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Abstract

Background: Accurate interpretation of hip MRI is time-intensive and difficult, prone to 

inter- and intrareviewer variability, and lacks a universally accepted grading scale to evaluate 

morphological abnormalities.

Purpose: To 1) develop and evaluate a deep-learning-based model for binary classification of 

hip osteoarthritis (OA) morphological abnormalities on MR images, and 2) develop an artificial 

intelligence (AI)-based assist tool to find if using the model predictions improves interreader 

agreement in hip grading.

Study Type: Retrospective study aimed to evaluate a technical development.

Population: A total of 764 MRI volumes (364 patients) obtained from two studies (242 patients 

from LASEM [FORCe] and 122 patients from UCSF), split into a 65–25–10% train, validation, 

test set for network training.

Field Strength/Sequence: 3T MRI, 2D T2 FSE, PD SPAIR.

Assessment: Automatic binary classification of cartilage lesions, bone marrow edema-like 

lesions, and subchondral cyst-like lesions using the MRNet, interreader agreement before and after 

using network predictions.

Statistical Tests: Receiver operating characteristic (ROC) curve, area under curve (AUC), 

specificity and sensitivity, and balanced accuracy.

Results: For cartilage lesions, bone marrow edema-like lesions and subchondral cyst-like lesions 

the AUCs were: 0.80 (95% confidence interval [CI] 0.65, 0.95), 0.84 (95% CI 0.67, 1.00), and 

0.77 (95% CI 0.66, 0.85), respectively. The sensitivity and specificity of the radiologist for binary 
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classification were: 0.79 (95% CI 0.65, 0.93) and 0.80 (95% CI 0.59, 1.02), 0.40 (95% CI −0.02, 

0.83) and 0.72 (95% CI 0.59, 0.86), 0.75 (95% CI 0.45, 1.05) and 0.88 (95% CI 0.77, 0.98). The 

interreader balanced accuracy increased from 53%, 71% and 56% to 60%, 73% and 68% after 

using the network predictions and saliency maps.

Data Conclusion: We have shown that a deep-learning approach achieved high performance 

in clinical classification tasks on hip MR images, and that using the predictions from the deep-

learning model improved the interreader agreement in all pathologies.

Level of Evidence: 3

Technical Efficacy Stage: 1

HIP OSTEOARTHRITIS (OA) is a debilitating joint disease that affects over 27 million 

Americans annually.1 Even though the reported radiographic and symptomatic hip OA 

prevalence is 28% and 10% in subjects over age 45,2 the exact primary hip OA etiology 

remains unknown, and there is no unanimous criteria for its diagnosis.3 Currently, 

radiography is the most common imaging modality used to diagnose joint space narrowing 

and osteophyte formation in the hip and is graded using the Kellgren–Lawrence or Tönnis 

classification systems.3-5

Magnetic resonance imaging (MRI) has emerged as an important tool to evaluate 

morphological abnormalities in joints such as the knee and hip.6 This is due to its ability 

to evaluate anomalies in the cartilage, bone marrow, and labrum and other pathologies, 

making it more robust to assess early morphological abnormalities in the hip, which are 

characterized by internal derangement of the joint structures often not seen with standard 

radiographs. MRI of hip OA remains challenging, given the thin articular cartilage in the 

hip, its distance from the surface of the body, and the complexity of assessing the labrum.4 

Due to the quantity of images in each hip MR exam, accurate interpretation of hip MRI is 

time-intensive and difficult, being prone to inter- and intrareviewer variability, compounded 

by the absence of a universally accepted grading scale to evaluate the morphological 

abnormalities in hip MRI.7-9

To address these current limitations and standardize image interpretation, various hip 

OA grading scales were developed. Semiquantitative MRI-based classification systems 

such as HOAMS (Hip Osteoarthritis MRI Scoring System) and SHOMRI (Scoring Hip 

Osteoarthritis with MRI) have been proposed,4,10 showing associations with radiographic 

