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Abstract
We use data on human mobility obtained from mobile applications to explore the activity pat-
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nated by minority groups declined less compared to the Greater London average, leaving those
communities more exposed to the virus. Meanwhile, the activity levels declined more in affluent
areas dominated by white-collar jobs. Furthermore, due to the closure of non-essential stores,
activities declined more in premium shopping destinations and less in suburban high streets.
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Introduction

In this study, we use data on human mobi-
lity derived through mobile applications to
explore the activity patterns in the neigh-
bourhoods of Greater London as they
emerged from the first wave of national
lockdown measures in summer 2020. The
spatial and temporal granularity and the
timeliness of the activity data enable detailed
exploration of the mobility characteristics of
a range of geodemographic groups and retail
environments. Our analysis is motivated by
earlier research (Baena-Dı́ez et al., 2020; Jay
et al., 2020) that poses a possible socioeco-
nomic gradient in the ability of individuals
and communities to adhere to social distan-
cing measures, making certain groups of
people more exposed to the virus. So far,
empirical investigations of inequalities have
been limited to studies focusing on spatial
disparities in cases and fatalities (Bowyer
et al., 2021; Office for National Statistics
[ONS], 2020b), but studies looking at the
socioeconomic aspects of human activity
patterns during the lockdown are lacking.

The broader theme of this study is to
demonstrate the potentialities of novel
sources of data, such as the location data

captured by smartphone apps, during public
health crises. We link spatially aggregated
mobile locations data to the geodemo-
graphic classifications, with the aim of iden-
tifying socioeconomic characteristics that
could explain the differing rates of decline in
neighbourhood activity volumes. It is hoped
that our analysis will inform public health
interventions that are sensitive to the under-
lying socioeconomic factors that can influ-
ence the uptake of mobility restrictions.

We should note that our review and anal-
ysis were finalised in September 2020 and
therefore will not reflect later developments
in what is a rapidly evolving situation.

Background

The use of smartphone data in public
health crises

The number of smartphone users worldwide
today surpasses 3 billion and is forecast to
further grow by several hundred million in
the next few years (Statista, 2020). Smart
devices equipped with sensors (e.g. acceler-
ometer and compass) and other capabilities
(e.g. Cellular radio, Bluetooth, Wi-Fi, GPS)
have extended our abilities to gather data on
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highly granular human activity patterns
across large areas (D’Silva et al., 2017).

Digital data sources that provide timely
information about human behaviour, espe-
cially on mobility and the physical co-presence
of people (Oliver et al., 2020), are of particular
value in public health crises as official data
and reliable forecasts are often scarce (Ienca
and Vayena, 2020). Given that the COVID-19
emergency is occurring in a digitised and con-
nected world (Ienca and Vayena, 2020), timely
data to measure changes in population beha-
viour (Connolly et al., 2021; Quealy, 2020) are
available at large scales.

Mobile location data have been utilised to
monitor the compliance of the social distan-
cing measures put in effect to combat the
pandemic (Oliver et al., 2020). The longitudi-
nal nature of these data has enabled a base-
line to be established for pre-COVID times,
allowing not only the changes in mobility to
be quantified (Jeffrey et al., 2020; Pepe et al.,
2020) but also the recovery process of society
after the crisis to be better understood
(Willberg et al., 2021). Furthermore, the spa-
tial granularity of the mobile data allows an
in-depth understanding of the spatial dispari-
ties in human activity patterns during crises.

In this study, using mobile location data
captured by smartphone apps, we consider
the role of socioeconomic markers in explain-
ing areal variability in the reduction of activ-
ity levels in the neighbourhoods of Greater
London – the capital of the UK, which was
the epicentre of the UK’s coronavirus out-
break and has been severely impacted by a
high rate of COVID-19 cases and mortality.

Smartphone location data collection

Smartphone location data are collected
through software applications (‘apps’) that
can be installed by the user on a smartphone
and other wearable devices (Lupton, 2020).
Most apps are designed to deal with a spe-
cific need (Morris and Murray, 2018) such

as to help people find their destinations, pro-
vide a weather forecast, offer taxi services or
monitor health and physical activity.

Location data are collected and stored
through a Software Development Kit (SDK)
embedded into smartphone apps. At the
device level, iOS and Android operating sys-
tems combine various location data sources
(e.g. GPS, Wi-Fi, beacons, network) (Pepe
et al., 2020) to position the user as quickly
and accurately as possible in their respective
mapping and navigation products (Wang
et al., 2019). The location data are further
used by app developers for commercial pur-
poses, such as location-based ad targeting,
and are monetised by being sold to firms
that mine the data for business insights
(Romm et al., 2020). Researchers at Oxford
University analysed approximately a third
of the apps available in Google’s Play Store
in 2017 and found that the median app
could transfer data to 10 third parties (Binns
et al., 2018). Although the users are given
the choice to turn off the location tracking
from their mobile devices (Degirmenci,
2020), the consumers do not necessarily have
an indication of when their data are being
collected and also have a poor understand-
ing of how that data are used (de Montjoye
et al., 2020).

