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Abstract
Senescence is a complex cell state characterized by stable cell cycle arrest and a unique secretory pattern known as the 
senescence-associated secretory phenotype (SASP). The SASP factors, which are heterogeneous and tissue specific, nor-
mally include chemokines, cytokines, growth factors, adhesion molecules, and lipid components that can lead to multiple 
age-associated disorders by eliciting local and systemic consequences. The skeleton is a highly dynamic organ that changes 
constantly in shape and composition. Senescent cells in bone and bone marrow produce diverse SASP factors that induce 
alterations of the skeleton through paracrine effects. Herein, we refer to bone cell-associated SASP as “bone-SASP.” In this 
review, we describe current knowledge of cellular senescence and SASP, focusing on the role of senescent cells in mediating 
bone pathologies during natural aging and premature aging syndromes. We also summarize the role of cellular senescence 
and the bone-SASP in glucocorticoids-induced bone damage. In addition, we discuss the role of bone-SASP in the develop-
ment of osteoarthritis, highlighting the mechanisms by which bone-SASP drives subchondral bone changes in metabolic 
syndrome-associated osteoarthritis.

Keywords Bone-SASP · Cellular senescence · Osteoarthritis · Osteoporosis · Premature aging syndromes · Progeria 
syndrome · Senescence-associated secretory phenotype (SASP) · Skeletal aging

Introduction of Cellular Senescence 
and the SASP

Definition and the Stresses Triggering Cellular 
Senescence

Cellular senescence is a stress response that leads to a stable 
cessation of the cell cycle, halting the growth of damaged 
and potentially harmful cells. It is marked by morphological 
changes, such as flattened cell shape, resistance to apoptosis, 
activation of DNA damage response (DDR), and a complex 
and tissue-specific senescence-associated secretory pheno-
type (SASP), in which senescent cells secrete various fac-
tors that can have both beneficial and detrimental effects on 
neighboring cells and tissues. Senescence can be triggered 

by various types of stress, such as telomere damage/short-
ening [1, 2], DNA damage [3–6], reactive oxidative stress 
(ROS) [7, 8], inflammation [9, 10], mitochondrial dys-
function [11], and oncogene activation [12, 13]. Telomere 
shortening and DDR may be the most studied mechanisms 
that induce senescence. Telomere shortening occurs during 
cell division because of the “end replication” problem [14]. 
Telomeres are shortened by 50–200 bp with each round of 
somatic cell division and have been shown to shorten during 
aging with various human somatic cell types both in vitro 
and in vivo [15, 16]. DDR is a complex signal transduc-
tion pathway that is responsible for sensing and responding 
to various types of DNA damage. Such responses include 
DNA lesion repair, transient cell cycle arrest, apoptosis, and 
senescence. Normally, DDR induces a transient cell cycle 
arrest, allowing sufficient time for the repair machinery to 
act on DNA lesions and repair the damage [17]. After repair, 
the arrested cell exits from the arrest and resumes cell cycle 
progression [17]. It has been evinced that persistent DDR 
foci are often associated with telomeres that are exposed to 
DNA damage, whether it is induced endogenously by oxi-
dative stress or exogenously by genotoxic agents [18–20]. 
Loss of mitochondrial function is another key contributor 
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to cellular senescence and is also a hallmark of aging [21]. 
Mitochondria plays an important role in energy production 
through oxidative phosphorylation, in which they can gener-
ate ATP by oxidizing NADH to NAD + [22]. Mitochondrial 
dysfunction lowers the conversion of NADH to NAD +. 
Reduced NAD + /NADH ratio and impaired mitochondrial 
function lead to elevated ROS production, which could fur-
ther cause cellular damage and DNA mutations for cellular 
senescence [23–25].

Senescence‑Associated Cell Cycle Arrest

Cell cycle arrest is a common feature of cellular senescence. 
Senescent and quiescent cells have common molecules that 
play a role in determining cell cycle arrest. However, these 
two cell states have distinctive phenotypes at both molec-
ular and morphological levels. Whereas quiescence is a 
temporary arrest state, in which the cell retains the ability 
to re-enter cell proliferation, growth arrest in senescence 
is permanent, making the cell unable to resume prolifera-
tion in response to any growth factors or mitogenic stimuli 
[26–28]. Another characteristic that sets these two states 
apart is that quiescent growth arrest takes place during the 
G0 phase [29], whereas senescent cells are halted during 
the G1/S phase and possibly the G2/S phase [30]. Senescent 
cells are also distinct from terminal differentiated cells, in 
which terminal differentiation is a defined developmental 
program, whereas senescence is a cellular stress response 
mediated by different pathways [27, 31, 32]. The two main 
signaling pathways involved in cellular senescence are the 
p53/p21Cip1 and p16INK4A tumor suppressor pathways. 
Various stress factors described above trigger the DDR path-
way, which in turn activates the p53 and/or the p16INK4A 
pathways. p16INK4A inactivates Cdk4/6 for the accumu-
lation of phosphorylated pRb, which stops the regulation 
of E2F transcription factors and drives cell cycle arrest or 
senescence. These stressors also trigger ATM-Chk2 or ATR-
Chk1 pathways and transactivate p53 and p21CIP1, which 
lead to the inhibition of Cdk4/6 activity and consequent G1 
arrest or senescence [33–35].

Senescence is often accompanied by morphological 
changes, specifically flattening and increasing in size [36, 
37]. Cells are large because cell division is blocked by cell 
cycle arrest; however, macromolecule biosynthesis still 
occurs and continues to drive cell growth. As a result, senes-
cent cells increase in size without a corresponding increase 
in DNA content [38]. Another hallmark of senescent cells 
is their resistance to apoptosis, through the upregulation of 
senescent cell anti-apoptotic pathways (SCAPs) [39–42]. 
Based on the above characteristics of senescent cells, sev-
eral common markers are often used to identify senescent 
cells in in vitro and in vivo studies, including changed mor-
phology, increased senescence-associated β-galactosidase 

(SA-βGal), telomere associate foci, senescence-associated 
distension of satellites, senescence-associated heterochro-
matin foci, activation of cell cycle inhibitors/tumor suppres-
sors (e.g., p16INK4a, p19INK4d, p21Cip1), and the SASP. 
Despite these features, it remains a challenge to effectively 
and comprehensively identify the senescent cells in vivo 
mainly due to the heterogeneity of the cells. Very recently, 
Cherry et al. developed an in vivo-derived senescence signa-
ture (SenSig) using a fibrosis model in a senescence reporter 
mouse [43]. Further, using a transfer learning technique to 
score mouse and human scRNA-seq datasets for concord-
ance with the SenSig, the group identified two senescent cell 
populations. The SenSig transfer learning approach provides 
a robust method to identify senescent cells in would healing 
and other age-related pathologies across tissues and species.

