson et al., 2022). Overall, the most widely
used approaches for tPOD derivation can be broadly summarized
into 2 categories: tPOD derivation based on individual response
genes, and tPOD derivation based on a subset of informative
genes (eg, pathways or gene sets). Because the goal of this study
was not to test all possible approaches, but to evaluate several
most used, we selected one approach from each of these meth-
ods. For tPOD based on individual response genes, the lowest con-
sistent response dose (LCRD) approach was used which identifies
the most sensitive and consistent nonoutlier features (Crizer
et al.,, 2021). The “lowest consistent response doses” (LCRD) were
derived using a procedure detailed in (Crizer et al., 2021) by rank-
ing the BMD values from the lowest to the highest, and identify-
ing the lowest BMD values where all subsequent ratio values
(calculated by rank n+ 1/rank n) in down-rank BMDs are <1.66.
For tPOD based on the choice of subsets of informative genes, the
Most Sensitive Pathway Dose approach was used; it is one of the
most commonly used approaches for tPOD derivation (National
Toxicology Program, 2018; Thomas et al., 2013). Specifically, a
median BMD value was derived from the individual BMDs for



transcripts in each pathway; then, the lowest median value of all
significant pathways was selected as the tPOD of the substance.

Our approaches to tPOD derivation were based on the inclu-
sion criteria of BMD/BMDL < 20. Alternative suggestion was
made that transcripts may be removed when a ratio of BMD/
BMDL > 40 (National Toxicology Program, 2018). We explored
whether such alternative consideration would be impactful. We
found that the minimum tPOD selected using the current
approach was highly concordant with that using a ratio of BMD/
BMDL > 40 (Supplementary Figure 2); in a few instances where
there were differences, our approach to tPOD selection resulted
in a lower (ie, protective) tPOD.

Data analyses using pPOD, tPOD, and PACs (with 3-7 rings)
content

The overall outline of various data analyses used in this study is
shown in Figure 1. First, correlation analyses were performed
using both Pearson’s and Spearman’s methods. Correlation sig-
nificance was evaluated using adjusted p-values by each cell type
using R v4.2 p.adjust function (method="fdr"). Second, analyses
of prediction of pPODs from transcriptomic data were conducted
using tree learning algorithms of extreme gradient boosting
(XGBoost) (Chen and Guestrin, 2016) using the R package xgboost
(v 1.6.0.1). For this, BMD values for all transcripts and substances
were used as predictors for a regression tree-based model train-
ing. The predicted values were obtained with leave-one-out
cross-validation, and the performance of each prediction was
evaluated by recording the Pearson correlation between the pre-
dicted results with the original pPOD values.

Third, we conducted data integration using the Toxicological
Priority Index (ToxPi) approach (Marvel et al., 2018; Reif et al.,
2013). The toxpiR R package (v 1.2.1) was used to integrate data
from bioactivity, transcriptomics, and PAC for ranking petroleum
substances within a category. The input data was inversely line-
arly scaled on a 0-1 scale, with O representing the lowest potency
(highest POD or least PAC 3-7 ring content), and 1 representing
the highest potency (lowest POD or most PAC 3-7 ring content).

Results

This study tested the hypothesis that a combination of human
cell-based phenotypic and transcriptomic data can be integrated
to make human health-protective decisions. Specifically, we eval-
uated this hypothesis in a case study of selecting worst-case
petroleum UVCBs in a “manufacturing category” (ie, group of sub-
stances) for subsequent in vivo testing to fill in regulatory-
required data gaps and enable read-across to other members of
the category. The overall schematic of the study design and data
analysis workflow is shown in Figure 1. The study included data
on 141 petroleum UVCBs from 16 manufacturing categories/
groups representing ~75% of all petroleum substances that have
been registered in the European Union (CONCAWE, 2020). We
took advantage of the recently collected comprehensive “new
approach methods” dataset comprising transcriptomic data and
phenotypes in 6 human cell types (House et al, 2021, 2022).
Although the previous studies focused on the use of such data to
group petroleum substances, herein the in vitro, transcriptomic,
and analytical data (ie, PAC content) were used to determine the
most informative cell and data types, and to define a strategy to
select worst-case substances within each category for further
testing in animals.