Challenges of smartphone location data

In recent years, governments have started to
address the privacy concerns of in-app loca-
tion data collection and sharing. For exam-
ple, General Data Protection Regulation –
effective in the European Union – requires
the data controller (e.g. app developer) to
define what is appropriate and adequate
data in the context of some service delivery
and to explain what happens to the personal
and location data collected (Georgiadou
et al., 2019).

Location privacy has received special
attention since it is argued that information
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about an individual’s location is substantially
different from other kinds of personally iden-
tifiable information (Keßler and McKenzie,
2018) because it can infer sensitive informa-
tion about an individual’s social, economic
or political behaviour (Georgiadou et al.,
2019). For example, the New York Times
acquired a large location dataset and was
able to demonstrate that although it included
no personally identifiable information it was
possible to identify individuals when com-
bined with other datasets (Thompson and
Warzel, 2019; Warzel and Thompson, 2019).

Reducing the granularity of spatial or
temporal information reduces the unique-
ness of human mobility traces and can there-
fore help to mitigate these issues (Song et al.,
2014). The cost to this is the introduction of
further uncertainty to the data and the ana-
lytical challenges of the modifiable areal unit
problem (Openshaw and Taylor, 1979). Too
much spatial and temporal aggregation can
also render localised patterns undetectable
(González-Bailón, 2013) and limit therefore
the usefulness of the data, particularly in
contexts where the power of the data lies in
its granularity (Scott et al., 2020).

Regardless of the challenges of maintain-
ing user privacy, smartphone location data
are similar to most consumer datasets in that
they can be inherently unrepresentative of
particular social groups who do not engage
in the data collection process. Systematic
demographic differences in smartphone
ownership and proficiency (Raento et al.,
2009), especially in relation to some specific
segments such as the elderly (Birenboim and
Shoval, 2016), may introduce generational
bias (Parsons, 2020). Also, spatial disparities
exist in the coverage of the data because
access to mobile devices or more fundamen-
tally the internet itself in developing coun-
tries is often limited (Parsons, 2020).

Besides limited spatial coverage, we must
also be cognisant of how data were collected
and, where possible, contextualise it and

account for all possible fallacies that will arise
from the data collection procedures (Lansley
and Cheshire, 2018). Mobility data collected
by smartphone applications rely on the kinds
of apps that collect user location (Quealy,
2020), and the phenomena being measured
by the mobile applications may be spatially
dependent in some sense (Lansley and
Cheshire, 2018). Understating the inherent
spatial bias in the data is straightforward for
the location data collected by first-party apps
(e.g. Google, Apple, CityMapper), but this
data are often not available for data provided
by data aggregators who deliver their data
through hundreds of small third-party apps.

Also, technical factors such as restricted
battery life affect the reliability of
smartphone-based methods (Raento et al.,
2009). Consequently, quite a lot of location-
based services still suffer from considerable
positioning errors of GPS (usually 1–20 m
in practice) (Wu et al., 2015), which limits
the usefulness of the smartphone location
data for analysis where the precision of the
location data is essential (e.g. counting visits
to certain retail stores or other facilities).

The location data in this study are spa-
tially aggregated to 1 km2 grid cells so that
we only know the number of unique devices
per hour in each grid cell but do not have
any information to construct digital traces of
any of the devices. We discard observations
for which the GPS accuracy is over 200 m.
Also, to understand the potential bias and
representativeness, we compare our dataset
against other publicly available mobility
metrics (e.g. Google COVID-19 Community
Mobility Report, Apple Maps Mobility
Trends Report) to confirm that our data
show similar temporal patterns.

Social and spatial inequalities during
COVID-19 lockdown

In the United Kingdom, the attempts to
slow the spread of the COVID-19 virus and
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to reduce the impact of acute cases on medi-
cal systems led to the implementation of
unprecedented non-pharmaceutical interven-
tions ranging from case isolation to national
lockdowns (Ribeiro et al., 2020). In the
absence of a vaccine or effective treatments,
restricting human mobility is an effective
strategy used to control disease spread
(Zhou et al., 2020), but there is likely to be a
social gradient in an individual’s ability to
adhere to protective social distancing mea-
sures (Wright et al., 2020). A recent report
published by the ONS (2020b) revealed that
people living in more deprived areas have
experienced COVID-19 mortality rates more
than double those living in less deprived
areas. Similar findings were reported by
Bowyer et al. (2021), who found significant
evidence of urban hotspots and a geo-social
gradient associated with disease severity and
prevalence in COVID-19.