OA severity and patient reported outcomes, but still limited by low kappa values (weighted 

kappa between 0.18–0.85 in HOAMS and 0.55–0.79 in SHOMRI), but with moderate to 

good percent agreement (83.1–83.8% in HOAMS and 66–99% in SHOMRI) for interreader 

reliability. The low kappa values were attributed to low frequencies of some features in the 

dataset.10 A classification system for hip morphological abnormalities that is reliable, agreed 

upon by radiologists, and can achieve widespread use for grading commonly occurring 

hip pathologies is still required. Even with the multiple grading systems discussed above, 

clinical translation of these systems has been difficult, considering the time and expertise 

required to grade hip MR images along with issues of inter- and intrareader variability.
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Recently, deep-learning-based models have shown promise in several musculoskeletal 

imaging diagnostic tasks due to their ability to detect features automatically, making them 

suitable to find relationships between features in medical images and their interpretations. 

Deep learning can classify joint abnormalities in the knee, including detection of cartilage 

lesion, OA prediction, fractures, meniscal tears, and chondrocyte patterns.11-16 These studies 

were facilitated by the availability of large and well-curated knee datasets such as the 

Osteoarthritis Initiative, MOST dataset, and MRNet dataset, but these data are not publicly 

available for hip OA classification by deep learning. For the hip, deep learning has been used 

in detecting OA on radiographs.17

While deep learning has shown promising results when adopted in a controlled setting, 

it is well understood that generalization beyond the statistical distribution of the training 

set is still an unmet challenge. Deep convolutional networks can learn representations 

that are generically used across a variety of tasks and visual domains. However, due to 

a phenomenon known as dataset bias or domain shift,18 models trained on one large 

dataset do not generalize well to novel datasets and tasks. In MRI this translates into 

poor performance when trained models are tested on different imaging protocols or images 

acquired on different MRI systems. The typical solution is to fine-tune these networks on 

specific datasets; however, it is often prohibitive to obtain enough labeled data to properly 

fine-tune the large number of parameters employed by a deep model on the new datasets.

In this study we aimed to address these challenges and fill this gap. Specifically, we aimed 

1) to develop a deep-learning-based model for binary classification of cartilage lesions, 

bone marrow edema-like lesions, and subchondral cyst-like lesions in coronal hip MR 

images acquired from two centers without any initial calibration or standardization of the 

sequence, 2) to evaluate the performance of the models by comparing the performance 

to an experienced musculoskeletal radiologist, and 3) to develop an artificial intelligence 

(AI)-based assist tool to investigate whether using the model predictions improves 

interreader agreement in assessing hip cartilage lesions, bone marrow edema-like lesions, 

and subchondral cyst-like lesions.

Materials and Methods

An overview of the entire process is shown in Fig. 1. In this study data were obtained from 

the femoroacetabular impingement and hip osteoarthritis cohort (FORCe) study19 conducted 

at LASEM (La Trobe Sport and Exercise Medicine Research Centre) in Melbourne, 

Australia, and a hip osteoarthritis study20 conducted at the UCSF (University of California 

San Francisco) in San Francisco, United States.

The UCSF study was Health Insurance Portability and Accountability Act (HIPAA)-

compliant, approved by the Institutional Review Board (IRB). Written informed consent 

was obtained from each patient at the time of image acquisition and the authors from UCSF 

retained control of all study information and statistical analysis. Data acquired from the 

FORCe cohort were collected in accordance with the Declaration of Helsinki, with ethics 

approval obtained from the La Trobe University Human Ethics Committee (HEC 15-019 and 
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HEC16-045) and the University of Queensland Human Ethics Committee (2015000916 & 

2016001694).

Image Dataset

A total of 764 coronal hip volumes were used in this project, including bilateral scans and 

multiple timepoints of 364 unique patients. Of these, 242 patient data were obtained from 

the LASEM FORCe dataset and 122 were part of the UCSF dataset. Images were acquired 

on a 3.0T Scanner (Philips, Eindhoven, The Netherlands) scanner at LASEM and a 3.0T 

Scanner (GE Healthcare, Milwaukee, WI) scanner at UCSF. The coronal sequences acquired 

that were used in this study are described in Table 1, and examples of both study site images 

are shown in Fig. 2.