It is worth mentioning that cellular senescence may 
underlie sex differences in senescence pathologies. Current 
studies show that female sex is associated with greater sus-
ceptibility to DNA damage and more prone to senescence in 
many experimental models, such as human peripheral blood 
lymphocytes, peripheral blood mononuclear cells, and oth-
ers [44]. For instance, DSBR via NHEJ declines with age 
in women, but not in men in peripheral blood lymphocytes 
[45]; female cells undergo senescence, while male cells 
undergo apoptosis following UV irradiation in rat vascular 
smooth muscle cells [46]. Consistent with these findings, a 
recent study showed that the neurons and glial cells of mice 
that underwent repeated mild traumatic brain injury acquired 
a senescent signature, with female mice having higher levels 
of DNA damage, lower levels of the senescence protein p16, 
and lower levels of the cyclic GMP–AMP synthase stimu-
lator of interferon gene (cGAS-STING) signaling proteins 
compared with their male counterparts [47]. Sex differences 
in cellular senescence may underlie sex-specific disease out-
comes [48].

Senescence‑Associated Secretory Phenotype (SASP)

A fundamental feature of cellular senescence is the secre-
tion of inflammatory transcriptome, also known as SASP. 
Early studies of SASP documented many factors secreted 
from senescent cells, most of which are pro-inflammatory 
proteins [34, 38]. Among them, interleukin (IL)-1, IL-6, 
IL-8, chemokine ligands, monocyte chemotactic protein 
(MCP)-1, MCP-2, matrix metalloproteinase (MMP)-1, 
MMP-3, growth regulated oncogene (GRO)-alpha, GRO-
beta, GRO-gamma, and many insulin-like growth factor-
binding proteins are the highly induced and secreted fac-
tors [9, 49–54]. The composition of SASP has now become 
better understood. Recent reports have shown that SASP is 
also composed of various proteins and non-protein signal-
ing molecules, such as hemostatic factors, ceramides, brady-
kinins, extracellular matrix components, damage-associated 
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molecular patterns, ROS, and prostaglandin [55–58]. Other 
SASP components include vesicles, exosomes, various 
microRNAs and noncoding RNAs, certain fragments of 
DNA, other nucleotides, protein aggregates, and lipid com-
ponents [59–62]. The senescent cells and chronic inflam-
mation induced by the SASP contribute to the pathogenesis 
of many age-related diseases, such as atherosclerosis [63], 
neurodegenerative diseases [64], frailty [65], and osteoar-
thritis (OA). SASP is also known to contribute to frailty and 
several age-associated bone disorders, such as osteoporosis 
and OA (details are summarized in Section II).

The SASP composition and strength are highly dynamic, 
depending majorly on the cell types, senescence induc-
ers, and durations of senescence. A study using proteomic 
analysis identified heterogeneous SASP profiles with dis-
tinct human primary cell types, fibroblasts, and epithelial 
cells, triggered by different senescent inducers, including 
genotoxic stress–induced, oncogene-induced, and treatment-
induced senescence [55]. Each profile is composed of hun-
dreds of largely distinct proteins but also comprises a core 
of SASP components commonly elevated in all SASPs: 
chemokine C-X-C motif ligand, MMP-1, and stanniocal-
cin (STC)-1. Notably, some SASPs overlap with pro-aging 
markers in human plasma, including growth/differentiation 
factor-15 (GDF-15), STC1, and serine protease inhibitors 
[55]. SASP composition and strength are also regulated 
temporally. In oncogene-induced senescence, fluctuations 
in NOTCH1 level can switch an early TGF-β-rich immu-
nosuppressive secretome to a pro-inflammatory SASP [66]. 
Moreover, during late senescence, the depression of LINE-1 
retrotransposable elements serves as a switch for the activa-
tion of type-I interferon expression, which is a phenotype 
for late senescence [67]. Early secretion of the SASP fac-
tor PDGF-AA by senescent cells accelerates wound healing 
and promotes myofibroblast differentiation [68]. However, 
senescent cells at the wound site also subsequently chemo-
attract their own immune-mediated clearance that could 
delay wound healing, suggesting a temporal switch between 
wound repair and inflammatory recruitment of immune 
cells. The dynamic nature and sometimes contradicting 
effects of the SASP help explain the diverse biological func-
tions associated with senescence. Some components of the 
SASP can propagate or reinforce the senescent phenotype 
through autocrine or paracrine mechanisms (Fig. 1), lead-
ing to further secretion and amplification of the SASP [69, 
70]. In an autocrine manner, SASP reinforces cell autono-
mous mechanisms, such as cell cycle arrest to the senescent 
cells themselves. SASP also signals in a paracrine fashion 
with multiple effects on neighboring cells, such as trigger-
ing cellular senescence of surrounding cells, also known as 
paracrine senescence [71]. The importance of the SASP in 
eliminating senescent cells through the immune system was 
emphasized by the discovery that Bromodomain-containing 

protein 4 (BRD4), an epigenetic regulator that controls the 
enhancer and super-enhancer architecture of SASP genes 
and governs the SASP’s capacity to facilitate the immune 
clearance of senescent cells [22]. Immune-mediated clear-
ance of senescent cells suppresses tumor initiation [72], 
contributes to tumor regression [73], and is essential during 
embryonic development [74, 75] and even for the termi-
nation of a senescence-associated inflammatory response, 
preventing chronic inflammation [71].

