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Abstract 

Background:  Genetic variation influences both chromatin accessibility, assessed in 
chromatin accessibility quantitative trait loci (caQTL) studies, and gene expression, 
assessed in expression QTL (eQTL) studies. Genetic variants can impact either nearby 
genes (cis-eQTLs) or distal genes (trans-eQTLs). Colocalization between caQTL and 
eQTL, or cis- and trans-eQTLs suggests that they share causal variants. However, pair-
wise colocalization between these molecular QTLs does not guarantee a causal rela-
tionship. Mediation analysis can be applied to assess the evidence supporting causality 
versus independence between molecular QTLs. Given that the function of QTLs can be 
cell-type-specific, we performed mediation analyses to find epigenetic and distal regu-
latory causal pathways for genes within two major cell types of the developing human 
cortex, progenitors and neurons.

Results:  We find that the expression of 168 and 38 genes is mediated by chromatin 
accessibility in progenitors and neurons, respectively. We also find that the expression 
of 11 and 12 downstream genes is mediated by upstream genes in progenitors and 
neurons. Moreover, we discover that a genetic locus associated with inter-individual 
differences in brain structure shows evidence for mediation of SLC26A7 through chro-
matin accessibility, identifying molecular mechanisms of a common variant association 
to a brain trait.

Conclusions:  In this study, we identify cell-type-specific causal gene regulatory net-
works whereby the impacts of variants on gene expression were mediated by chro-
matin accessibility or distal gene expression. Identification of these causal paths will 
enable identifying and prioritizing actionable regulatory targets perturbing these key 
processes during neurodevelopment.

Keywords:  Causal inference, Gene regulatory networks, Quantitative trait loci, Cis- and 
trans-regulation, Neurogenesis

†Michael I. Love and Jason L. 
Stein jointly supervised the work.

*Correspondence:   
milove@email.unc.edu; jason_
stein@med.unc.edu

1 Department of Genetics, 
University of North Carolina 
at Chapel Hill, Chapel Hill, NC 
27599, USA
2 UNC Neuroscience Center, 
University of North Carolina 
at Chapel Hill, Chapel Hill, NC 
27599, USA
3 Department of Human 
Genetics, University of Chicago, 
Chicago, IL 60637, USA
4 The Jackson Laboratory, 600 
Main Street, Bar Harbor, ME 
04609, USA
5 Department of Biostatistics, 
University of North Carolina 
at Chapel Hill, Chapel Hill, NC 
27599, USA

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s13059-023-02959-0&domain=pdf
http://orcid.org/0000-0003-4829-0513


Page 2 of 25Aygün et al. Genome Biology          (2023) 24:130 

Background
Genome-wide association studies (GWAS) have identified many common genetic vari-
ants associated with risk for neuropsychiatric disorders [1–3] and inter-individual dif-
ferences in other brain-relevant traits, like cortical structure [4–6]. GWAS studies alone 
do not yield molecular, cellular, and systems-level causal pathways by which discovered 
genetic variation influences a trait. Given the enrichment of brain trait-associated vari-
ants within non-coding regulatory elements [7, 8], quantitative trait loci (QTL) analyses 
for gene regulatory phenotypes, including chromatin accessibility and gene expression, 
have been widely applied for the functional interpretation of GWAS (Fig.  1a) [9–12]. 
Importantly, recent QTL studies have demonstrated that these non-coding brain trait-
associated variants exert their functional effects in a developmental and cell-type-spe-
cific manner [13–16].