Our previous study (House et al., 2022) did not derive tPODs. A
variety of approaches for extracting PODs from transcriptomic
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data have been proposed (Farmahin et al., 2017), yet no consensus
exists as to what method is most appropriate for in vitro data.
Here, we re-analyzed the in vitro transcriptomic data from (House
et al., 2022) using two frequently used approaches (Figure 1).
Figure 2 shows the representative tPOD values derived using each
approach, data on the individual substances are grouped into
manufacturing categories and the latter are sorted based on their
overall bioactivity in vitro as detailed elsewhere (House et al,
2021). Overall, the tPOD values derived using LCRD (Figure 2A)
appeared to be more protective than those generated from the
Most Sensitive Pathway Dose approach (Figure 2B). Specifically,
when comparing the tPOD values derived using the 2 approaches
for each UVCB substance in each cell type, we found that 84%,
93%, 87%, 97%, 99%, and 93% of LCRD values were less than those
derived using Most Sensitive Pathway Dose method in iPSC-Hep,
iPSC-CM, MCF-7, iPSC-Endo, iPSC-Neu, and A375, respectively.
Notably, median tPODs derived from iPSC-Hep using LCRD
approach (for each category) showed a clear pattern that corre-
sponds to the ranking of the categories with respect to their over-
all median in vitro bioactivity scores as detailed in House et al.
(2021) (Spearman correlation coefficient=0.79, p-value < .001).
The categories with substances containing high amounts of PAC
(ie, UDAE, SRGO, VHGO, and CGO) had lower LCRD-derived tPODs
than those categories with substances low in PAC (ie, KER, BO,
WAX, NAPHTHA, and P.LAT). The wide range of tPODs in the for-
mer was also concordant with greater within-category variation
in both bioactivity and PAC content. These results suggest that
tPODs derived using the LCRD approach are more protective (ie,
lower) than those derived using the Most Sensitive Pathway Dose
approach. The tPODs derived using the LCRD approach were also
more concordant with both PAC content and bioactivity
(Supplementary Figure 4 for correlation analysis between tPODs
derived using the Most Sensitive Pathway Dose approach and
PAC content, and for correlation analysis between tPODs derived
using the Most Sensitive Pathway Dose approach and pPODs).
Therefore, we used LCRD tPOD values in all subsequent analyses
as quantitative transcriptomic data of choice.

PAC content of each tested petroleum UVCB sample was previ-
ously found to be significantly correlated with the in vitro bioac-
tivity data (House et al, 2021), as well as the number of
differentially expressed and concentration-response genes in
iPSC-Hep (House et al., 2022). Here, we compared the iPSC-Hep-
derived tPOD values to PAC content (see Supplementary Table 4
in House et al. (2021)) and found them to be also highly correlated
(Spearman correlation coefficient=0.65, p-value=2.2x 107,
Figure 3A). Specifically, the samples that contained higher levels
of PAC elicited gene-level transcriptional effects at lower concen-
trations. Figure 3B shows these data sub-divided into each of 16
manufacturing categories; we found that positive correlations
were discernable within those manufacturing categories that
span a range of PAC content-containing samples.

We also determined whether tPODs correlate with in vitro
phenotypes-derived pPODs across tested cell types (Figure 3C).
We conducted this analysis for each cell type and phenotype sep-
arately, as well as for the most conservative (min) and median
pPOD values within each cell type regardless of the phenotype.
We found that in iPSC-Hep, the correlations (Supplementary
Table 4) were highly significant (after multiple testing correction)
across all phenotypes. In other cell types, the correlations were
lower (eg, A375 cell line), or not significant. These results indicate
that when PODs are compared, only in the iPSC-Hep the pheno-
typic bioactivity was concordant with the transcriptomic data.
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Figure 2. Box-and-whisker plots show manufacturing stream-based grouping of the transcriptomic points of departure (POD) for individual petroleum
substances. Boxes represent the interquartile range, vertical line is the median value, and whiskers extend to the corresponding quartile plus 1.5x the
interquartile range, or otherwise to the min-max range of values. See Supplementary Figure 3 for transcriptomic points of departure for all other cell
types. A, Data derived using the Lowest Consistent Response Dose (LCRD) approach. B, Data derived using the Most Sensitive Pathway Dose approach.
The data from iPSC-derived hepatocytes (Hep) are on the left, for iPSC-derived cardiomyocytes (CM) are in the middle, and for all 6 cell types combined

are on the right.