Cellular Senescence and Bone‑SASP 
in Natural Aging and Premature Aging 
Syndromes

All organ systems change with age, resulting in compro-
mise or even loss of function of organs. The skeleton, our 
body’s central framework, serves many important functions, 
including body support, facilitation of movement, protec-
tion of internal organs, storage of minerals, hematopoiesis, 
and production of important factors/hormones with diverse 
effects both locally and systemically. With aging, these func-
tions become altered or impaired. One common condition 
caused by skeletal aging is bone loss that results in osteopo-
rosis, a common age-associated disorder characterized by 
low bone mass and bone tissue micro-architectural deterio-
ration with consequent increase in fracture risk. Research 
during the past decade has clearly demonstrated the presence 

Fig. 1  Different types of action of SASP. Stress stimuli can trig-
ger normal cells to enter senescence-associated cell cycle arrest, 
which is characterized by enlarged and flattened cell shape, lysoso-
mal enhancement, metabolic adaptations, elevated anti-apoptotic 
response, increasing ROS, and the secretion of SASP. The SASP can 
have an autocrine effect to reinforce the senescent phenotype and also 
function in a paracine manner to trigger cellular senescence or regu-
late the activities of neighboring cells. Endocrine effects of SASP on 
remote tissues/organs have also been proposed
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of senescent cells and the corresponding SASP in the skel-
eton during aging. The first comprehensive characterization 
of senescent cells and the SASP in the mouse and human 
bone/bone marrow microenvironment was conducted by 
Farr et al. The authors revealed that p16Ink4a expression 
is upregulated in multiple bone/bone marrow cell types, 
including B cells, T cells, myeloid cells, osteoprogenitors, 
osteoblasts, and osteocytes [76]. Moreover, myeloid cells 
and osteocytes were identified as the major cell types that 
have marked upregulation of SASP factors [76]. Piemontese 
et al. consistently demonstrated that osteocytes and osteo-
blast progenitors developed markers of cellular senescence 
with aging [77]. Importantly, Farr et al. provided convinc-
ing evidence to support the causal role of senescent bone 
cells in mediating age-associated bone loss using pharma-
cological and genetic approaches to eliminate the senescent 
cells [78]. Recent work by Ambrosi et al. uncovered that 
aged skeletal stem cells exhibited bone-SASP-like features 
with high expression levels of pro-inflammatory and pro-
resorptive cytokines, contributing to the transformation of 
the bone marrow niche [79]. As a result, the aged skeletal 
stem cells promoted osteoclastic activity and myeloid skew-
ing by haematopoietic stem and progenitor cells. It is worth 
noting that mechanisms mediating cellular senescence may 
vary depending on different stimuli, even in the same tissue 
context. For example, while clearance of p16Ink4a‐express-
ing senescent cells prevents age‐related bone loss [78], clear-
ance of p21+ but not p16+ senescent cells prevents radiation‐
induced osteoporosis [80]. Recently, Saul et al. validated 
these findings at a single-cell level by generating a gene 
set named SenMayo, consisting of 125 previously identified 
senescence/SASP-associated factors [81]. Importantly, the 
group demonstrated that clearance of senescent cells in mice 
and humans resulted in significant reductions of SenMayo, 
confirming that this is a specific senescence gene set rather 
than just an “aging” gene set. They further showed that the 
SenMayo dataset is applicable across tissues and species and 
performed better than six existing senescence/SASP gene 
panels. By applying SenMayo to scRNA-seq data, the group 
identified bone marrow monocytes/macrophages and mes-
enchymal cells expressing high levels of senescence/SASP 
markers in the context of aging. Given that identification 
of the SASP at the single-cell level has been challenging 
because of the heterogeneity and tissue-specific nature of 
the SASP, SenMayo provides a standardized gene set that is 
useful for identifying and characterizing senescent cells and 
the associated SASP in bone/bone marrow during aging, in 
different pathological conditions, as well as for evaluating 
the efficiency of senolytic therapies.

In addition to “natural” or “healthy” aging, the involve-
ment of cellular senescence has also been investigated in 
progeroid syndromes, which involve premature organ-
specific and/or whole-body aging [82–86]. These human 

progeroid diseases, such as Hutchinson-Gilford progeria 
syndrome (HGPS), Werner syndrome (WS), Bloom syn-
drome, Cockayne syndrome, Seckel syndrome, trichothiod-
ystrophy, and xeroderma pigmentosum, provide a unique 
window into the pathology of natural aging. These prog-
eroid syndromes are rare congenital/genetic disorders that 
recapitulate some pathological features of normal aging in 
an accelerated manner and thus provide potential insights 
into the natural aging process. Most human progeroid syn-
dromes are caused by either defects in the nuclear lamina or 
deficiencies in the DNA repair machineries. Interestingly, 
most progeroid syndromes are characterized by skeletal 
abnormalities, such as low bone density and osteoporosis. 
Currently, numerous mouse models of premature aging have 
been established [87, 88], and these models recapitulate phe-
notypes of musculoskeletal age-related decline observed in 
humans. The earliest study identifying accumulated senes-
cent cells and the causal role of cellular senescence in age-
associated conditions came from a study using  BubR1H/H 
mice, which have a markedly shortened lifespan, age-associ-
ated phenotypes in almost every organ system examined, and 
severe kyphosis [89]. Removal of senescent cells using the 
INK-ATTAC mice, in which the p16INK4a-positive senes-
cent cells can be eliminated, delayed the onset of age-related 
phenotypes in multiple tissues of progeroid mice. Despite 
efficient repair, DNA damage inevitably accumulates with 
time, affecting proper cell function and viability, thereby 
driving systemic aging.  Ercc1−/Δ mice are well-character-
ized DNA repair mutants that exhibit widespread premature 
aging across many tissues within a lifespan of 4–6 months 
[90, 91]. ERCC1 is an endonuclease involved in DNA repair 
pathways. As a result of its mutation, a broad variety of 
DNA lesions accumulate more rapidly in these mice, caus-
ing genomic instability, functional decline, and premature 
aging.  Ercc1−/Δ mice develop a low bone mass phenotype 
at a young age, faithfully recapitulating the premature aging 
phenotype of human XFE progeria [92]. Bone marrow stro-
mal cells from  Ercc1−/Δ mice exhibited an increase in cel-
lular senescence marker p16INK4a, DNA damage marker 
γH2AX, and SASP factors, including IL-6, TNFα, RANKL, 
and OPG [93]. Recently, it was reported that  Ercc1−/Δ mice 
also showed a spinal disc aging phenotype, including loss 
of disc height and degenerative structural changes in their 
vertebral bodies similar to those observed in old rodents 
[94]. It would be interesting to identify the cell types that 
undergo cellular senescence in the disc and to investigate 
the key SASP factors mediating the disc and spine-aging 
phenotype in this premature aging mouse model.