Image Grading

The training set (496 studies) was annotated between 2013 and 2019 by five board-certified 

radiologists, all with 5+ years of experience. All images were read by an attending and a 

fellow to describe the presence or absence of cartilage lesions, bone marrow edema type 

patterns, and subchondral cysts. These annotations served as ground truth data to train 

the deep-learning models. The grading was done using the SHOMRI scoring system. All 

radiologists performing the SHOMRI gradings were trained by a senior radiologist (T.M.L.), 

who was involved in developing the scoring system and reviewed at least 20 imaging 

studies with each of the radiologists at two different timepoints. The senior radiologist also 

adjudicated any cases that had discrepancies. The test set (78 studies) was independently 

graded by three radiologists for the absence or presence of cartilage lesions, bone marrow 

edema-type patterns, and subchondral cysts, and a majority vote was taken to serve as 

the final ground truth. All the model performances reported in this study were computed 

in comparison to this ground truth obtained by three independent readers. As part of an 

interreader experiment, these test data were further graded by two radiologists with and 

without the aid of the automatic system to evaluate efficacy and use of the developed model 

in practice (see section AI Assist Tool Development and Experiment). In the coronal hip 

images SHOMRI differentiates six anatomic compartments: acetabular superolateral (ASL), 

acetabular superomedial (ASM), and femoral lateral (FL), femoral superolateral (FSL), 

femoral superomedial (FSM), and femoral inferior (FI). Each compartment was graded on a 

3-point scale for cartilage lesions, a 4-point scale for bone marrow edema-like lesions, and 

a 3-point scale for subchondral cyst-like abnormalities. The total score was calculated for 

each abnormality (cartilage, bone marrow edema-like lesions, subchondral cyst-like lesions) 

by adding up the scores of each compartment (Fig. 2).4

Network Architecture

MRNet architecture was used for this study. This architecture has been shown to achieve 

an area under the curve (AUC) of 0.937 (95% confidence interval [CI] 0.895, 0.980) in 

detecting abnormalities in the knee, with performance comparable to that of radiologists. 

Briefly described, the input to the MRNet has dimensions s × 3 × 256 × 256, where s 

is the number of slices in the series acquisition. Each slice is passed through a feature 

extractor: the AlexNet (which consists of five convolutional layers, three fully connected 

layers, and an ReLU activation function)21 pretrained on ImageNet to obtain features for 
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that slice of dimensions s × 256 × 7 × 7. After going through a global average pooling 

layer to reduce these features to s × 256, a max pooling was applied across the slices to 

obtain a 256-dimensional vector, which was then passed through a fully connected layer and 

a sigmoid activation function to obtain a probability between 0 and 1.11 In our study we used 

a threshold of 0.5 to dichotomize the model’s predictions into abnormal and normal.

Data Processing for Input

All input volumes underwent identical preparation regardless of study site. Each input 

volume consisted of all slices from each patient, with each slice cropped at the center to 

150 × 150 mm, by using the image resolution from the different sites. This way, assuming 

a well-centered scan, the same hip area was covered in patients from both sites. If an 

image underwent augmentation, any one, two, or all of the following were used: 1) rotation 

along superior–inferior and medial-lateral axes of a random integer between −9 and 9 

degrees; 2) an affine transformation with spline interpolation of order 3, and diagonal 

values of the inverse transform matrix =1, 0.78, 0.87; and 3) an intensity rescaling and 

histogram equalization with values between the 2 and 98 percentiles. All image processing 

and augmentations were performed using Python’s (Wilmington, DE) Pydicom and Scipy 

packages. All images were visually inspected after cropping and augmentation to ensure 

no important structures were being omitted or distorted. In each network implementation, 

the label for each image corresponded to the maximum cartilage lesion, bone marrow 

edema-like lesion, or subchondral cyst-like lesion grade of all six compartments (ASL, 

ASM, FSL, FSM, FI, FL), binarized as 0 or 1, with the label 1 corresponding to a maximum 

lesion grade greater than 0. Thus, the network was being trained to identify the presence or 

absence of lesions.

Data Split

We trained three separate networks for binary detection of the cartilage lesions, bone 

marrow edema-like lesions, and subchondral cyst-like lesions. All three networks consisted 

of the same training, validation, and test set so that their performance could be compared. 