Another test of a relationship between transcriptomic and
phenotypic data was to determine if transcriptomic data can be
used to predict the bioactivity (ie, pPODs). For this, the transcript-
level BMD values for all transcripts passing quality control crite-
ria (see Materials and methods section) were used as input into a
prediction model. We found that transcriptomic data from all
iPSC-derived cells, but not MCF7 or A375 cell lines, could predict
some or all pPODs (Figure 4A, bars). The strongest correlations
were observed in iPSC-Hep where each phenotype could be pre-
dicted, a scatter plot example of the prediction for median pPODs
in iPSC-Hep is shown in Figure 4B (r=0.77). We also calculated
the precision of such predictions (Figure 4A, diamonds) by calcu-
lating the residual mean square error (RMSE) of each prediction
and found that they ranged from 0.48 to 1.17; the lowest RMSE
overall were found in iPSC-Hep. In addition, when similar analy-
sis was done across all data to predict the median pPOD across
all cell types used, we found that transcriptomic data from iPSC-
Hep were most informative (r=0.80, RMSE = 0.38; Figure 4C).

Because we observed that only some cell types provide infor-
mative data with respect to expected relationships between
chemical composition of the samples and ensuing bioactivity, we

tested whether a sub-set of the data (2 cell types) may be as infor-
mative as the overall dataset (all 6 cell types). This analysis was
aimed at reducing the complexity and cost of future experiments
with petroleum UVCBs whereby a more limited set of cells and
assays may be used. To test this, we first compared tPODs to the
lowest pPODs in each cell type (Figure 5A). We found that mean
tPODs were almost always (except for iPSC-Neu) significantly (p
<.001, t-test) lower than the means of the minimum pPODs. This
result indicates that tPODs were more protective, on average,
among all phenotypes collected. Second, we determined what
cell type and assay (phenotypic or transcriptomic) was most sen-
sitive in terms of the lowest POD for each of the tested substan-
ces. We found (Figure 5B) that tPOD or pPOD from iPSC-
cardiomyocytes (IPSC-CM) and iPSC-Hep were most sensitive for
the majority (55%) of tested substances, which demonstrates the
ability of these 2 cell types to provide informative data across the
wide range of petroleum UVCBs. Third, the ability of using tPODs
and pPODs from only iPSC-CM and -Hep for grouping petroleum
UVCBs into manufacturing categories was tested and compared
to that when all in vitro, transcriptomic, and/or PAC content data
were used (as reported previously in [House et al, 2022]).


https://academic.oup.com/toxsci/article-lookup/doi/10.1093/toxsci/kfad041#supplementary-data
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Figure 3. Correlations between transcriptomic point of departure (POD) values, polycyclic aromatic compound (PAC) content, and phenotypic PODs. A,
A scatter plot of PAC score for 3-7 ring compounds (calculated by taking the weighed content of PAC [3-7 ring] and log;, transformed) in each UVCB
sample and the transcriptomic POD values. Dots represent each substance and colors represent each manufacturing category (see inset). The rank-
based correlation (rho) value and corresponding p-value are also shown. B, Same comparisons as in panel A but substances have been separated into
each category. C, Bar plots show the -log;o transformed false discovery rate (FDR) adjusted p-values for rank-based (Spearman) correlation between
transcriptomic and phenotypic POD values in each cell type. Individual phenotypes (white bars) and the minimum and median phenotypic (grey bars)
PODs are shown. The horizontal red dotted lines show a significance threshold (adjusted p-value =.05). A color version of this figure appears in the

online version of this article.

Figure 5C shows that tPOD data (column marked E) from iPSC-
CM and -Hep was as informative as the whole transcriptomic
data for 16-class (each manufacturing category separately) pre-
diction, but less accurate for a 2-class (high- vs low-PAC com-
pound classes) prediction. However, for multi-variable (tPODs
combined with pPOD and/or PAC) predictions, the classification
accuracy was indiscernible from that using all available data (col-
umns marked BE, AE, and ABE). These results indicate that the
predictions using data from iPSC-CM and -Hep are largely not
less than those using a much larger dataset of 6 cell types.
Fourth, we tested whether iPSC-CM and -Hep-derived minimum

PODs (either transcriptomic or phenotypic) are equally sensitive
to those derived from other cell types tested (Figure 5D). We
found that the mean minimum PODs derived from iPSC-CM and -
Hep were no greater than the mean minimum PODs from the
rest of the cell types.