Among the progeroid syndromes, HGPS has been widely 
studied because patients show a broad range of accelerated 
aging features. Particularly, skeletal abnormality is one of 
the extreme phenotypes. HGPS involves lethal premature 
aging that is caused by mutations in the LMNA, a prelamin 
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A protein encoding gene. Prelamin A is the C terminally 
farnesylated precursor of the nuclear scaffold protein lamin 
A. Prelamin A is cleaved by the zinc metalloprotease STE24 
(ZMPSTE24) shortly after synthesis. In HGPS, genetic 
mutations in the LMNA or ZMPSTE24 gene lead to defec-
tive processing of prelamin A, resulting in premature aging 
syndromes [82, 95–100]. Lamin A has been implicated in 
numerous fundamental functions, including maintaining the 
structural integrity of the nucleus, providing an organizing 
platform for transcription factors, and regulating mechani-
cal properties of the nucleus [101–104]. Defective laminar 
organization causes deformed nuclear architecture, lead-
ing to loss of genomic integrity and telomere attrition. Of 
the many different HGPS animal models, mice deficient in 
Zmpste24 exhibit severe age-associated skeletal deficits, 
such as growth retardation, kyphosis, low bone mass, and 
spontaneous bone fracture [105, 106]. Lamin A null mice 
have reduced trabecular and cortical bone at a young age 
with fewer osteoclasts and osteoblasts [107].  LmnaG609G/

G609G homozygous mice exhibit joint immobility, vertebra 
and skull deformities, decreased tibial bone mineral density, 
decreased cortical thickness, and increased porosity [108]. 
Furthermore, it was reported that the accumulation of prel-
amin A isoforms at the nuclear lamina triggers an ATM- and 
NF-κB essential modulator (NEMO)-dependent signaling 
pathway that leads to NF-κB activation and a SASP (i.e., 
secretion of high levels of pro-inflammatory cytokines) in 
both  Zmpste24−/− and  LmnaG609G/G609G mice [109]. Inhib-
iting IKK/NF-κB activation in  Zmpste24−/− mice reduced 
markers of cellular senescence and SASP and improved 
multiple parameters of aging [110]. Recently, Wang et al. 
generated an LmnaL648R/L648R mouse line, which is a new 
progeria mouse model [111]. LmnaL648R/L648R mice have 
far less severe aging phenotypes, such as cardiovascular 
deficits, than that of  Zmpste24−/− mice. However, similar 
to  Zmpste24−/− mice, LmnaL648R/L648R mice have apparent 
skeletal defects, including decreased vertebral bone density, 
as well as cranial, mandibular, and dental defects. One of 
the most common symptoms of progeroid laminopathy is 
accelerated cellular senescence or aging. Fibroblasts from 
HGPS patients exhibit features of cellular senescence, such 
as DNA damage, telomere shortening, disrupted nuclear 
morphology, and loss of peripheral heterochromatin [112]. 
Particularly, progerin, excessive accumulation of prelamin 
A, and downregulation of ZMPSTE24 induce premature 
senescence in mesenchymal stem cells (MSCs) [113, 114]. 
In addition, MSCs with both progerin overexpression and 
ZMPSTE24 depletion have a SASP phenotype, which is 
mediated by GATA4 [114].

Werner syndrome (WS) is another premature aging disor-
der with an evident skeletal aging phenotype. WS is caused 
by loss of WRN, the gene encoding an enzyme involved in 
DNA repair and telomere maintenance. The premature aging 

phenotypes of WS include short lifespan, early-onset athero-
sclerosis, cataracts, osteoporosis, type II diabetes mellitus, 
and an elevated incidence of soft tissue sarcoma [115]. Oste-
oporosis has been observed in approximately 41% of patients 
with WS, with bone loss in the femur more severe than that 
in the lumbar spine. It is postulated that osteoporosis occurs 
because bone formation is inhibited while bone resorption is 
normal in WS [116]. A WS mouse model, in which both Wrn 
and telomerase are deleted, has a bone loss phenotype that 
is associated with reduced numbers of MSCs and increased 
replicative senescence of marrow progenitors [117, 118]. 
As early as 1981, it was found that primary skin fibroblasts 
from patients with WS undergo early replicative senescence 
[119]. Moreover, MSCs differentiated from WS iPSCs have 
a premature senescence phenotype, including epigenetic and 
chromosomal structure alteration and premature loss of pro-
liferative potential [120]. Zhang et al. found that p21Waf1/
Cip1 and p16Ink4a have distinct functions in modulating 
aging phenotypes of WS [121]. Particularly, p21 loss in WS 
activated severe DDR. Conversely, p16 deficiency attenuated 
telomere attrition without causing severe DDR. Senescence 
is also linked to other hallmarks of aging, such as telomere 
attrition and mitochondrial dysfunction. These findings 
demonstrate that deficits in DNA repair, telomere shorten-
ing, and epigenetic alterations caused by WRN loss promote 
premature cellular senescence [122]. Tian et al. discovered 
that, similar to MSCs and the bone aging phenotype, WRN 
deficiency results in the inhibition of bone growth and short 
stature in vivo [123]. They further found that loss of WRN 
causes chondrocyte senescence characterized by increased 
SA-βGal+ cells and upregulated p53 and p16INK4a mRNA 
expression and that overexpression of SHOX, a direct target 
of WRN, prevents the senescence phenotype in a zebrafish 
model. These findings highlight the potential involvement 
of WRN deficiency-induced chondrocyte senescence in the 
regulation of growth plate chondrocytes and bone growth.