Financial constraints to physical distan-
cing may have been an important factor con-
tributing to a higher COVID-19 burden
among economically marginalised popula-
tions (Jay et al., 2020). Crowd-level data on
mobile phone usage can be used as a proxy
for actual population mobility patterns and
provide a way of quantifying the impact of
social distancing measures on changes in
mobility (Jeffrey et al., 2020). Recent prelim-
inary studies (Jay et al., 2020) have found
that people in lower-income neighbourhoods
have faced barriers to physical distancing,
particularly the need to work outside the
home. Those in elementary occupations
(including cleaners, waiting staff and security
guards) that tend to pay lower wages and are
disproportionately held by minority popula-
tions, as well as people with lower educa-
tional attainment (Mongey and Weinberg,
2020), are much less likely to be able to work
remotely than employees in higher-paying
jobs (ONS, 2020a). While people with higher
education and white-collar office workers
were able to switch to remote working, blue-

collar employees had to work on-site and
risk being exposed to the virus (Dingel and
Neiman, 2020).

In this study, we explore the spatial and
social disparities in the decline of activities,
but instead of looking at specific measures
of the neighbourhood (e.g. median income,
average education level, etc.) as has been
done in previous studies (e.g. Jay et al.,
2020), we propose using geodemographic
classifications to assess the changes in the
activity patterns of different urban commu-
nities. Geodemographic classifications have
been created by clustering demographic data
and are designed to accumulate a complex
body of information about a population,
making them a more robust reflection of the
social, economic and demographic charac-
teristics of a neighbourhood. A similar
approach of linking location data and open
geodemographics was applied in the study
by Liu and Cheng (2020), who integrated
smart card data with workplace classifica-
tion to understand traveller behaviour, in
particular the passenger composition of the
stations alongside the two Night Tube
routes. Geodemographic classifications have
also been used in health research for target-
ing neighbourhoods in public health cam-
paigns (Petersen et al., 2011) and measuring
inequalities in health (Abbas et al., 2009).

Case study

The aims of this case study are twofold. In
the first part, we describe our sample mobile
locations data and compare temporal pat-
terns with other mobility metrics released by
Google and Apple in their respective
‘Mobility Reports’. The availability of multi-
ple data sources measuring similar phenom-
ena allows verification and cross-checking of
the patterns.

In the second part of the case study, we
analyse the discrepancies in the decline of
activity levels. We first add contextual
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information that indicates the social, eco-
nomic and demographic characteristics of a
neighbourhood to the 1 km2 grid cells cover-
ing Greater London and study the depen-
dency between the population characteristics
in the neighbourhood and the decline of the
activity levels during the lockdown.

Data

The anonymised smartphone location data
applied in this study are provided by Huq
Industries (https://huq.io/). Technical data
(including location information, date and
time) about a device are collected using
mobile app SDK embedded within one of
their mobile app partners’ apps. The data
are captured only when the mobile app part-
ner has obtained users’ prior explicit consent
to SDKs collecting the data (more informa-
tion: https://huq.io/privacy-policy/).

We use a subset of Huq’s database for the
time period of January to July 2020, cover-
ing the Greater London region. There are in
total around 500 mobile partner apps that
contribute data to the database in this
period; however, the majority of the apps are
in use infrequently. We exclude temporary
apps so that the sample used in the study
includes only data collected by the apps that
were in use consistently throughout the study
period. So, the sample data includes mobile
location information collected by 146 apps.
The names of the apps are hashed and not
known to the researchers.

The location data has been collected from
308,311 unique devices during the study
period. However, as the (location) data are
collected only when the device interacts with
an app, the panel of unique devices present
at each time point varies. The data are col-
lected from ; 93,000 unique devices in
January, but from ; 42,000 unique devices
in April. On average, a device is active for
24 days during the study period (on average
eight days per month).

In the next step, data are spatially and
temporally aggregated so that no individual
trajectories can be detected. First, the loca-
tion information (captured as latitude and
longitude) is replaced by a grid ID through
spatially joining the data points to a 1 km2

grid. There are in total 1731 grid cells cov-
ering the Greater London Authority
(GLA) area. A 1 km2 grid was chosen as
this level of spatial aggregation preserves
the spatial patterns but also allows the data
to be easily linked to a geodemographic
classification using population-weighted
centroids (explained in section ‘Linking mobi-
lity data and geodemographic variables’).