Overall, the results in Figure 5 demonstrated that both tran-
scriptomic and phenotypic data from only 2 cell types, iPSC-CM
and iPSC-Hep, when combined with the PAC content information,
provide equivalently protective PODs and are sufficient for group-
ing. Therefore, we next determined if these data can be used as a
tiered testing strategy for selecting worst-case petroleum UVCBs
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Figure 4. Cross-validated performance using transcriptomic benchmark dose values to predict phenotypic PODs. A, Bar plots show the cell-specific
Pearson correlation coefficients (bars, left y-axis) and the residual mean square errors (diamonds, right y-axis). The horizontal red dotted lines
represent a significance threshold for correlation values (adjusted p-value =.05). B, A scatter plot of benchmark dose values of all modeled probes in
iPSC-Hep as the predictors versus the predicted PODs. C, Same as in panel B, but prediction made for the phenotypic data from all 6 cell types using
transcriptomic data in iPSC-Hep. A color version of this figure appears in the online version of this article.

for toxicity studies in vivo. To accomplish this, we integrated
tPOD and pPOD data with PAC content information using the
ToxPi approach (Figure 6). A ToxPi score was calculated for each
substance as the indicator of the overall hazard rank. To ensure
that this approach was identifying the same substances of great-
est potential concern regardless of whether the whole dataset
from 6 cell types, or only the data from iPSC-CM and iPSC-Hep,
was used, we compared the ranking between the 2 datasets
(Figure 6A). We found that approximately 80% of the substances
that were ranked in top 2 or 3 in their category based on ToxPi
scores derived from the entire compendium of the data (all 6 cell
types), remained in the top 2 or 3 when only iPSC-Hep and iPSC-
CM data was used (Figure 6A). Notably, the best match was
achieved when all 3 data streams (tPODs, pPODs, and PAC

content) were used (Figure 6A, squares). Therefore, for subse-
quent data integration, we used ToxPi rankings based on this
subset of data (Figure 6B). Figures 6C-I show the relative ranking
of substances for 7 of 16 manufacturing categories in which there
were at least 8 petroleum UVCBs. We reasoned that in a category
containing a large number of substances (between 8 and 33), test-
ing all of these substances in regulatory-required animal studies
would not be commensurate with the 3R (Replacement,
Reduction, and Refinement) principles and that a data-informed
selection of the representative worst-case substance(s) can be
made to reduce animal use. To demonstrate how data-informed
selections could be made, ToxPi plots were created to summarize
the content of PAC and t/pPOD information from iPSC-Hep and
iPSC-CM. All 141 tested substances were ranked based on the
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Figure 5. Selection of most informative cell types and assays. A, Box and whiskers plots of cell type-specific transcriptomic POD values (boxes in white)
and minimum phenotypic POD (boxes in grey). Boxes represent the interquartile range, vertical line is the median value, and whiskers extend to the
min-max range of values. Individual substances are shown as black dots. The asterisks (***) denote a significant difference (p <.001) between
conditions using a t-test. B, A bar plot showing the frequency of each cell type determining the lowest POD values for each tested substance.
Transcriptomic (T, white bars) and phenotypic (P, grey bars) POD values are shown for each cell type. C, A stacked bar plot of the results for predicted
accuracies in a supervised analysis in which the UVCB category was predicted from the transcriptomic PODs from iPSC-Hep and iPSC-CM only E, from
both the phenotypic and transcriptomic PODs from iPSC-Hep and iPSC-CM (BE), from the pattern of PAC (3-7 rings) analytic data and transcriptomic
PODs from iPSC-Hep and iPSC-CM (AE), and all data mentioned above (ABE). Each overall bar denotes the predicted accuracy of a binary prediction (see
Results) with black section indicating the accuracy of predicting the exact manufacturing category (16-class prediction). Arrows (red is for a binary and
blue for a 16-class prediction) denote previously reported accuracy of classification using all cell type data. D, A box and whiskers plot showing the
sensitivity analysis for the means of lowest PODs of all samples obtaining from iPSC-Hep and iPSC-CM (white box) as compared to the data from all cell

types (gray box). A color version of this figure appears in the online version of this article.

overall ToxPi score and then substances within each category
were identified by the colored dot on the overall ranking plot. We
also display the actual ToxPi pie charts for the lowest, medium,
and highest ranked substances in each category so it can be
determined whether the rank is determined by the data from the
same cell type and/or data type.