To find the causal gene regulatory networks by which non-coding genetic variation 
influences a complex brain or behavioral trait, first, a colocalization between a molecu-
lar QTL, performed in a relevant cell type and developmental time period, and the trait 
GWAS is conducted to identify shared causal variants [11, 17]. Similarly, colocalization 
between multiple molecular QTLs can be used to determine if there are shared genetic 
influences on both traits, for example, chromatin accessibility and gene expression [18, 
19]. However, colocalization does not guarantee a causal relationship. If a genetic var-
iant, represented by X, is significantly associated with both a candidate mediator (M) 
such as chromatin accessibility, and an outcome (Y) such as gene expression measured 
from the same individuals; X (or an LD proxy of X) can directly regulate Y independ-
ent from M, termed independence (X—> M; X—> Y); the effect of X on Y can be medi-
ated partially or completely through M, termed a forward model (X—> M—> Y); or 
the effect of X on M can be partially or completely mediated by Y, termed a reactive 
model (X—> Y—> M) [20–22] (Fig. 1b). The causal ordering of events in each model is 
not dependent on the directionality of the effect of X on M or Y, which is fixed from X 

Fig. 1  Study design. a Cell-type-specific in vitro experimental system including progenitors and their 
differentiated neuronal progeny. b Models evaluated in this study
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to M or Y. A causal pathway of a brain trait-associated variant can be used to prioritize 
actionable trait-relevant therapeutic targets that interrupt the key pathological processes 
[23–25].

Causal pathways for non-coding trait-associated genetic variation have been experi-
mentally demonstrated for a small subset of GWAS traits. An example of the causal 
forward model (X—> M—> Y) is a common genetic variant (X) located within a regula-
tory element (M), such as a gene promoter or enhancer, that disrupts the binding motif 
of a transcription factor (TF) leading to differential chromatin accessibility observed 
via chromatin accessibility QTL (caQTL) analysis, which leads to differential expres-
sion (Y) observed via cis-expression QTL (cis-eQTL) analysis [7, 26–29]. Though less 
canonical, causal reactive models (X—> Y—> M) have also been experimentally verified, 
whereby changes in the expression of a gene encoding a TF may cause changes in the 
chromatin accessibility in the genomic regions harboring a TF binding motif [30, 31]. 
Similar gene regulatory mechanisms can lead to trans-eQTLs, whereby a genetic vari-
ant (X) cis-regulates a transcription factor or components of a signaling cascade (M) 
and leads to altered expression of a distal gene (Y). Alternatively, in the independence 
model, the expression of the gene is independent of chromatin accessibility, which may 
occur due to false positive colocalizations or non-canonical regulatory mechanisms 
[30, 32–36].

There are two common ways to test causal models using genetic association data. 
Mendelian randomization (MR) analyses infer causal relationships by defining “instru-
ments”, variants that influence M and satisfy certain modeling assumptions, and deter-
mining if these instruments may affect Y through M by examining their paired effect 
sizes and standard errors [37–39]. MR analyses have the advantages of using sum-
mary statistics rather than raw data, and additionally, two phenotypes M and Y are not 
required to be measured in the same individuals. However, MR approaches require 
allelic heterogeneity, which for caQTLs is rarely found and for eQTLs is generally only 
detectable with large sample sizes [12, 13, 40]. Alternatively, mediation analysis can be 
performed to distinguish between pleiotropic, forward, and causal reactive models when 
multiple phenotypes are measured across the same donors and there is access to the raw 
data. Evidence for the forward model is established in a classical mediation approach 
when there is no uncontrolled confounding and (1) M and Y are conditionally depend-
ent given X, and (2) X and Y are conditionally independent given M [41, 42]. Media-
tion approaches have been applied to individual-level multi-modal QTL data to infer 
causal relationships between different molecular intermediates including mediation of 
gene expression via DNA methylation, histone acetylation [43], chromatin accessibility 
[44, 45], and trans-regulation by distal genes [46–50]. However, these previous studies 
were subject to difficulties with the specification of multiple null hypotheses, correction 
for multiple testing, and quantifying evidence for complete versus partial mediation. A 
recent Bayesian model selection framework can overcome these challenges by weighing 
the evidence of each potential relationship across X-M-Y triplets, summarized as a pos-
terior probability [22].