The 764 volumes were split into 65–25–10% sets used for train, validation, and test. The 

ratio of images between the two study sites (1.98, 1 for LASEM:UCSF) was maintained in 

training, validation, and test sets. It was also ensured that all images corresponding to one 

patient (different timepoints, laterality) were contained within the same split.

Network Training and Model Selection

Since there was no previous knowledge regarding efficient network hyperparameters to 

train for the hip abnormalities, an experimental approach was used to find an optimal 

combination of parameters that would result in optimal models for detecting the cartilage, 

bone marrow edema-like lesions, and subchondral cyst-like lesions. Thus, a grid search 

including different values for the learning rate and probability of dropout, combined with the 

presence of augmentation and weight decay, was implemented to find the best combination 

of these parameters for training the networks. The learning rates ranged between 1E-06 and 

4.02E-05, the probability of dropout varied from 0.3 to 0.6, augmentation was turned on 

or off, and weight decay was turned off or set at 0.01. Therefore, for each pathology, 100 

networks were trained, each with a different combination of parameters.

Tibrewala et al. Page 5

J Magn Reson Imaging. Author manuscript; available in PMC 2023 May 31.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



The network used a weighted cross-entropy loss to account for class imbalance by assigning 

weights that were inverse to the number of labels present in that class. An Adam optimizer 

with a scheduler with patience = 5 was used. The network was implemented in Pytorch, v. 

0.3.0, trained for 80 epochs (3 hours on a Nvidia Titan X GPU).22 Using Python’s Sklearn 

package, receiver operating characteristic (ROC) curves and AUC values were plotted and 

saved for each epoch in each model, for training and validation data. Among the different 

parameter combinations, the combinations that resulted in the highest validation AUC over 

all epochs were retained. For those selected combinations models, the epoch with the 

highest AUC was selected before the model started to overfit the dataset. Hyperparameter 

optimization and model performance tracking was done to optimize performance on the 

validation set. The test set was not used in any of the model development phases.

Model Interpretation Using Class Activation Maps

To check if the networks were learning relevant features, class activation maps were 

generated for the training, validation, and test model predictions. For each slice, a weighted 

average across the 256 convolutional neural network (CNN) feature maps using weights 

from the classification layer was obtained and then upsampled to 256 × 256 pixels, and 

overlaid with the original input image. Since the final layer of the network was used 

for weighting the features, more predictive feature maps appear in different intensities of 

color.11 These maps were visually inspected to see if the network was looking within the hip 

regions, and used in the development of the AI Assist tool described below.

Network Performance

After selecting one model for each pathology, the test set was identically processed (without 

augmentations) and run through this model. The model probabilities corresponding to 

each volume were saved for the cartilage lesions, bone marrow edema-like lesions, and 

subchondral cyst-like lesions. The same test set was given to the radiologist for binary 

grading of the three pathologies and their responses were recorded. Using R on this test set 

only, ROC curves were created for the models’ performance for each pathology against the 

ground truth. AUC values were calculated by finding the AUC for these ROC curves. On the 

same ROC space, the sensitivity and specificity of the senior radiologist performance on the 

test set against the ground truth was plotted to compare the performance of the radiologist 

and model.

AI Assist Tool Development and Experiment

Once the test set was run through each model for all three pathologies, an application (Fig. 

3) was developed in Python v. 3.1 with an interface that consisted of the following key 

features: 1) visualize hip image and scroll through slices; 2) toggle on or off the saliency 

map for any one of the pathologies at a time; 3) visualize the networks predicted lesion 

probability; 4) input binary assessment from the radiologist; 5) select from the list of patient 

images; and 6) ensure that there was no metadata or patient health information data visible 

anywhere. The application was loaded onto computers for the radiologists and ran locally 

without needing any Internet access.
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The application was used by two radiologists at two different trial periods. For the first trial, 

they were given the application without the option for the saliency maps or the network 

prediction probability, where they provided a binary assessment on the test set patients for 

the presence of cartilage lesions, bone marrow edema-like lesions, and subchondral cyst-like 

lesions. After a 1-month washout period, the radiologists repeated the assessment, this time 

with the saliency maps and network prediction probability present. The responses of both 

the radiologists from both trials were recorded and used to calculate balanced accuracy 