Studying age-associated skeletal decline in progeria 
models has advantages because of the benefits of a short 
lifespan. These studies have led to the identification of 
important molecular pathways that impinge on the skeletal 
aging process. However, much attention should be paid to 
the interpretation of the outcomes from the progeroid study. 
Currently, the extent to which progerias resemble natural 
aging is still debated, given that studying progeria does not 
address all of the common problems during natural aging. 
Moreover, some progeria models may show certain charac-
teristics of natural aging but lack others. Fortunately, many 
premature aging syndromes and progeria models exhibit 
skeletal abnormalities, such as low bone mass and osteopo-
rosis. Therefore, combined use of the progeroid models and 
skeletal tissue-specific genetic models may provide more 
accurate understanding of the mechanisms that drive skel-
etal aging. Of note, studies using unbiased proteomics and 
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RNA-sequencing approaches to identify the senescent cells 
and the SASP factors in these progeroid models are still 
lacking. The application of the SenSig and SenMayo dataset 
in combination with RNA-sequencing data will be important 
to fulfill the purpose.

Cellular Senescence and Bone‑SASP 
in Glucocorticoid‑Induced Bone Damage

Although senescent cells are typically associated with aging, 
evidence suggests that they have important functions in reg-
ulating embryonic skeletal development and postnatal bone 
growth, as recently reviewed in detail [124]. Childhood and 
adolescence, characterized by rapid physical growth and 
bone development, are crucial periods for bone health. Our 
group demonstrated that cellular senescence also plays a role 
in childhood bone growth-associated bone mass acquisition. 
We identified a programmed cellular senescence at the meta-
physis of long bone during late puberty, when bone growth 
slows or stops [125]. The senescent cells, characterized by 
the presence of SA-βGal, loss of nestin, and upregulation of 
p16INK4a, were primarily mesenchymal progenitor cells. 
Growth hormone or parathyroid hormone are positive regu-
lators of bone growth/acquisition, as the receptors of these 
factors/hormones are expressed in metaphysis of long bone 
[126, 127]. We found that these bone growth-promoting fac-
tors inhibited cellular senescence, whereas glucocorticoid 
treatment exacerbated senescence. Thus, cellular senescence 
in this bone region and during this period is negatively asso-
ciated with skeletal growth and bone accrual and may serve 
as an important signature for the transition from rapid to 
slow growth in long bone. Further, this programmed cellular 
senescence is mediated by Ezh2-H3K27me3 [125], suggest-
ing that senescence at the metaphysis is tightly regulated 
by epigenetic mechanisms. Our findings further suggest 
that defining the role of cellular senescence in pathological 
conditions during childhood and adolescence is important 
because maintaining bone homeostasis during this period 
helps prevent osteoporosis and reduce fracture risk. Gluco-
corticoid-induced osteoporosis (GIO) is the most common 
cause of secondary pediatric osteoporosis. Glucocorticoids 
are routinely prescribed to treat serious childhood illnesses, 
including leukemia and other cancers, systemic inflamma-
tory or autoimmune disorders, and neuromuscular disorders, 
such as Duchenne muscular dystrophy [128], as well as after 
organ transplantation. Systemic glucocorticoid treatment 
leads to decreased peak bone mass, architectural deteriora-
tion, and increased fracture risk [129, 130]. The pathogenic 
mechanisms underlying GIO remain incompletely under-
stood, and effective medications to treat childhood GIO are 
lacking. We uncovered a new mechanism for the deleteri-
ous effects of glucocorticoids on the growing skeleton in 

mice [131]. Cellular senescence occurs in the metaphysis 
of healthy long bones during the late pubertal period, but 
glucocorticoid treatment induces a much earlier (prepuber-
tal) cellular senescence in the metaphysis of young mice. 
We further identified that vascular endothelial cells in type 
H vessels, which are highly proliferative, and osteogenesis-
coupled vessels in the metaphysis, are a primary cell type 
that becomes senescent in response to glucocorticoids. As 
a result, angiogenesis and coupled osteogenesis diminish in 
this region. Moreover, we uncovered the molecular basis for 
glucocorticoid-induced bone vascular senescence. We found 
that in healthy growing long bone, an angiogenesis factor 
angiogenin (ANG) secreted from metaphyseal osteoclasts is 
essential to maintain the proliferation of the closely associ-
ated blood vessels through ANG/PLXNB2-rRNA transcrip-
tion signaling [131]. Glucocorticoid treatment inhibits ANG 
production through suppression of osteoclast formation in 
metaphysis, leading to senescence of blood vessels and the 
resultant impaired angiogenesis and osteogenesis. Future 
identification of the SASP factors produced by the senes-
cent bone blood vessels would be important to understand 
the role of bone-SASP in glucocorticoid-induced childhood 
bone loss.