Current studies have investigated genetically mediated causal gene regulatory net-
works in the human brain using multi-modal QTLs, but they were limited to study-
ing data derived from bulk adult brain tissue and were not able to resolve cell-type and 
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developmentally specific mechanisms [43, 51–53]. In this study, we applied a Bayesian 
causal inference method, bmediatR, [22] to examine the mediation of genetic effects 
(1) on gene expression through nearby chromatin accessibility, (2) on distal chromatin 
accessibility through the expression of TFs, and (3) on downstream gene expression 
through trans-regulation by other genes using our previously generated ca/eQTL data-
sets derived from human cortical progenitors and their differentiated neuronal progeny 
(Fig. 1a) [13, 14]. We identified causal paths for gene expression mediated by chromatin 
accessibility for 168 and 38 genes in progenitors and neurons. Also, we found that the 
expression of 11 and 12 downstream genes was mediated by upstream genes proximal to 
cis-regulatory SNPs in progenitors and neurons, respectively. Furthermore, we proposed 
causal mechanisms affecting brain structure and neuropsychiatric disorders through 
multiple levels of biology by defining a causal forward regulatory mechanism leading 
to changes in expression of the SLC26A7 gene via chromatin accessibility at a locus co-
localized with middle temporal gyrus surface area GWAS [4].

Results
Cell‑type‑specific mediation of expression via chromatin accessibility (forward model)

We assessed causal mediation using previously generated cell-type specific ATAC-
sequencing [13] and RNA-sequencing [14] data that was subset to a dataset where 
both data modalities were acquired in the same donors for each cell type (Ndonor = 75 
in progenitors and Ndonor = 57 in neurons). To identify causal models explaining X-M-Y 
triplets, we identified variants impacting both chromatin accessibility and gene expres-
sion (Fig. 1b, Model 1). We first subset the ca/eQTLs to biologically relevant X-M-Y tri-
plets to test the forward model, as this is the most commonly assumed model to explain 
genetic effects on both chromatin accessibility and gene expression [7]. The causal for-
ward model was only tested when the ca/eQTL variant (FDR < 5%) was within the chro-
matin-accessible region, because such a variant in a gene regulatory region is likely to 
disrupt TF binding and then affect gene expression (Fig. 1b, Model 1 upper diagram). 
We found that in progenitors and neurons, 681 and 204 variants within 289 and 64 chro-
matin-accessible regions + / − 1 Mb from the transcription start site (TSS) of 332 and 83 
genes were significantly associated with both chromatin accessibility and gene expres-
sion (Additional file 1: Fig. S1a).

In concordance with the previous observation of the sharing of directionality of 
genetic effect between caQTLs and eQTLs [13, 45], we detected that 85% and 80% of 
X-M-Y triplets showed allelic effects in the same direction on both chromatin and gene 
expression progenitor and neurons, respectively (Additional file 1: Fig. S1b). To evaluate 
causal forward relationships of genetic mediation of gene expression through chromatin 
accessibility, we applied a Bayesian mediation approach bmediatR [22] where X is a sin-
gle variant within the chromatin accessibility peak, M is chromatin accessibility, and Y is 
the gene expression.

We detected 168 and 38 genes associated with 364 and 87 variants in progeni-
tors and neurons supported by the causal forward model (posterior probability > 0.50; 
Fig. 2a, Additional file 2: Table S1). As an example where the Bayesian approach sup-
ported the causal forward model, an eQTL-caQTL colocalization in progenitors 
showed that variation of CHL1 gene expression was found to be mediated through a 
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chromatin accessibility peak (chr3:74,521–75,730) (Fig. 2b, posterior probability causal 
forward complete/causal forward partial: 0.40/0.59). The same progenitor eSNP and 
caSNP (rs9867864) within a chromatin accessibility peak located 121  kb upstream 
of the gene TSS was found to influence CHL1 expression through altering chroma-
tin accessibility, and showed allele-specific chromatin accessibility (ASCA) (FDR for 
ASCA = 1.27 × 10−5). The SNP did not survive our threshold for testing causal models 
in neurons, because rs9867864 was significantly associated with chromatin accessibil-
ity but not with gene expression, indicating that there were cell-type-specific impacts of 
this variant on gene expression (ca/eQTL nominal p-values in neurons = 1 × 10−9/0.019, 