Next, we count the number of unique
devices that have been present in each grid
cell per hour. We refer to the count of devices
in the grid cell as the level of activities. The
activity measure reveals that a device has
been in a certain grid cell, but not how long it
stayed there or whether it was passing
through. To obtain the general daily activity
measure, we add together the hourly activities
for the respective date. The daily values are
then converted into percentages that show
the ratio between activity levels at a given
date and the baseline period (3 January to 6
February) (rescaling is explained in sections
‘Addressing the representativeness of case
study data’ and ‘Rescaling and aggregating
data’). As the lower numbers tend to create
outliers when transformed into percentages,
we add a further data cleaning step where we
remove the grid cells that have been visited
by fewer than 10 unique devices on any day
during the study period. This excludes 559
(32%) grid cells located mainly in the out-
skirts of Greater London (see Figure 3).

To sum up, the final sample data have the
following attributes: cell ID, date, total activ-
ities. The data have been collected through
146 apps from 308,311 unique devices and are

spatially aggregated into 11,72 1km2 cells cov-

ering the Greater London area.
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Addressing the representativeness of case study
data. We compare the temporal patterns in
the Huq activity data to various other activ-
ity metrics made available by Google and
Apple in their respective ‘Mobility Reports’.
The comparison includes 10 different activ-
ity measures, each of which indicate the
change in certain types of activities during
the COVID-19 pandemic.

Google activity metrics show the percent-
age of change in the number of visits to the
places of interest relative to a median value
of the five weeks from 3 January to 6
February 2020 for each weekday. The places
of interest are clustered into four groups:
Parks (includes visits to local parks, national
parks, etc.), Transit Stations (tube, bus and
train stations), Grocery & Pharmacy (grocery
markets, pharmacies, etc.) and Retail &
Recreation (restaurants, cafes, shopping cen-
tres, etc.). The report also includes informa-
tion about the change in the average stay at
places of residence calculated based on the
change in the average amount of time (in
hours) that users spend at home (Aktay
et al., 2020). A further metric is available for
places of work calculated as the percentage
of change in the number of unique users
who spend more than one hour per day at
their workplace. The aggregation and anon-
ymisation process applied in creating the
activity metrics is described in Aktay et al.
(2020). The location data are derived from
1 billion monthly users globally who have
turned on the ‘Location History’ in the
Google account settings and allowed the
Google Maps web mapping application to
store the device’s location (Russell, 2019).
The earliest date that this data is available is
15 February 2020 and the data are updated
weekly.

Apple mobility metrics, released in April
2020, reflect the changes in the requests for
directions in Apple Maps during the
COVID-19 pandemic. The mobility index is
calculated separately for requests made for

driving, walking and transit, and the mobi-
lity index is defined as the percentage of
request volume relative to the number of
requests made on 13 January 2020. The
report is updated daily.

Apple measures are relative to 13 January
2020, whereas Google measures are calcu-
lated against the median activity level of the
five-week period of 3 January to 6 February
for each weekday. Apple’s single-day base-
line preserves the variations across the week-
days, whereas the longer baseline used by
Google where each weekday is compared
against the median value of the baseline for
that weekday removes the weekly cycles in
the data. As the Google Mobility Index has
the most limited availability, we rescale the
Huq and Apple data using the methodology
proposed by Google. For the Huq data, this
could be done to the same baseline period (3
January to 6 February), but Apple data were
rescaled using a slightly shorter time period
(13 January to 6 February) as the data are
not available for earlier dates. The missing
values (Apple Mobility Index has missing
values for 11–12 May) are replaced by linear
interpolation using na.approximate() func-
tion from the zoo package (Zeileis et al.,
2020) in R (R Core Team, 2019).

After rescaling the metrics, we visualise
the data (see Figure 1) and calculate the
similarity, expressed as Euclidean distance,
between all the time series for the period of
2 March to 13 July 2020. The similarity mea-
sures are then fed into a hierarchical cluster-
ing algorithm. Hierarchical clustering
partitions data into different levels that
resemble a hierarchy, which provides an easy
way to inspect the similarities in the nested
grouping of patterns and levels at which
groupings change. Unlike other popular
clustering techniques such as K-means and
PAM, hierarchical clustering does not
require the number of clusters to be defined
in advance. We use the average-linkage algo-
rithm that (unlike single-linkage and Wards
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linkage methods) is robust to outliers, which
is important for our analysis as the outliers
have not been removed since they carry rele-
vant information about how the different
time series react to temporary external fac-
tors (e.g. weather or public holidays).

The analysis is conducted in R using the
dist() function from the stats package (R
Core Team, 2019) to compute the distance
matrix and the hclust() function from the
cluster package (Maechler et al., 2019) to

perform hierarchical cluster analysis. The
factoextra package (Kassambara and
Mundt, 2020) function fviz_dend() that
draws dendrograms is used for visualising.