In adults, glucocorticoids are also essential medications 
because of their powerful anti-inflammatory and anti-aller-
gic effects. During the COVID-19 pandemic, glucocorti-
coids were recommended by the World Health Organiza-
tion as one of the preferred medications for severe cases 
because they can substantially reduce the mortality rate 
of critically ill patients. Long-term use of glucocorticoids 
can cause severe adverse effects on the skeleton, such as 
osteoporosis and bone necrosis. We recently found that glu-
cocorticoid treatment in adult mice induces primary senes-
cence of bone marrow adipocyte (BMAd) lineage cells, 
which spread senescence to the neighboring bone and bone 
marrow cells by secreting SASP factors, leading to senes-
cent cell accumulation in the local microenvironment for 
bone deterioration [132]. In addition to the in situ detec-
tion of various cellular senescence markers in bone/bone 
marrow, we conducted RNA-sequencing and found close 
to 400 aging/senescence-related genes in the glucocorti-
coid-treated BMAd lineage cells relative to vehicle-treated 
cells. We also found a typical SASP expression profile in 
the dexamethasone (DEX)-treated vs. vehicle-treated adi-
pocytes/preadipocytes, compared with the “SASP Atlas,” 
which is a proteomic database of SASP factors generated by 
Basisty et al. Many increased genes in the glucocorticoid- 
vs. vehicle-treated cells are also in the bone-SASP genes in 
the SenMayo dataset [81]. We further identified a positive 
feedback loop of 15d-PGJ2-PPARγ-INK signaling that initi-
ates and maintains the senescence of the BMAd lineage cells 
(Fig. 2). Glucocorticoid treatment increases the synthesis 
of oxylipins, such as 15d-PGJ2, in BMAds to positively 
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regulate the activity of PPARγ, which stimulates the expres-
sion of INK family encoding genes, key cellular senescence 
effectors. PPARγ activation also promotes oxylipin synthesis 
in BMAds [132]. The finding suggests that a subtle alteration 
in this signaling circuit can be amplified, resulting in rapid 
cellular senescence of BMAds. Furthermore, we evaluated 
whether the senescent BMAds play a causal role in gluco-
corticoid-induced bone deficits. It is technically difficult to 
examine the specific effects of BMAds because adipocytes 
in the bone marrow and other parts of the body often share 
the same markers. To address this, we used a bone marrow 
transplantation approach, in which senescent BMAds from 
glucocorticoid-stimulated mice were isolated and trans-
planted into the femoral bone marrow cavity of untreated 
healthy mice. Using this method, we were able to demon-
strate that targeting senescent BMAds attenuates glucocorti-
coid-induced bone loss. The mechanisms by which excessive 
glucocorticoids induce bone deterioration have been exten-
sively researched over the past few decades. Glucocorticoids 
have direct and indirect effects on bone/bone marrow cells, 
such as osteoblast and osteoclast lineage cells. Our finding 
of the detrimental effects of senescent BMAds on the bone 
marrow microenvironment through SASP provides a new 
clue for the pathogenesis of glucocorticoid-induced bone 
deterioration [133, 134].

Bone‑SASP in osteoarthritis (OA) 
Development

Another common effect of aging and senescence on the 
skeleton is the development of OA, the most prevalent 
chronic joint disease that affects nearly 250 million people 

worldwide [135]. OA primarily affects weight-bearing joints 
and is characterized by progressive articular cartilage degen-
eration and entire joint dysfunction [136]. The major symp-
toms of OA are pain and reduced/loss of mobility, impos-
ing substantial mental and physical burdens on the affected 
individuals and a considerable economic burden on society. 
Currently, pharmacological treatments mostly aim to relieve 
the OA symptoms associated with inflammation and pain. 
To date, no pharmacological agents have been approved by 
regulatory authorities for disease modification in OA, and 
ongoing studies are investigating the potential for developing 
disease-modifying OA drugs [137, 138].

During the past decade, there have been intensive studies 
of the contribution of chondrocyte senescence to the devel-
opment of OA. Joen et al. performed the first systemic char-
acterization on senescent cells in joint tissue and examined 
the causal role of cellular senescence in OA progression 
using post-traumatic OA (PTOA) animal models [139]. The 
group identified senescent chondrocytes in cartilage isolated 
from OA patients and in mice after anterior cruciate liga-
ment transection, which is a PTOA mouse model. Selective 
elimination of the senescent cells using both genetic and 
pharmacological approaches attenuated the development of 
PTOA, reduced pain, and increased cartilage development. 
The causal role of chondrocyte senescence in PTOA pro-
gression has been further confirmed by later studies and was 
recently reviewed in detail [140–142]. Emerging evidence 
suggests that senescent cells, via SASP, contribute to an 
inflammatory state and microenvironmental changes in joint 
tissue. The SASP factors produced by senescent joint cells 
include pro-inflammatory cytokines IL-1, IL-6, IL-8, TNFα, 
chemokines (C–C motif ligand 2, CCL2, CCL4), proteases 
(MMP-1, 3, 12, 13, and ADAMTS), growth factors, small-
molecule metabolites [140, 143, 144], and microRNAs. The 
SASP factors propagate senescence through paracrine and 
autocrine mechanisms, further promoting OA progression 
[145]. Recent accumulating evidence demonstrated that 
cellular senescence increases the secretion of extracellular 
vesicles, which can transport proteins and microRNAs that 
are key components of SASP [146], suggesting that extra-
cellular vesicles may be key mediators in the rapid spread-
ing of senescence in the local joint environment. Based on 
these studies, senolytic and senomorphic drugs, which can 
kill the senescent cells and inhibit the SASP, respectively, 
have been tested for their potential therapeutic effect in OA 
[140, 147, 148].

Joint cartilage and subchondral bone act in concert as one 
functional unit [149, 150]. It has been observed clinically 
that changes in the subchondral bone microarchitecture pre-
cede articular cartilage damage in OA [151, 152]. Particu-
larly, aberrant subchondral bone angiogenesis with resultant 
invasion of vasculature into the osteochondral junction is a 
hallmark of human OA [153]. In OA mice, accumulating 

Fig. 2  Involvement of senescent BMAds and the SASP in glucocor-
ticoid-induced bone loss. Glucocorticoid treatment induces primary 
senescence of BMAds through a positive interacting feedback loop 
of 15d-PGJ2-PPARγ-INK signaling. The senescent BMAds spread 
senescence to other bone and bone marrow cells, leading to an accu-
mulation of senescent cells for bone impairment
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evidence suggests that neo-vessel formation in subchondral 
bone is characterized by the development of osteogenesis-
coupled  CD31hiEmcnhi-type H vessels [154–157]. However, 
little is known of the cellular and molecular mechanisms of 
the development of subchondral bone angiogenesis during 
OA progression. Our group recently found that senescent 
preosteoclasts secrete much higher level of angiogenesis 
factor PDGF-BB, which is essential for the development 
of pathological subchondral bone angiogenesis before the 
development of OA and during its early stage [158]. We 
observed a simultaneous increase in type H vessels and 
osteogenesis in an OA mouse model of destabilization of 
the medial meniscus. Subchondral preosteoclasts secreted 
excessive amounts of PDGF-BB in response to traumatic 
joint injury and increased PDGF-BB activates PDGFR-β 
signaling in bone/bone marrow vascular cells and pericytes 
in a paracrine manner for aberrant neo-vessel formation 
[158]. In that study, we also generated conditional Pdgfb 
transgenic mice  (PdgfbcTG) and conditional Pdgfb knock-
out mice  (PdgfbcKO), in which PDGF-BB is overexpressed 
or deleted in  TRAP+ cells, respectively. Our data show 
that preosteoclast-derived PDGF-BB is both sufficient and 
required for pathological subchondral bone angiogenesis and 
resultant joint degeneration. Particularly, young  PdgfbcTG 
mice have aberrant subchondral bone angiogenesis with a 
progressive invasion of new vessels into the joint calcified 
cartilage, as well as an increase in subchondral bone osteo-
genesis [158]. The joint phenotype of young  PdgfbcTG mice 
is quite compelling, because the mice spontaneously develop 
dramatic subchondral bone alteration during the earlier stage 
and cartilage degeneration during the later stage. Therefore, 
 PdgfbcTG mice can serve as a useful spontaneous OA mouse 
model to enable the study of pathogenic mechanisms and 
drug treatment.