Fig. 2  Cell-type-specific gene regulation mediated by chromatin accessibility. a Manhattan plot showing 
the bmediatR results for the causal forward model (upper), and for the causal reactive model (lower) for each 
cell type (purple for progenitor, green for neuron, purple + green for genes detected in both cell types). Gene 
symbols and chromatin-accessible regions are shown. b Mediation scan plot overlaid with caQTL data for the 
causal forward model of epigenetic regulation of CHL1 gene expression in progenitors indicated by lines in 
different colors with corresponding caQTL p-value on the left y-axis, and the bmediatR posterior probability 
of each possible model is shown with different shapes on the right y-axis. The locations of peak harboring 
the variant, peak1 and peak2 supporting the causal forward model are highlighted. Dashed line indicates 
posterior probability = 0.5. c Mediation scan plot overlaid with caQTL data for the causal forward model 
of epigenetic regulation of FOXD4L1 gene expression in neurons. Line and shapes are assigned as part b. 
Dashed line indicates posterior probability = 0.5
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Additional file  1: Fig. S2a). We also performed a mediation scan analysis substituting 
different chromatin-accessible regions (M) within + / − 1 MB of the TSS of the gene to 
test for specificity of the mediation effect (posterior probabilities for substituted regions 
M are shown in Fig. 2b). This analysis showed that the chromatin accessibility peak con-
taining the variant had the highest posterior probability for forward mediation of the 
genetic effect on CHL1 expression (Fig. 2b). Though 94% of peaks tested did not show 
evidence for mediating the effect, we detected two more chromatin accessibility peaks 
also surviving the threshold we used to determine causal forward models, although our 
caQTL analysis was not sensitive enough to detect the significant impact of rs9867864 
on these chromatin-accessible regions (causal forward complete/causal forward partial 
for peak1 = 4.8 × 10−7/0.69; for peak2 = 1.1 × 10−6/0.54, nominal caQTL p-values for 
peak1 = 0.042, peak2 = 0.085, Fig. 2b). Both peak1 and peak2 were significantly associ-
ated with CHL1 expression after controlling for the center peak and technical covari-
ates (Additional file  1: Fig. S2b). This observation suggests that CHL1 expression may 
be mediated by the peak harboring the variant along with peak1 and peak2. There have 
been case studies, though no definitive associations, suggesting that heterozygous dele-
tion of CHL1 showed language and cognitive developmental delay [54, 55]. Here, we 
propose a progenitor-specific causal regulatory mechanism for differences in CHL1 
expression. If the association with CHL1 and cognitive delay is confirmed, this finding 
may have therapeutic potential in that CHL1 expression levels could be manipulated 
through targeting epigenetic engineering tools in progenitors to this enhancer region.

Another cell-type-specific mediation supporting the causal forward model was 
observed in neurons at the FOXD4L1 gene locus. The variant rs141063413, within a 
chromatin-accessible region (chr2:113503031–113503850) located 2  kb downstream 
of the gene was significantly associated with FOXD4L1 expression and chromatin 
accessibility in neurons (Fig. 2c). In progenitors, the same variant was associated with 
chromatin accessibility but not gene expression (ca/eQTL nominal p-values in pro-
genitors = 6.9 × 10−10/0.12, Additional file 1: Fig. S2c). The chromatin-accessible region 
including the variant rs141063413 mediated FOXD4L1 expression in neurons (causal 
forward complete/causal forward partial: 0.024/0.914, Fig. 2c). FOXD4L1 was shown to 
be required for embryonic neurogenesis in xenopus [56]. These results again suggest a 
cell type and a regulatory element that may be useful in modulating the expression of a 
given gene.