The trends in activity metrics and the den-
drogram showing the clustering hierarchy are
visualised in Figure 1. The Residential cate-
gory, which measures the change in the dura-
tion of the time people spend at home, rises
around 25% during the lockdown as people
spent more time at home. However, the

Figure 1. Cluster analysis of the mobility metrics. (a) Trendlines pertaining to the change in different
activities. The Residential, Park and Supermarket & Recreation categories show significantly different patterns
from the remaining seven activity metrics including the Huq activity data. (b) Dendrogram showing the
clusters of similar activity metrics. Huq activity data are most similar to Transport Stations metrics.
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magnitude of the change (38% at its peak)
was not as significant as in some other cate-
gories (e.g. - 89% at Transit, - 83% at Retail
& Recreation) because people spent a lot of
time at their places of residence also before
the lockdown. The visits to the Park category
also increased, although as the metrics are
not seasonally adjusted the change in activi-
ties most probably reflects changes in the
weather rather than the changes in mobility
caused by the lockdown. The Grocery &
Pharmacy category combines visits to the
locations that are considered to be essential
trips. There was a spike in activities in the
Grocery & Pharmacy category in the week
before the lockdown as people started to
shop in bulk ahead of the lockdown. Also,
the majority of the places included in this
category stayed open throughout the lock-
down. Therefore, there was less of a decline
in activities in the Grocery & Pharmacy cate-
gory compared to the other categories (e.g.
Retail & Recreation).

The patterns in the rest of the seven cate-
gories are similar to each other. There was a
decline in the week before and during the
first week of the lockdown, where activities
dropped up to 80% compared to the base-
line. The lowest levels of activity were
recorded around the Easter holidays between
10 and 13 April. The Transit and Retail &
Recreation categories showed the most
decline, dropping by as much as 89% and
83% respectively. There has been a steady
incline in activities in all categories since the
Easter holidays. The Driving category has
recovered faster compared to the other cate-
gories which saw a similar decline (e.g.
Transit, Transit Stations, etc.).

The hierarchical clustering results show
that trends in Huq activity levels are most
similar to the Transit Station category. Both
categories reach the lowest level of activities
on 13 April, where transit stations had 80%
and Huq activity levels 81% fewer activities
compared to the baseline. The Retail &

Recreation and Workplaces categories also
show similar patterns to Huq activity levels,
but Retail & Recreation saw more decline
because most of the shops were closed dur-
ing the lockdown and Workplaces saw less
decline over the weekends as those areas had
low activity volumes over the weekends even
before the lockdown.

Methodology

Linking mobility data and geodemographic
variables. We aim to obtain a more detailed
view of the discrepancies between neigh-
bourhoods within Greater London. This
part of the case study includes only Huq
data because Google and Apple mobility
data are not available in the same level of
detail. From the comparison with other
available activity metrics from Google and
Apple Mobility Reports, we conclude that
activity levels in Huq data are representative
of the mobility of the ambient population in
Greater London.

We assign geodemographic categories to
the 1 km2 grids and examine the change in
activities within each geodemographic classi-
fication across Greater London. These clas-
sifications are created by clustering
demographic attributes into groups that
exhibit similar characteristics at a range of
geographies. The classifications selected for
the analysis are shown in Table 1. Our
choices reflect the desire to capture residen-
tial (LOAC and IMD) characteristics as well
as those in areas of employment (LWPZ), a
distinction that is particularly pronounced in
London. In addition, the plight of retail
areas has garnered significant attention and
is seen as key for managing the economic
recovery, particularly in the face of succes-
sive closures and re-openings in an era of
local lockdowns. We have therefore included
a typology of retail centres in the analysis
(Dolega et al., 2021).
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The distinct geographical units of each of
the chosen classifications meant that direct
linkage to 1 km2 grid cells used for aggregat-
ing activity data was not possible. Therefore,
a simple overlay approach was taken

utilising population-weighted centroids to
weight the allocation of each classification
category to each grid cell. We do this by
overlaying the grid with population-
weighted centroids that serve as a reference

Table 1. Detailed description of geodemographic classifications and other area characteristics included in
the analysis.

Geodemographic classifications and other area characteristics

Classification Details

London Output Area
Classification (LOAC) (Longley
and Singleton, 2014)

Captures the characteristics of the residential population in Output
Areas (OAs) using data from the 2011 census. OAs are compact and
homogeneous areas with a target size of 125 households built from
postcodes. The classification uses a combination of over 60 census
variables to classify all OAs, based on their similarities, into eight
Super Groups and 19 Groups.

Index of Multiple Deprivation
2019 (IMD) (McLennan et al.,
2019)

The IMD is calculated for every Lower-layer Super Output Area
(LSOA) in England. LSOAs are created by merging OAs and have an
average of approximately 1500 residents or 650 households. The
index is based on 39 separate indicators, organised across seven
distinct domains of deprivation (income, employment, health,
education, crime, housing and services, living environment) that are
combined and weighted to calculate the IMD. In the case study, we
apply deprivation deciles, where Decile 1 represents the most
deprived 10% of neighbourhoods and Decile 10 represents the least
deprived 10% of neighbourhoods.