Herein, we propose that an overall ToxPi rank based on the
data from iPSC-Hep and iPSC-CM, together with a PAC score, can
be used to select representative substance(s) for additional in vivo
testing. For example, in the VHGO manufacturing category
(Figure 6C), substances #184 and #176 are highest in rank among
other VHGOs and are also among the highest ranked compounds
of all tested. Their ToxPi profiles demonstrate that these can be
deemed as representative of “worst cases” for this category, albeit
there are some differences in their effects on transcriptional
responses between iPSC-Hep and iPSC-CM. Another example is
the HFO category where substances #028, #034, and #008 are all
highly ranked but also show ToxPi profiles that are highly similar.
Because other substances in this category (eg, other 6 substances
shown in Figure 6E) show ToxPi profiles that are similar among
them but somewhat different from the 3 top-ranked substances,

some of them may be selected for additional in vivo testing as
they would be representative of a sub-group based on their bioac-
tivity. In other categories, similar choices can be made based on
either overall ToxPi-based rank, or the ToxPi profiles to select
representative worst-case substance(s).

Discussion

Previous studies (Grimm et al., 2016; House et al., 2021, 2022) used
combined information of PAC content, cell-based phenotypic
data, and/or in vitro transcriptional responses to determine
whether grouping of petroleum UVCBs based on these new
approach methods data are concordant with predefined catego-
ries established based on the manufacturing characteristics.
These studies demonstrated that PAC content was (1) a strong
determinant of the overall cell-based bioactivity, and (2) corre-
lated with gene expression in iPSC-Hep (House et al., 2021, 2022).
Although these previous results established that in vitro studies-
derived gene expression and bioactivity are potentially useful for
grouping of petroleum UVCBs, they also revealed considerable
heterogeneity in bioactivity within each manufacturing category.
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Figure 6. Data integration and visualization using ToxPi to support selection of worst-case substance(s) in each category using PAC (3-7 ring) content
and transcriptomic and phenotypic POD values from iPSC-Hep and iPSC-CM. A, A dot plot showing the percent match in ranking (top 1, 2, or 3 place) of
the substances within their category using ToxPi scores using the data from all 6 cell types versus that from iPSC-Hep and iPSC-CM only. Hollow circles
(AB): the pattern of PAC (3-7 rings) analytic data and transcriptomic PODs. Hollow diamonds (BE): the phenotypic and transcriptomic PODs. Hollow
triangles (B): phenotypic PODs. Solid squares (ABE): all data mentioned above. B, ToxPi legend representing each included data type as a colored slice
with equal weights. CM_pPOD: phenotypic POD data from iPSC-CM. CM_tPOD: transcriptomic POD data from iPSC-CM. Hep_pPOD: phenotypic POD
data from iPSC-Hep. Hep_tPOD: transcriptomic POD data from iPSC-Hep. C-I, Scatter plots showing a rank order of all 141 petroleum UVCBs (gray dots)
using their overall ToxPi score. Each panel represents the relative rank of the substances within each category (colored dots, see category labels on the
y-axis and Table 1 for full description) for the categories with 8 or more substances. Insets show the actual ToxPi plots for selected individual
substances in each category that are in the top ranked 3 (below the dot plot), middle 3, and bottom 3 (above the plot) substances.

Although it may be possible to use bioactivity data to group
petroleum UVCBs, such an approach was questioned by regula-
tors because “relationship between substances in in vitro test results
has an unclear relationship to any in vivo toxicity assays on the test sub-
stances” (ECHA, 2020).