(calculated in R [v. 1.1.456] using the caret library), which was chosen as a metric of 

quantification, since it avoids inflated performance metrics on imbalanced datasets, which 

our study contained. For binary classifications, the balanced accuracy is the arithmetic mean 

of the sensitivity and specificity, and is equal to conventional accuracy if the classifier 

performs equally well on both classes.23

Results

Image Dataset and Grading

From the UCSF cohort, the patients had a mean age of 43 (22–72) years, a mean body 

mass index (BMI) of 23 (16–32) kg/m2, and were 56% female. From the LASEM cohort, 

the patients had a mean age of 27 (18–49) years, a mean BMI of 24 (17–35) kg/m2, and 

were 22% female. The distribution of the binary cartilage lesion, bone marrow edema-like 

lesion, and subchondral cyst-like lesion scores in the training, validation, and test sets are 

shown in Fig. 4. As seen, there is a strong class imbalance in the subchondral cyst-like 

lesion and bone marrow edema-like lesion scores, as very few patients presented with these 

abnormalities in the whole dataset.

Grid Search and Network Training

From all the parameter combinations run, for the cartilage the following parameters 

were selected based on their performance: learning rate = 3.08E-05, dropout = 0.36, for 

the bone marrow edema-like lesions: learning rate = 3.08E-05, dropout = 0.42, for the 

subchondral cyst-like lesions: learning rate = 2.12E-05, dropout = 0.30 were selected and 

their performance was tested. No models selected used augmentation or weight decay, as 

these were found to have lower performance on the validation than their counterparts. By 

dividing the job on different GPUs and training simultaneous networks, the grid search took 

~11 days to run through all its combinations.

Class Activation Maps

Examples of class activation maps on the selected models on the test set can be seen in Fig. 

5. All three images shown in Fig. 5 are the same slice from the same patient from the test 

set, and show cartilage lesion, bone marrow edema-like lesion, and subchondral cyst-like 

lesion saliency maps (left to right). The maps appear darker in regions where the network 

has paid more attention in making its decision.

Network Performance

Figure 6 shows the ROC curves (color coded) for the models selected for cartilage lesions, 

bone marrow edema-like lesions, and subchondral cyst-like lesions for binary classification 
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as they performed against the ground truth data. The AUC for the network performance was 

as follows: 0.80 (95% CI 0.65, 0.95) for cartilage lesions, 0.84 (95% CI 0.67, 1.00) for bone 

marrow edema-like lesions, and 0.77 (95% CI 0.66, 0.85) for subchondral cyst-like lesions. 

When stratified by study site, the network performance AUC on the UCSF images was as 

follows: 0.79 (95% CI 0.57, 1.00) for cartilage lesions, 0.67 (95% CI 0.24, 1.00) for bone 

marrow edema-like lesions, and 0.67 (95% CI 0.41, 0.92) for subchondral cyst-like lesions. 

When stratified by study site, the network performance AUC on the LASEM images was 

as follows: 0.75 (95% CI 0.60, 0.90) for cartilage lesions, 0.71 for bone marrow edema-like 

lesions, and 0.91 (95% CI 0.81, 1.00) for subchondral cyst-like lesions. The sensitivity and 

specificity of the radiologist on the same test set for binary classification are as follows: 

0.79 (95% CI 0.65, 0.93) and 0.80 (95% CI 0.59, 1.02) for cartilage lesions, 0.40 (95% CI 

−0.02, 0.83) and 0.72 (95% CI 0.59, 0.86) for bone marrow edemas-like lesions, 0.75 (95% 

CI 0.45, 1.05) and 0.88 (95% CI 0.77, 0.98) for subchondral cyst-like lesion. The sensitivity 

and specificity values for the radiologist on the same test set are also plotted on the same 

curve in Fig. 6.

AI Assist Tool and Interreader Agreement

Before using the aided detection application, the interreader balanced accuracy for binary 

classification on cartilage lesions, bone marrow edema-like lesions, and subchondral cyst-

like lesions was 53%, 71%, and 56%, respectively. After a month-long washout period 

and using the saliency maps and network prediction probabilities, the interreader balanced 

accuracy for binary classification improved for all three abnormalities: cartilage lesions, 

bone marrow edema-like lesions, and subchondral cyst-like lesions was 60%, 73%, and 

68%, respectively.