London Workplace
Classification (LWPZ) (Singleton
et al., 2017)

Workplace Zones (WZs) have been created by splitting and merging
OAs to produce a workplace geography that contains consistent
numbers of workers (Martin et al., 2013). Effectively, this is a
geographic redistribution of the usually resident population who are
in work, allocated to their place of work. Unlike the LOAC and IMD
Index which are based solely on information derived from the
census data, the LWPZ uses supplementary data from other data
sourced through the CDRC, the ONS and Transport for London,
including variables pertaining to the dynamism and attractiveness of
workplace settings, the retail structure and accessibility. A total of
92 variables were used to classify the 8154 WZs in London into five
Groups and 11 Subgroups.

Retail Centres (Dolega et al.,
2021)

Retail centres are defined as distinctive areas of increased
concentration of retail activity. The geography of retail centre
boundaries was designed by Pavlis et al. (2018) and the typology was
introduced by Dolega et al. (2021). The classification takes into
account the structure of the retail occupancy (presence of different
subcategories of stores), vacancy rates and crime. The classification
yields five groups and 15 subgroups. The geographical boundaries, as
well as the typology, have been derived from data made available
from the Local Data Company (LDC:http://
www.localdatacompany.com/).
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point for the centre of the population in an
OA/WPZ. Population-weighted centroids
have been calculated by the ONS and can be
downloaded from their geoportal (https://
geoportal.statistics.gov.uk/). Centroids are
first joined with the most recent population
statistics, which for Output Areas are mid-
year population estimates for 2018 (ONS,
2019) and for Workplace Zones are the
count of workplaces in 2015 (ONS, 2016).
After overlaying centroids with the 1 km2

grid, we perform point in polygon operation
to match each geodemographic zone to the
grid cell that contains its centroid. Next, we
calculate the weights expressed as the total
population or number of workplaces for
each geodemographic classification category
in each grid cell. Finally, the highest
weighted category of every geodemographic
classification in each grid cell is assigned as a
classification type to the grid cell. There is a
small number of grid cells that do not over-
lap with population-weighted centroids.
Those areas are located mainly in the subur-
ban areas where population density is lower
and where OA/WPZ cover larger areas. In
those cases, a geodemographic classification
is not assigned to the grid cells (marked as n/
a in Figure 2). We acknowledge that this
approach might be further improved by a
more sophisticated fuzzy matching metho-
dology and the apportionment of multiple
categories to each grid cell, but we felt that
this was beyond the scope of our largely
exploratory analysis.

Unlike the geodemographic classifica-
tions, the retail centre typology is not a
population-based metric. Instead, it repre-
sents distinctive areas of increased concen-
tration of retail activity. Therefore, the areal
overlap between retail centres and grid cells
is more important. To link the retail centre
typology to the gridded data, we calculate
the geographic coverage of the retail centre
in every grid cell, aggregate the results based
on the typology and assign the typology

which covers the largest area as a variable
for the grid cell.

To evaluate the population/area-weighted
methods for assigning classification type to
the grid cells, we calculate the correlation
between the weights and the average daily
activity levels in the pre-lockdown period (6
January to 8 March 2020). We find a signifi-
cant positive correlation between the weights
and the activity levels. The weights that rep-
resent the daytime population, such as the
count of workplaces, yield a stronger corre-
lation than the weights that represent resi-
dential population, such as population
count used to assign IMD Deciles and
LOAC. These findings comply with our pre-
vious observations that show the in-app
activity data used in this case study are simi-
lar to the transit station, workplace and
other activity metrics that represent ambient
population. The correlation results are
shown in Figure 2a.

The results of linking the geodemographic
classifications to the grid cells are evaluated
by comparing the areal distribution of the
classification groups assigned to grid cells
against the areal distribution of the classifica-
tion when the original area unit (Workplace
Zone or Output Area) is used (see Figure 2b).
The biggest discrepancies are present at the
Retail Centre Typology, where the coverage
of the Local Retail & Service Centres group
has been overestimated by ;15% compared
to the original distribution and the distribu-
tion of the Leading Comparison & Leisure
Destinations group has been underestimated
by approximately 15%. All in all, linking the
geodemographic classification to 1 km2 grid
cells using population-weighted centroids
yields good results.