Next, we assessed the features that can be predictive of causal versus independ-
ent relationships between chromatin accessibility and gene expression regulated by 
the same locus. We found that as the relationship between chromatin accessibility 
and gene expression (percent variance in gene expression explained by chromatin 
accessibility termed r2(Y,M)) is stronger, causal forward models were more strongly 
supported in both cell types (Fig.  3a). We also observed that e/caQTLs supporting 
causal forward models were significantly closer to the gene TSS in both cell-types 
and enriched more within promoters in progenitors (Fig.  3b, c). However, we did 
not detect enrichment of testable variants disrupting TF binding motifs [57] within 
the causal forward model compared to the independence model (Fig. 3d). The vari-
ants supported by ASCA were also more enriched within the causal forward model 
compared to the independence model in progenitors, but not in neurons (Fig.  3e). 
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This suggests that the amount of variance in gene expression explained by chroma-
tin accessibility, genomic location relative to gene TSS and ASCA can be predictive 
features for causality. However, TF motif disruption is not a reliable feature for the 
assumption of causality. It is important to note that low power to detect ASCA based 
on allele frequency, incomplete annotation of motifs, and incomplete knowledge of 
how genetic variation disrupts TF binding, all prevent a comprehensive evaluation of 
these features.

A comparison of triplets supporting the causal forward model using the Bayesian 
approach (bmediatR) with regression-based mediation analysis [44] showed that 90.7% 
and 23.7% of the triplets in progenitors and neurons overlapped with the triplets sup-
porting causal forward models determined by a complementary regression-based 
approach (Additional file 1: Fig. S3a). We hypothesized that lower statistical power may 
at least partially explain the lower agreement between the two approaches in neurons. 
To this end, we down-sampled progenitors to be equal in sample size with neurons, and 
as expected we found a decreased overlap between Bayesian versus regression-based 

Fig. 3  Biological and technical features predicting causality. a Percent variance in gene expression explained 
by chromatin accessibility (r2(Y,M)) in X-M-Y triplets supporting causal forward model versus independence 
in progenitors (upper, purple) and neurons (lower, green). Unpaired t-test p-value is shown. b Absolute 
distance of variants relative to TSS of the genes for X-M-Y triplets supporting causal forward model versus 
independence in progenitors (upper, purple) and neurons (lower, green). Unpaired t-test p-value is shown. c 
Distribution of variants located within gene promoter (within + / − 2 kb window from gene TSS) within X-M-Y 
triplets supporting causal forward model versus independence in progenitors (upper, purple) and neurons 
(lower, green). Chi-square test p-value is shown. d Number of testable variants detected to disrupt TF binding 
motifs via motifbreakR in X-M-Y triplets supporting causal forward model versus independence in progenitors 
(upper, purple) and neurons (lower, green). Chi-square test p-value is shown. e Number of testable variants 
(either variant itself or LD proxy) showed allele-specific chromatin accessibility (ASCA) in X-M-Y triplets 
supporting causal forward model versus independence in progenitors (upper, purple) and neurons (lower, 
green). Chi-square test p-value is shown
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mediation approaches (Additional file  1: Fig. S3b, 47.5% overlap). This suggests that 
there may be general agreement between the two approaches for studies with a sufficient 
sample size.