Predicting Disease Severity Using Total SHOMRI Score

As part of a preliminary study, we evaluated a deep-learning based model for predicting 

disease severity using the total SHOMRI score of each patient instead of binary 

classification. Briefly described, this score is calculated as the total of the cartilage lesion 

scores, bone marrow edema scores, and cyst scores in the coronal and sagittal images. We 

used the same dataset and split as used in the binary classification experiment, with the 

difference of adding the sagittal images of each patient in addition to the coronal images 

in the input for the MRNet. The details of the sequences acquired and used in this study 

are in Table 1 (both coronal and sagittal sequences had the same acquisition parameters). 

Since we now only included patients that had both coronal and sagittal image acquisitions, 

this reduced our dataset to a total of 558 volumes (a 26.9% reduction in dataset size). 

The distribution of the total SHOMRI scores in this dataset is skewed; more than 50% 

of the patients had scores between 0 and 5. We changed the network loss from a binary 

cross-entropy to an Mean Square Error-based loss function and used a linear activation 

function instead of sigmoidal to have a continuous output. We used a learning rate of 1e-05 

and a weight decay of 0.01. We did not use dropout and augmentation as part of this initial 

study. To evaluate the results, we calculated the Pearson correlation coefficient between the 

input score and network predicted score on the test set, which was R = 0.61 (P = 1.61E-06). 

A correlation plot between the input score and network predicted score on the test set is 

shown in Fig. 7.
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Discussion

The purpose of this study was to develop a deep-learning model to classify pathologies on 

hip MRI and to compare its performance with radiologists considered clinical experts in 

the field, and to develop an AI-based assist tool to see if it improves interreader reliability 

in classifying these abnormalities. Our results demonstrate that a deep-learning approach 

achieved high performance in clinical classification tasks on hip MR images, and that using 

the predictions from the deep-learning model improved the interreader agreement quantified 

as balanced accuracy in all pathologies.

Besides its promising performance in classifying abnormalities, the MRNet was chosen for a 

number of reasons for this study. First, for each patient volume the label stated the presence 

or absence of lesion; however, there was no information regarding the slice location of this 

lesion, making this a weakly supervised problem. Thus, a 2D model was not suitable for 

this problem, since it would require ground truth label annotations on each slice, and not 

just each volume. While a 3D architecture could have been chosen for this problem, there 

were no suitable pretrained model weights for a 3D architecture that could be transferred 

to this problem. With a relatively small sample size, a lack of pretrained weights would 

lead to overfitting. Additionally, the MR sequences used in this study were not isotropic, 

and a 3D convolution would have a receptive field that is different inplane and out-of-plane. 

Therefore, the MRNet was chosen since it retains information from all the slices without 

using a 3D convolution, and allows pretraining on the ImageNet for the filters and trains a 

fully connected layer after globally pooling the features from all the slices.

The network was able to generalize its performance over two study sites, both acquired 

with different imaging parameters on scanners produced by different manufacturers, without 

any additional harmonization of the images, showing the network’s strength in generalizing 

performance over two different datasets and its potential to work on different datasets. 

With this approach we successfully created a model that performs well while accounting 

for such differences. To the best of our knowledge, this was the first musculoskeletal 

deep-learning-based study that included a mixed-training dataset from multiple study sites. 

The datasets used for training and validation were annotated by five different radiologists, 

all of whom underwent the same training. Since the images were not annotated by just 

one radiologist, this potentially reduced bias in the labels, and helped the network adapt 

to different radiologists’ performance, making it more robust. When the performance was 

stratified by sites, it was better for the bone marrow edema and subchondral cysts on the 

images from the site that had more data, showing that this network would improve further 

if it was trained on more images. Since the final AUC values were obtained for each model 

after using the grid search, it suggested that for a problem like this with a relatively smaller 

dataset, an experimental approach was useful in finding the right set of parameters to tune 

the network.