Across all the classifications, there are in
total 28 geodemographic and related vari-
ables linked to the 1 km2 grid cells. Each
grid cell can have a maximum of four geode-
mographic variables (one from each classifi-
cation shown in Table 1). Geodemographic
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Figure 2. Results of linking geodemographic classification to aggregated mobile locations data. (a) The
positive correlation between retail centre areas and average activities shows that the activity levels are
higher in the larger retail centres. Similarly, the activity levels are higher in the grid cells with more
workplaces. (b) Bar charts indicate the assignment of cells to classifications, those unfilled suggest a slight
under-estimate of the number of areas in that category, whilst bars extending beyond the black borders
indicate where more cells than expected were assigned to a category.
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variables are now joined with the aggregated
activity data based on the grid cell ID which
is the common denominator between the
two datasets.

Rescaling and aggregating data. The daily total
activities in each grid cell are rescaled using
the methodology proposed in the Google
Mobility reports, where each weekday is
compared against the median value of the
same weekday during the baseline. We use a
baseline period of 6 January to 8 March
(pre-lockdown period, see Figure 3). In
essence, rescaling converts the data into per-
centages that show the ratio between activity
levels at a given date and the baseline activ-
ity levels.

Segmented regression model. We run a seg-
mented regression analysis to evaluate dispa-
rities between geodemographic classification
types. This estimates intervention effects in
interrupted time series studies (Wagner
et al., 2002) and is often used in health
research (Taljaard et al., 2014). We split the
study period into five segments: 1) Baseline
period before COVID-19 (5 January to 8
March), 2) Precautionary behaviour before
lockdown (9–22 March), 3) National lock-
down (23 March to 9 May), 4) Easing of
lockdown measures phase 1 (10 May to 14
June) and 5) Easing of lockdown measures
phase 2 (14 June to 13 July).

Geodemographic variables are compared
against the average activity levels (= refer-
ence level) in Greater London (Figure 3).
Significant and positive estimates indicate
that the activity levels at this geodemo-
graphic classification type declined less com-
pared to the reference level, meaning those
areas remained more active relative to the
London average. The regression is run sepa-
rately for each classification to avoid multi-
collinearity between the variables.

Results

Exploratory analysis. The pre-lockdown period
(6 January to 8 March) can be characterised
by busy workdays and quiet weekends. The
activity levels started to significantly decline
in week 10 (9–15 March), and by the time
the lockdown was announced on Monday
23 March the activity levels were already
down by 56% compared to Monday 9
March. The steep decline in activities slowed
down after one week of nationwide lock-
down (around 27 March). The decline con-
tinued at a slower pace until reaching the
lowest levels during week 16 (13–19 April),
when activities were down by over 84%
compared to pre-lockdown activity levels.
The activity levels started to slowly recover
in mid-April – weeks before any of the
restrictions were officially eased. The activi-
ties recovered to 47% of pre-lockdown levels
by the beginning of July.

The maps in Figure 3b show the distribu-
tion of activities during the baseline period
(6 January to 8 March), when central
London and the transport hubs (e.g.
Croydon in south London) were the major
activity hotspots; during the national lock-
down (23 March to 18 April), when the dis-
tribution of activities was more equal across
Greater London but some of the transport
hubs remained busy (e.g. Stratford); and
finally during the period after non-essential
stores reopened (14 June to 13 July),
when central London become the hotspot
for activities again, although not at the
same magnitude as in the pre-lockdown
period.

Segmented regression analyses findings. There
were no significant deviations from the aver-
age activity levels in any of the geodemo-
graphic classification groups during the
baseline period. Starting from 9 March and
before any mobility restrictions had been
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put in place, the activities in the City Focus
(- 13.60%), Metropolitan Destinations
(- 9.54%) and Leading Comparison &
Leisure Destinations (- 6.37%) declined sig-
nificantly more compared to the Greater
London average. These categories also sus-
tained a steeper decline once the national
lockdown was announced on 23 March.
Such declines would be expected since they
are characterised as having few residents
and many more mobile groups such as tour-
ists, workers and shoppers.

During the national lockdown, the activi-
ties decline more than the London average

in affluent residential neighbourhoods in
central London labelled Urban Elites
(- 20.11%) and in affluent suburbs labelled
London Life-Cycle (- 11.52%). On the other
hand, there was significantly less decline in
activity levels in struggling suburban areas
classed as Intermediate Lifestyle (11.53%)
and Multi-Ethic Suburbs (9.72%). Further
areas that remained busy during the lock-
down were the Integrating and Independent
Service Providers (4.96%) and Residential
Services (2.32%) type of workplace zones, as
those types of jobs need to be carried out
on-site.

Figure 3. Subset of the activity data used in the case study. (a) Temporal trends during the study period. (b)
Spatial distribution of the activities. The maps show the activities in a grid cell as a percentage of total activities
in Greater London. The percentages are calculated for each day and then averaged across the period.

1440 Urban Studies 60(8)



(a)

(b)

Figure 4. Continued
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IMD Deciles showed a clear trend – more
deprived areas (IMD Decile 2 and 3)
remained busier than the average during the
lockdown, whereas less deprived areas
(IMD Decile 8–10) had more decline in
activities. Furthermore, the recovery of
activities once the restrictions were eased
was faster in the higher deciles and slower in
the lower deciles.