The existing categories of petroleum UVCBs are accepted by
both regulators and the industry because they are based on the
manufacturing process, physico-chemical characteristics, and
product performance specifications (CONCAWE, 2017); however,
the heterogeneity of substances within each category is also well
acknowledged. Thus, there are disagreements as to how the data
gaps in regulatory-required animal tests shall be filled. Although
regulators demand either complete data package on every sub-
stance, or more substantive rationalization of proposed read-
across within each category (ECHA, 2022), the registrants argue
that “the biological activity profile of the substances [e.g., those
from (House et al., 2021, 2022) studies] and other in vitro tests

provides a basis for predicting the properties in relevant in vivo
tests [ie, read-across]” (ECHA, 2020). Due to considerable gaps in
the overall petroleum UVCB database of regulatory-required toxi-
cological information, virtually no substance has data that would
fully satisfy hazard characterization requirements under the
European Union regulations; the regulators argue that some form
of additional animal testing must be performed. Thus, the refine-
ment of such additional required animal tests (ie, reducing the
number of substances tested) is one of the primary drivers to
strategies for selection of representative worst-case substances
within each category for additional testing. Our study presents a
serles of arguments and case examples for how new approach
methods data can be used to inform selection of worst-case sub-
stances within each category for such additional animal testing.
By re-analyzing a very large dataset that contained data on vari-
ous new approach methods (in vitro and transcriptomics data)
specific to these substances, we reason that a tiered testing



strategy based on select assays is a sensible path forward for
choosing representative worst-case petroleum UVCBs for full-
scale toxicity evaluation in vivo to meet regulatory requirements.

A recent opinion from a group of diverse stakeholders pro-
posed a strategy for using tPODs in regulatory science (Johnson
et al., 2022). They concluded that transcriptomic alterations and
PODs derived from transcriptomic responses can serve as sensi-
tive quantitative indicators of potential adverse human health
outcomes. The authors found that although transcriptomic data
are still fairly new with respect to its use in quantitative risk eval-
uations, there are a number of case studies that examined the
ability of short-term animal exposure-derived tPODs to predict
traditional sub-chronic and chronic apical endpoint-based PODs.
The shift from using transcriptomics mainly in support of mech-
anistic considerations to quantitative risk assessment is an
important advance toward the use of these data in decision-
making. PODs are a critical information type in chemical safety
assessments because they provide the basis for reference values
and risk management. Because it is generally presumed that
transcriptomic responses precede any apical effects, it follows
that PODs derived from transcriptomic data constitute protective
values, as supported by previous reports (Bhat et al., 2013; Bianchi
et al., 2021; Gwinn et al., 2020; Johnson et al., 2020; Page-Lariviere
etal., 2019; Thomas et al., 2011, 2012, 2013).

Still, there are very few examples of in vitro transcriptomic
datasets that resulted in POD derivation, especially for complex
substances and mixtures. Two recent studies demonstrated how
in vitro high-throughput transcriptomics can be used for new
approach methods-based hazard characterization of chemicals.
In a study of 44 diverse chemicals that were tested in
concentration-response in MCF7 cells, it was shown that in vitro
tPODs were closely aligned with pPODs from other in vitro assays,
and that gene expression signatures were associated with the
known molecular targets of tested chemicals (Harrill et al., 2021).
In a study of 24 chemicals in HepaRG cells, in vitro BMC modeling
and pathway analysis were able to make qualitative and quanti-
tative predictions between liver injury and non-liver injury com-
pounds (Ramaiahgari et al, 2019). Based on these promising
findings, the current study aimed to extend the evidence base to
a greater number of cell types and a larger compendium of com-
plex substances. Our proposed approach enables investigation of
the potential value of transcriptomic data for data integration
and decision-making with respect to “worst case” substances
within a category, in a setting where detailed characterization of
the chemical composition is difficult. In addition, we tested
whether prioritization of assays can aid in reducing the complex-
ity of new approach methods-based studies in the future.
Overall, our work provides empirical evidence for the following
broad considerations in how and where new approach methods-
based data may be applied in regulatory decision-making of
chemicals in general, but UVCBs and mixtures in particular.

First, although many studies of emerging new approach meth-
ods are evaluating effects of chemicals on a large number of cell
types and endpoints, a strategy on how to use such data to focus
on models fitting for a particular purpose is yet to emerge. For
instance, many large-scale testing programs yield comprehensive
datasets on hundreds to thousands of legacy chemicals (Richard
et al., 2021; Williams et al., 2017), yet there are fewer examples of
using these “big data” to narrow the choices of cell models and
assays that can fit a certain regulatory purpose. Specific exam-
ples of such emerging efforts to “down-sample” are studies that
demonstrated that a minimal set of in vitro assays can be selected
to reliably determine estrogen agonist activity (Judson et al,
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2017), or determined the minimal sample size needed for a regu-
latory context-specific precision and accuracy in estimating pop-
ulation variability using in vitro models (Blanchette et al., 2022;
Chiu et al., 2017).