Given that sample size may influence causality inferences, we sought to assess rep-
lication in another brain tissue dataset where multiple gene regulatory modalities and 
genotypes were acquired on the same individuals (ROSMAP/xQTL) [43]. To assess rep-
lication of our cell-type-specific ca/eQTL data in relevant datasets, we computed π1 sta-
tistics [58] within adult brain methylation QTL and eQTL data from the previous study 
[43] for significant primary variant-chromatin accessibility and variant-eGene pairs. We 
found that the fraction of progenitor and neuron primary SNP-overlapping epigenetic 
regulatory region pairs that are non-null associations in adult brain ROSMAP/xQTL 
methylation QTL data (π1) was 56.7% and 24.1% when subsetting to SNP-epigenetic 
regulatory region pairs that were detectable in both datasets (Additional file 1: Fig. S4a). 
Also, we observed that the fraction of progenitor and neuron primary eSNP-eGene pairs 
that are non-null associations in ROSMAP/xQTL eQTL data (π1) was 77.1% and 86.6% 
when subsetting to SNP-Gene pairs detectable in both datasets (Additional file 1: Fig. 
S4a). Estimates for sharing of ca/mQTLs and eQTLs across datasets were well above 
randomly sampled SNPs in ROSMAP/xQTL data, which showed nonsignificant associa-
tions in our cell-type-specific data, demonstrating clear evidence for replication of the 
QTL findings.

We also compared the mediation analysis results between our study and the ROS-
MAP/xQTL study [43]. We detected 7 and 1 SNP-chromatin accessibility peak-eGene 
triplets in progenitor and neuron-supported mediation in a causal forward direction in 
both our analysis and xQTL study (Additional file 1: Fig. S4b, Additional file 2: Table S1). 
As a specific example, we observed a causal regulatory region detected in progenitor, 
neuron, and ROSMAP/xQTL data at the DNAJC15 gene locus (Additional file  1: Fig. 
S4c). We found that variant rs17553284 within a chromatin accessibility region at gene 
promoter was a caQTL and an eQTL in both progenitor and neuron data, and a mQTL 
and an eQTL in ROSMAP/xQTL data. While the C allele of the variant increased 
DNAJC15 expression in progenitor, neuron, and ROSMAP/xQTL data, it decreased 
DNA methylation and increased chromatin accessibility in progenitor and neuron 
data consistent with the opposite regulatory direction of DNA methylation and chro-
matin accessibility (Additional file  1: Fig. S4d). Importantly, the chromatin-accessible 
region detected in our cell-type-specific data mediated DNAJC15 expression in both 
progenitor and neurons, also DNA methylation site detected in ROSMAP/xQTL data 
mediated DNAJC15 expression (bmediatR posterior probability for causal forward: pro-
genitor = 0.99, neuron = 0.99 and causal inference test (CIT) [59] p-value in xQTL for 
causal forward = 5.9 × 10−7 and for causal reactive = 0.001, Additional file  1: Fig. S4e). 
Despite differences in sample age, heterogeneity, and method used for mediation analy-
sis, observing the replication between two datasets suggested our approach is robust.

Accuracy of Bayesian mediation approach in classifying forward versus reactive models 

given differences in measurement error between phenotypes

Given that differences in measurement error between candidate mediators and outcomes 
may give rise to false positive causal relationships [20, 23], we quantified measurement 
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error using the intraclass correlation coefficient (ICC) [60] across technical replicates 
from the same donor line thawed multiple times. We observed that ICC for ATAC-seq 
measured peaks (Ndonors_with_replicates = 11 in progenitors, Ndonors_with_replicates = 5 in neu-
rons) were on average lower than RNA-seq measured genes (Ndonors_with_replicates = 13 in 
progenitors, Ndonors_with_replicates = 9 in neurons) (Additional file  1: Fig. S5a), indicating 
higher measurement error in ATAC-seq data. We simulated the impact of measurement 
error on causal models to find the ICC at which true causal forward or reactive models 
flip to being falsely called reactive or forward models. Since we observed that the ICC 
flipping threshold was also dependent on the magnitude of the effects of X on M and 
Y on M, we calculated an ICC threshold by varying the magnitude of effects for X-M-Y 
triplets. For example, in a simulated causal forward model where variant X explains 30% 
of the variation in chromatin accessibility (M) and the variant X also explains 10% of 
the variation in gene expression (Y), we find that ICC values of chromatin accessibility 
below 0.3 lead to incorrect model flipping (Additional file 1: Fig. S5b-c; see the “Meth-
ods” section). We filtered out the triplets supporting causality with ICC values lower 
than per triple threshold of ICC at which model flipping occurred for all future analyses 
(Additional file 1: Fig. S5b, see the “Methods” section).