OA is a heterogeneous disease with multifactorial causes, 
various clinical features, and different responses to treat-
ments. Although PTOA is the most studied OA phenotype 
because of well-established PTOA animal models, non-
traumatic OA, especially age- and metabolic syndrome-
associated OA (MetS-OA) is more prevalent according to 
epidemiologic and prospective clinical studies [159–163]. 
Particularly, metabolic OA is now considered a subtype of 
OA defined by the presence of individual MetS components 
or MetS as a whole [159]. Despite these facts, there are lim-
ited studies on the involvement of cellular senescence in 
the pathogenesis of MetS-OA. We recently conducted both 
human and animal studies that revealed the critical role of 
cellular senescence in subchondral bone and bone-SASP 
in driving the progression of Met-OA [164]. In this study, 
human Osteoarthritis Initiative datasets were analyzed to 
investigate the subchondral bone features of MetS-OA par-
ticipants on MRI. Moreover, the joint phenotype of two 
MetS mouse models, HFD-challenged mice and STR/Ort 

mice, a well-recognized model that develops spontaneous 
OA very similar to the human disease, were also assessed. 
The results show that humans and mice with MetS-OA have 
a subchondral bone phenotype distinct from that of PTOA 
and have a greater likelihood of developing OA-related 
subchondral bone damage. In mice with early-stage PTOA, 
osteoclast number and activity are increased, with a high 
turnover rate in subchondral bone [165–167]. However, 
rapid thickening of subchondral bone plate and trabecular 
bone occurs in HFD-challenged mice and STR/ort mice 
[164]. These subchondral alterations appear much earlier 
than cartilage degradation. Intriguingly, we found that unlike 
the accumulated senescent cells in cartilage and synovium 
in PTOA [139, 168], increased senescent cells and the SASP 
are primarily located in subchondral bone in MetS-OA mice 
[164](Fig. 3). We identified that many of the senescent cells 
were  RANK+TRAP+ preosteoclasts in bone marrow. These 
senescent cells exhibited a unique bone-SASP, containing 
the canonical SASP factors identified in SenMayo dataset 
[81], such as IL-1β, IL-6, and VEGF. Other factors secreted 
by senescent preosteoclasts in subchondral bone of HFD-
challenged mice include OPN, Lipocalin-2, Resistin, Cys-
tatin C, IL-33, CCN4, MPO, and PDGF-BB. These factors, 
however, are not canonical SASP factors based on the Sen-
Mayo dataset. Interestingly, most of these factors have been 
shown to be COX2 gene-activating factors [169–175] and 
osteoclastogenesis-regulating factors [176–180], suggesting 
that senescent preosteoclasts acquire a unique SASP that 
may exert paracrine effects on nearby cells in the subchon-
dral environment. Indeed, our work shows that preosteoclast 
SASP activates COX2-PGE2 signaling in osteoblast precur-
sors for osteoblast differentiation and inhibited osteoclast 
differentiation, contributing to rapid subchondral plate and 
trabecular thickening (Fig. 3). The exact roles of these newly 
identified preosteoclast-secreted factors in subchondral bone 
alteration and the progression of MetS-OA remain to be 
validated.

Senolytic and Senomorphic Therapy

Senotherapeutic approaches, which are treatments designed 
to clear or neutralize the effects of senescent cells, have 
been implicated and evaluated in several models of aging 
as novel therapeutics [181, 182]. Senotherapeutics can be 
classified into two main categories: senolytics, which selec-
tively eliminate senescent cells, and senomorphics, which 
modulate the behavior of senescent cells by regulating the 
secretion of SASP and help alleviate age-associated chronic 
diseases. The Kirkland group conducted the first study of 
its kind [183] and discovered that the combination of dasat-
inib (D) and quercetin (Q) can effectively eliminate senes-
cent cells and decrease the levels of various proteins. This 
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combination of drugs reduced the burden of senescent cells 
in both chronologically aged mice and in progeroid  Ercc1−/Δ 
transgenic mice. Moreover, the use of D + Q extended the 
health span of  Ercc1−/∆ mice by delaying age-related symp-
toms and conditions, such as osteoporosis, frailty, and the 
loss of intervertebral disk proteoglycans [183], and improved 
the osteogenic capacity of aged bone marrow mesenchymal 
stem cells both in vitro and in vivo [184]. A recent study 
revealed that D + Q can improve bone fracture repair in aged 
mice by removing senescent cells from the callus [185] and 
decreasing SASP markers [186]. Fisetin, a naturally occur-
ring compound commonly found in many fruits and veg-
etables, has also been reported to reduce senescent cell 
burden and its associated inflammation in multiple tissues 
of progeroid  Ercc1−/Δ transgenic mice [187]. Furthermore, 
when given to wild-type mice at an advanced age, fisetin 
restored tissue balance, diminished age-related pathologies, 
and prolonged both median and maximum lifespan [187]. 
Until now, several classes of senolytics has been devel-
oped, including BCL-2 family inhibitors, such as ABT263 
[188, 189], ABT737 [190], A13311852 [191], A1155463 
[191], and Temozolomide [192]; p53 inhibitors, including 
UBX0101 [139] and Forkhead box O-4 (FOXO4) D-Retro 
Inverso (DRI) peptide [40]; and HSP90 inbihitor, 17-DMAG 
[193]. Some of these senolytics are reported to attenuate 
bone disorders. For instance, UBX0101, which targets p53, 
was reported to attenuate the development of post-traumatic 
OA, reduce pain, and increase cartilage development in aged 
mice and in p16-3MR transgenic mice [139]. FOXO4-DRI, 
which disrupts the FOXO4 interaction with p53, was also 
shown to decrease senescence and its counter features of 
frailty in fast-aging  XpdTTD/TTD mice [40].