Previous studies of in vitro effects of petroleum UVCBs (House
et al., 2021, 2022) were purposefully broad in terms of the number
of cell-based models and phenotypes in an effort to extend the
“biological space” and guard against underestimating potential
hazard by neglecting a potentially “sensitive” cell type or pheno-
type. These studies already demonstrated that data derived from
assays of biological activity in iPSC-derived models were highly
informative, whereas data from cancer cell lines were less so
(House et al., 2021). Accordingly, high-throughput transcriptomics
data were obtained from a smaller set of cell types in a subse-
quent study, which also demonstrated that an even smaller set
of cell types is most informative (House et al.,, 2022). Our study
extends these observations by adding a quantitative argument
with tPODs and demonstrating that iPSC-Hep and iPSC-CM are
the most informative cell types by using multiple types of evi-
dence, both in terms of their ability to yield the “most protective”
t/p PODs, as well as to rank and prioritize substances. Although it
was not surprising that hepatocyte-like cell type will be informa-
tive for PAC-containing substances because of their metabolic
capacity to transform PACs to reactive intermediates, inclusion
of cardiomyocytes was also found to be of great value for the
same risk-based considerations. Our finding that tPODs from
iPSC-CM were most protective for a majority of petroleum UVCBs
is consistent with previous observations that this cell type can be
used to distinguish between UVCBs with low to no PAC content
(House et al., 2021). Although these studies demonstrated that
iPSC-CM are a useful cell type for evaluation of hydrocarbon-
containing substances, our previous finding that iPSC-CM yielded
more protective phenotypic PODs across various chemical classes
(Chen et al., 2020) argues for its utility beyond petroleum UVCBs.
Combined, these results suggest that, in addition to in vitro
pPODs, high-throughput transcriptomic-derived tPOD from iPSC-
CM also provide unique value for quantitative risk evaluation
using cell-based data. However, because iPSC-CM phenotypes
were largely based on the ion channel activity, the lack of correla-
tion of pPOD and tPOD in this cell type, and in other cells where
cytotoxicity was the only phenotype queried, indicates that gene
expression provides a far wider coverage of the potential biologi-
cal effects and thus adds highly informative and complementary
data. Still, an important limitation of our study and future con-
sideration is the choice of tPOD derivation methods (Farmahin
et al, 2017). Although we tested several commonly used
approaches for tPOD derivation, inclusion of other methods and
gene sets (Mubeen et al., 2022) could lead to lower (ie, more pro-
tective) tPODs, but also increase false discoveries. To ensure con-
fidence that transcriptomics can be employed to establish a POD
from both short-term in vivo and in vitro studies at a dose level
below which a biological perturbation is not expected would
require further methodological development and discussion to
build an accepted weight of evidence around reproducible meth-
ods and appropriate study design (Johnson et al., 2022).

Second, we show that even though tPODs were, in general,
more protective than pPODs for petroleum UVCBs tested herein,
both types of data are informative for overall rank prioritization.
The concordance between transcriptomic and phenotypic PODs
has been evaluated recently in MCF7 cells (Harrill et al., 2021). It
was found that although there was an overall agreement in the
PODs of different type, depending on the compound, either one of
those POD types may have been most protective. We found that
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concordance between tPOD and pPOD was highly dependent on
the cell type. For example, in iPSC-Hep, correlations were highly
significant, whereas in other cell types, this was not the case. On
one hand, such a result may be interpreted as indicative of
greater overall interpretability of the data from iPSC-Hep and
enhance confidence in using these quantitative estimates of haz-
ard for decision-making. For example, these cells exhibit meta-
bolic competency comparable to that of many lots of primary
human hepatocytes (Sirenko et al, 2014; Valdiviezo et al,
2022a,b), but questions remain about their fetal-like characteris-
tics in terms of the metabolic enzyme expression (Yamaguchi
et al., 2019). On the other hand, it is current practice to use any
indication of the biological activity in vitro, across a range of
assays and cell types, to provide a protective POD for risk assess-
ment (Daston et al.,, 2022; Paul Friedman et al., 2020). Therefore,
we conclude that once a targeted set of cell types is selected, in
the case of our study of petroleum UVCBs this would be iPSC-Hep
and iPSC-CM, both phenotypic and transcriptomic data shall be
collected and included in determining worst-case substances for
further evaluation in vivo. For other studies, the same or different
cell types may be most informative depending on the expected
toxicological responses of a particular chemical or a class of
chemicals. For example, our previous work showed that a com-
pendium of 5 cell types was sufficient to cover potential adverse
effects of chemicals from different classes, defined mixtures, and
environmental samples of unknown composition (Chen et al,
2020, 2021a,b; Hsieh et al., 2021).