The recovery was also slower in Primary
Food & Secondary Comparison Destinations
(from 1.78% during lockdown to - 0.25%
after reopening of non-essential retail) than
in Leading Comparison & Leisure
Destinations (- 15.23% to - 10.11%), and
slow in City Focus workplace zones
(- 32.16% to - 29.08%). Amongst the resi-
dential neighbourhoods, the recovery was
fastest in Urban Elites (- 20.11% to
- 13.28%).

Figure 4c shows the spatial distribution
of the geodemographic classification groups
where the decline in activity levels remained

significantly lower or higher compared to
the Greater London average once the first
restrictions were eased in May 2020. The
map shows that the geodemographic areas
that remained less busy are located in central
London (e.g. Mayfair) and in affluent neigh-
bourhoods in south London (e.g.
Wimbledon). This was probably because of
the lack of tourist population (especially in
central London) and due to the fact that
people living in those areas continued work-
ing from home. The areas where the decline
in activity levels was lower than the Greater
London average are located in struggling
neighbourhoods in north-east, north-west
and south London. This is probably because
the population in those areas had to travel
to work once the restrictions had been
eased.

Limitations. Although we remain positive
about using mobile location data in public

(c)

Figure 4. Regression results. (a) Adjusted R2 value shows the percentage of variation in the change of
activity levels during this time period that the model is able to explain. The model performs poorly for the
baseline period but well for the lockdown period. (b) The trendlines of the geodemographic variables that
had a significant effect on the activity levels in the lockdown period. (c) Spatial distribution of the
significantly positive and significantly negative estimates. Areas where the activities declined more than the
average are clustered to the centre of the city whereas suburban areas remained relatively busier.
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health research, some limitations need to be
considered when interpreting the results.
First, we assume unbiased distribution
across age groups, although it is likely that
the age distribution is skewed towards the
younger population who are more likely to
own a smartphone and/or be active users of
apps. People without smartphones tend to
already be marginalised, so making public
policy based on mobile location data can
further exacerbate this. Next, we count
activities by all the devices and do not distin-
guish between tourists and residents because
our data are aggregated in a way that no
individuals can be detected or tracked, mak-
ing extracting any devices based on their
previous behaviour not possible.

Also, there are well-studied drawbacks to
geodemographic classifications – notably the
‘ecological fallacy’ – that will mean only group
characteristics can be assigned to individuals.
Furthermore, our current regression model
does not account for spatial autocorrelation
between the neighbourhoods. This can be
improved by using a spatial analysis technique
such as geographically weighed regression.

Conclusions

This article offers an early example of utilis-
ing location data captured through mobile
applications to study short-term changes in
population activity dynamics during the
COVID-19 lockdown. In a wider public
health context, it demonstrates how such
data could support situational awareness
across prolonged time periods at a granular
spatial scale. By linking the mobile location
data to the broader demographic character-
istics, we were able to provide additional
insights into the impacts of mobility restric-
tions in different demographic groups across
Greater London. It is hoped that our analy-
sis can offer a more nuanced insight into
why the effectiveness of social distancing

interventions appeared to vary between
areas. The data also signals those areas likely
to require the most support during a post-
pandemic recovery phase as activity is slower
to return.

Our analysis reveals the division between
areas dominated by white- and blue-collar
jobs, the latter showing a much smaller
reduction in activity during the lockdown.
This highlights a divide between those in jobs
that can be done from home and those with
jobs that must be carried out on-site, with
activity levels suggesting that those working
in financial services, in particular, are in a
better position to work remotely. This will
have important implications for transport
planning and retailers, as staggered working
hours mixed with homeworking where possi-
ble have drastically reduced demand in cer-
tain neighbourhoods. Comparison between
different types of retail centres shows less
reduction in activity levels at the Local
Retail & Service Centres, whereas the activity
levels dropped as much as 70% in the
Leading Comparison & Leisure Destinations
located commonly in dynamic central loca-
tions. The findings suggest that recovery and
the challenges faced by traditional high
streets and leisure centres will be very differ-
ent, and local trading patterns may depend
upon behaviours developed during the lock-
down period (e.g. more people will be work-
ing from home) as well as upon further
regulations (e.g. local lockdowns, travel
restrictions).

Our analysis was finalised in September
2020 using data until July 2020; however,
the data are being collected continuously so
the analysis could be extended to reflect later
developments, such as the further lockdowns
and locally targeted interventions.
Furthermore, as good-quality COVID-19
testing and mortality data are now being
published, the activity levels could be
inspected in relation to the positive cases
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and mortality rate or excess deaths in the
neighbourhoods.
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