The other class of senotherapeutics is senomorphics, 
which aim to alleviate the deleterious effects of SASP by 
reducing inflammation and promoting tissue regenera-
tion without directly eliminating senescent cells. Several 
approaches to modify SASP include targeting intracellu-
lar pro-inflammatory signaling pathways, such as NF-κB, 
Janus-associated kinase (JAK) inhibitors and AMP-activated 
protein kinase (AMPK) pathways, and inhibiting mechanis-
tic target of rapamycin (mTOR). Various drugs are used 
to target NF-kB [194], such as apigenin [195], kaempferol 
[196], resveratrol [197], and metformin [198]. For exam-
ple, apigenin has been shown to promote osteogenic dif-
ferentiation of MSCs, accelerate bone fracture healing by 
activating the Wnt/β-catenin signaling pathway [199], and 
prevent bone loss in ovariectomized mice by inhibiting 
osteoblast and osteoclast differentiation [200]. Kaempferol 
has also been shown to possess bone-protective properties, 
such as enhancing osteogenesis and preventing bone loss 
and fractures in various in vivo [201–205] and in vitro mod-
els [206–210] via inhibition of the BMP-2, NF-κB, MAPK, 
and mTOR signaling pathways [211]. In addition, resveratrol 
was found to be effective in decreasing SASP factors, such 
as p16, p21, and p53 through AMPK/ROS signaling, thereby 
improving osteogenic differentiation [212]. The JAK/STAT 
pathway is a highly conserved pathway of signal transduc-
tion that is involved in immunity, cell proliferation, devel-
opmental processes, and more. The JAK/STAT pathway is 
more highly activated in senescent than non-senescent cells 
[213]. Blocking the JAK pathway can suppress the SASP 
in senescent cells, thereby relieving age-associated tissue 
dysfunction [213–215]. Ruxolitinib, a selective inhibitor of 
JAK1/2, has been found to reduce systemic inflammation, 
improve metabolic function, and alleviate frailty in aging 

Fig. 3  Involvement of preoste-
oclast-secreted SASP factors in 
MetS-OA. In normal physio-
logical conditions, the balanced 
osteoblast and osteoclast differ-
entiation maintain subchondral 
bone homeostasis and normal 
subchondral microarchitecture. 
Under MetS, preosteoclasts 
in subchondral bone marrow 
undergo cellular senescence and 
secrete SASP factors. The SASP 
acts on both osteoclast precur-
sors to suppress osteoclast 
differentiation and osteoblast 
precursors to activate COX2-
PGE2 signaling to promote 
osteoblast differentiation for 
bone formation, leading to rapid 
subchondral plate and trabecular 
bone thickening
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mice [216]. It also inhibits progerin-induced senescence 
in vitro, reduces premature aging phenotypes in Zmpste24-
deficient mice [217], decreases SASP expression, and 
enhances osteogenic differentiation in ovariectomized mice 
[217]. Tofacitinib, another JAK inhibitor, stabilizes bone 
density and promotes a positive balance of bone turnover in 
patients with rheumatoid arthritis [218]. In a recent study, 
our group used rixolitinib to suppress SASP factors in a 
glucocorticoid-induced bone-deficit model [132]. Glucocor-
ticoid induced rapid bone marrow adipose (BMAd) senes-
cence. Micro-CT images of distal femur microarchitecture 
have demonstrated improvement of bone mass when mice 
were co-treated with synthetic glucocorticoid and ruxoli-
tinib, whereas mice treated with glucocorticoid alone exhib-
ited a low bone mass phenotype [132].

Conclusion and Perspective

Substantial evidence supports the causal role of cellular 
senescence in bone tissue during natural aging, prema-
ture aging syndromes, and many age-associated skeletal 
disorders, such as osteoporosis and OA. A central mecha-
nism by which senescent cells expand the senescence 
program and impair the bone/bone marrow microenviron-
ment is via senescent bone cell–associated SASP, namely 
“bone-SASP.” It is now well recognized that the SASP is 
highly heterogeneous, varies depending on cell type and 
the senescence-inducing stimulus, and is very dynamic, 
changing over time after the stimulus. Thus, it is important 
to use a proteomic, unbiased approach to gain insights into 
highly complex SASP profiles. However, in most studies 
of the detection of bone-SASP in pathological conditions 
such as the progeria-associated bone disorders, OA, and 
osteoporosis, unbiased profiling of the SASP factors was 
not conducted. Only chosen panels of inflammatory fac-
tors and cytokines were detected. Given that the newly 
generated SenMayo dataset identifies bone-SASP across 
tissues and species with high fidelity, further detailed 
characterization and comprehensive identification of the 
bone-SASP in different age-associated skeletal conditions 
are warranted. Recent studies suggest that the SASP, as 
a feature of cellular senescence, not only exerts a detri-
mental effect locally but may also cause systemic adverse 
effects. Although the SASP has an endocrine effect on 
regulating the activities of tissues and organs at remote 
sites, the endocrine role of the bone-SASP remains largely 
unexplored. Recent evidence revealed that PDGF-BB pro-
duced by senescent preosteoclasts serve as a systemic pro-
aging factor that contributes to age-associated increase in 
arterial stiffness [219] and cerebrovascular impairment 
[220]. Further assessment is needed of the involvement 
of bone-derived PDGF-BB in the aging process of other 

organ systems to validate its endocrine function. Research 
into the endocrine role of senescent cells is still in the 
early stage. Given that some bone-SASP factors identified 
to date are important inflammatory factors and pro-aging 
factors, there is no doubt that the systemic effect of bone-
SASP factors will become one of the main topics in the 
field of skeletal research. Such research will provide new 
understanding of the interplay between bone and other 
organ systems during aging and may yield new strategies 
to simultaneously treat multiple age-associated disorders.
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