Third, it is also increasingly clear that even though the aspira-
tion to transition risk assessment of chemicals to a mechanisti-
cally based human-focused evaluation (U.S. EPA, 2021) may be
informed by a desire to step away from the animal study as the
gold standard (Piersma et al., 2018), most regulatory regimes still
require testing in animals for hazard evaluations. Therefore, a
full replacement of animal tests, or reliance only on in vitro data,
may be an ambitious goal, but not a practical solution in the near
future. Indeed, recent experience of submitting multi-
dimensional in vitro data in support of grouping and read-across
of petroleum UVCBs to reduce animal testing requirements was
not successful (ECHA, 2020). Specifically, the European
Chemicals Agency raised several concerns about the utility of
using such data to waive animal testing requirements. Given the
reality of unlikely elimination of animal tests for at least some
endpoints in the near term, refinement appears to be a more sen-
sible option where new approach methods data may contribute
value. This study proposed a tiered integration of various data to
arrive at selecting representative substance(s) for more scientifi-
cally justifiable and limited animal testing. The existing catego-
ries for petroleum UVCBs are already highly heterogeneous in
terms of chemical composition of substances (eg, PAC content
[House et al., 2021]), and there is paucity of data to determine rep-
resentative compounds based solely on their chemical composi-
tion due to both complexity and variability (Roman-Hubers et al.,
2023). Thus, additional data streams, eg, phenotypic and tran-
scriptomic PODs, offer protective quantitative estimates across
most informative cell types that, when combined with PAC con-
tent, yield actionable information that includes both overall haz-
ard rank and can be also interpreted in terms of the similarity
among compounds in a category for the ultimate purpose of
selecting representative “worst case” substances for additional
testing.

This tiered approach can be used not only for presumably haz-
ardous substances, but also for those substances that are
deemed to be without appreciable hazard. For example,

substances in the base oils category are all classified as carcino-
genic in the European Union (European Commission, 2008),
despite the wide range of hazard profiles within the category.
Additionally, KEROSINE category substances are classified as car-
cinogenic, whereas WAX category substances are not classified
as hazardous, even though they all contain low levels of PAC sub-
stances. Furthermore, not all of the substances in these catego-
ries have been tested sufficiently to determine what substance(s)
within a category may best serve as source for read-across. In
this regard, the data integration approach proposed in our study
may aid in determining what substances are more likely to pose
human health hazard, regardless of how the entire category is
classified. For example, using the ToxPi data integration strategy
one can focus on a limited number of substances in base oils or
WAX categories to conduct comprehensive animal testing and
use the similarity in ToxPi profiles for data-informed selection of
source-target choices for read-across.

Overall, this work provides an informative case study com-
mensurate with a call (Price et al., 2022; Thomas et al., 2019) for
improving the resource efficiency in chemical toxicity testing,
both in vitro and in animals. We conclude that both phenotypic
and transcriptomic data provide unique value and should be
included as part of a tiered testing strategy to complete hazard
evaluations of petroleum UVCBs. Among the cell types, iPSC-Hep
and iPSC-CM, when coupled with information on PAC content,
are the most informative for this purpose. Our specific strategy
for selecting representative (or “worst case”) petroleum UVCBs in
each manufacturing category for additional animal testing to fill-
in data gaps includes: (1) narrowing the scope of any additional
in vitro testing to a manageable set of cell models and assays that
provide protective and informative PODs, (2) integrating both
PAC, phenotypic, and transcriptomic data to visualize/evaluate
the trends/patterns among substances in a category, (3) selecting
a smaller set of representative substances for animal studies
based on this integrative analysis, and (4) using the animal tests
data from selected “source” substances to read-across to the
remaining “target” data-poor substances in a category to com-
plete regulatory evaluation and move to risk management.
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