The grid search results also indicated that augmentation did not help in generalizing the 

network or prevent overfitting. This could have been for a few different reasons. First, since 

the hip lesions are hard to detect by a radiologist, it is possible that any slight modifications 

done by even the mild augmentations could throw the network off. Second, it is possible 
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that since this is already a binary classification, the network does not need to learn on 

any more augmented data. The results suggest that augmentation may help in a three-class 

classification or when the dataset is bigger, suggesting that the network needs to learn more 

7class activation maps show that the network is looking within the hip anatomy; however, 

further experiments would have to be performed with the assistance of a radiologist to 

determine if the network is focusing on areas where actual lesions are present.24 To improve 

on the results, it is possible that these images could be cropped even further to focus on parts 

of the acetabulum and femur head where most cartilage lesions, bone marrow edema-like 

lesions, and subchondral cyst-like lesions are present.

There are numerous potential applications of this study. These results suggest that if 

incorporated in a radiology workflow, the network could detect patients with higher lesion 

probability and triage abnormal cases for review by the radiologist, therefore freeing up the 

radiologist to work on more complicated cases.25,26 Additionally, the results of the all the 

networks could be combined in order to find which patients have cartilage lesions, bone 

marrow edema-like lesions, and subchondral cyst-like lesions, classifying those as patients 

of higher priority. Furthermore, these trained networks could be used as an assist tool 

when training incoming radiologists, assuming all the network predictions are vetted by an 

experienced radiologist, therefore reducing the workload on the experienced radiologist.27,28

Limitations

First, this network is currently able to do a binary classification and not trained to do a 

multiclass (mild, moderate, severe lesion) classification. A three-class classification would 

be useful in further stratifying lesion types, but was not possible with the limited data 

size available for this study. Second, the training dataset was highly imbalanced in the 

bone marrow edema-like lesions and subchondral cyst-like lesions containing volumes. 

While we did use a weighted cross-entropy loss function to account for this imbalance, 

a well-balanced dataset may further improve performance, especially if used for a three-

class detection. While we found moderate to good balanced accuracy in classifying the 

cartilage, bone marrow edema-like lesions, and subchondral cyst-like lesions between the 

two radiologists, there was still scope for obtaining an improvement of balanced accuracy 

with an enhanced version of the AI assist tool. The current version of the tool was built 

to incorporate the single, coronal view of the patient volume. While this did help our 

readers in this study, radiologists in general often use multiple views (sagittal, axial, coronal, 

oblique axial) of the same patient volume when annotating images for lesions, especially 

when the cartilage is as thin as it is in the hip. A previous study has shown that using the 

combination of the axial and coronal planes of T2-weighted fast spin echo sequence with 

fat saturation instead of using only the coronal planes increased the sensitivity of cartilage 

abnormality detection in the knee from 61% to 94%, suggesting that multiplanar images are 

important when assessing cartilage lesions.29 For future experiments, we aim to combine the 

predictions from models trained on all three views (axial, coronal, and sagittal). Providing 

radiologists to assess with more than one view at a time along with the model predictions 

and saliency maps should further improve the inter- and intrareader agreement along with 

closely mimicking the actual clinical radiologist practice. Furthermore, this dataset did not 

contain multiparametric data, which could have possibly improved the network performance, 
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by providing the network with different contrasts for training. This study used images 

graded by a single radiologist for training and images graded by multiple radiologists for 

model evaluation and testing. Previous studies11,12 have used similar weakly supervised 

designs where the training data have one ground truth but the test data have multiple readers 

to annotate the dataset—creating a more robust testing design. Having a weakly supervised 

network design enabled us to have a larger dataset to train on, where the variability within 

the data resulted in a more generalizable model. However, the weak supervision could have 

possibly introduced more noise in the data, which we will analyze and address in a future 

study. On the other hand, the test set, which is typically of a smaller size, was graded by 

independent readers where the ground truth was established as majority voting, making the 

final evaluation of the model and reported performance values accurate.

As a preliminary study, we incorporated the sagittal images along with the coronal images 

to train the same network to predict a total severity score instead of binary classification. 

The results of this preliminary study show that while there is scope in training this network 

to predict disease severity instead of binary classification, more data are needed, especially 

images containing more severe lesions to teach the network how to recognize patients with 

more severe disease. In future studies, we will continue to train this regression network to 

predict total score, using more data and incorporating more networking tuning to improve 

the results.

Conclusion

We developed a deep-learning based network that achieves high performance on clinical 

tasks of detecting hip abnormalities related to OA on MR images. With further experiments 

and additional data, we will continue to improve the network generalizability and 

performance, with the goal of assisting radiologists in the detection and grading of hip 

lesions on MRI.
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FIGURE 1: 
Method and analysis pipeline. Images were acquired at two different sites, and a centralized 

image grading was performed using the SHOMRI grading system for each pathology. These 

grades were used as ground truth labels in network training, validation, and testing. All 

the images underwent image preprocessing and augmentation if needed. The dataset was 

split into training, validation, and testing groups. Three networks were trained separately 

for each pathology, using the MRNET architecture. Models that had an AUC greater than 

0.7 were selected and used for testing the network performance on the test dataset, while 

also generating saliency maps. These maps were loaded into the AI assist tool, used by two 

radiologists. The interreader agreement was calculated between the two radiologists for each 

pathology.
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FIGURE 2: 
(Top) Subregions of the hip used for SHOMRI grading: acetabular superolateral (ASL), 

acetabular superomedial (ASM), and femoral lateral (FL), femoral superolateral (FSL), 

femoral superomedial (FSM), and femoral inferior (FI). (Bottom-left) Example coronal hip 

image from the UCSF. (Bottom-right) Example hip image from LASEM.
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FIGURE 3: 
View of the user-friendly AI-based assist tool for radiologists. Images were completely 

stripped of their metadata and any patient information and loaded onto the tool. The 

radiologist has the option of turning on or off the cartilage lesions, bone marrow edema-like 

lesions, and subchondral cyst-like lesion saliency maps generated on the test set using the 

model. Once the assessment was submitted, the responses were recorded and stored for each 

patient image. The radiologist can select from a list of patient images, where each file is 

simply labeled with a number, and corresponding grades are mapped onto the Excel sheet.
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FIGURE 4: 
Distribution of binary (present or absent) grades in the training, validation, and testing splits 

used in this study. The bone marrow edemas and cysts have a low representation of positive 

lesions in this study; however, they are uniform in all three training, validation, and test sets.
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FIGURE 5: 
Class activation maps (CAMs) highlight which pixels in the images are important for the 

model to make its classification probability. The darker areas of the map show where the 

network focused its decision-making on. The three images are the same slice from one 

patient in the test set. (Left) Map from the cartilage lesion detection network. (Middle) Map 

from the bone marrow edema-like lesion detection edema detection network. (Right) Map 

from the subchondral cyst-like lesion detection network.
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FIGURE 6: 
Receiver operating characteristic curves of the three binary classification models (cartilage 

lesion detection model: blue line, bone marrow edema-like lesion detection model: green 

line, subchondral cyst-like lesion detection model: red line) along with performance of an 

experienced musculoskeletal radiologist in terms of sensitivity and specificity for binary 

detection of hip pathology (cartilage lesion: blue point, bone marrow edema-like lesion: 

green point, subchondral cyst-like lesion: red point).
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FIGURE 7: 
Correlation plot between input and predicted total SHOMRI scores on the test dataset for 

the severity staging model. Along with the line of best fit, 95% confidence limits and 95% 

prediction limits for this dataset are shown in this plot.
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TABLE 1.

MRI Sequence Parameters Shown by Study Sites (UCSF and LASEM)

UCSF LASEM

Sequence
type

Fat-saturated T2-
weighted

PD-weighted
SPAIR

TE/TR 60/3090 msec 25/2574 msec

FOV 20 cm 17 cm

Matrix size 288 × 224 244 × 234

Slice thickness 4 mm 2.5 mm

Resolution 0.69 × 0.89 mm 0.69 × 0.72 mm

Scanner 3.0 T (GE) 3.0 T (Philips)

TR = repetition time; TE = echo Time; FOV = field of view; PD = proton density; SPAIR = Spectral Attenuated Inversion Recovery; GE = General 
Electric.
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