We then subset the ca/eQTLs to biologically relevant X-M-Y triplets to test the reac-
tive models. The causal reactive model was only tested when the ca/eQTL variant altered 
the expression of a TF and the chromatin accessibility of a region harboring a motif for 
that TF, as this is a likely mechanism for a causal reactive model (Fig. 1b, Model 1 lower 
diagram). We detected 3 variants cis-regulating 3 genes encoding TFs and also associ-
ated with chromatin accessibility within 8 regions that contained the binding motif of 
the TF in progenitors (Fig. 2a). We did not detect any significant ca/eQTLs matching our 
causal reactive model criteria in neurons (at 5% FDR for trans-caQTLs).

We would expect that in true reactive models, where a variant’s effect on chromatin 
accessibility is fully mediated through gene expression, no allelic imbalance in chromatin 
accessibility would be observed by X or an LD proxy of X, because the effect is not cis 
with respect to the chromatin peak, but trans. Hence, we excluded variants within chro-
matin-accessible regions to evaluate causal reactive models. We investigated a few cases 
where the reactive model had a higher posterior probability than the forward model. 
As an example, the variant rs2731040 located 1 kb upstream, not within, a chromatin-
accessible region (chr12:45023661–45024510) harboring several DBX2 TF binding motif 
sites was significantly associated with both DBX2 expression and chromatin accessibil-
ity (Additional file 1: Fig. S6a-b). This example satisfied our previously defined biologi-
cally motivated criteria to test whether the data support a causal reactive model. The 
same chromatin-accessible region additionally harbored binding motifs of 15 different 
TFs, the expression of each of which was cis-regulated. When we tested if the variants 
cis-regulating expression of these TFs were also significantly associated with chroma-
tin accessibility at this peak, we did not detect any significant trans-caQTL loci other 
than rs2731040, the variant that was also associated with DBX2 TF expression (Addi-
tional file  1: Fig. S6c). Data from this X-M-Y triplet best fit the causal reactive model 
(posterior probability for causal forward/causal reactive: 0.0095/0.99). This observation 
initially suggested a potential autoregulatory mechanism for a reactive model whereby 
expression of DBX2 regulated by the rs2731040 variant subsequently led to a change in 
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chromatin accessibility. However, we also found another variant, rs2731038, within the 
chromatin-accessible region that was in LD with rs2731040 (r2 = 0.66), and rs2731038 
showed ASCA in our previous study (Additional file  1: Fig. S6d, the adjusted p-value 
for ASCA = 0.02) [13]. Given that ASCA indicates a forward regulatory mechanism for 
chromatin accessibility by the variant, we interpret the high posterior probability sup-
porting the reactive model as a false positive result. This observation shows that causal 
reactive models must be carefully evaluated to ensure that they are not tagging allele-
specific effects, which are indicative of causal forward models. Through careful follow-
up of X-M-Y triplets, we demonstrate that false positive reactive models may persist 
despite stringent criteria and posterior probability thresholding.

Cell‑type‑specific mediation of eQTLs via trans‑regulation

Next, we investigated genes that were mediated via trans-regulation for each cell-type 
using the same Bayesian mediation approach. Because this analysis did not require both 
ca/eQTL data derived from the same donor, sample sizes were slightly increased as com-
pared to the previous analyses (Ndonor = 85 in progenitors and Ndonor = 74 in neurons) 
(Fig. 1b, Model 2). Within each cell-type, SNPs with significant association to a proximal 
gene (cis-eSNPs, primary SNPs per gene as well as pruned SNPs, see Methods) were 
also tested for association with every other gene (trans-eQTL, see the “Methods” sec-
tion). At a 10% FDR significance threshold, we detected 35 and 30 variants cis-regulat-
ing 23 and 17 upstream genes and also associated with 22 and 21 downstream genes 
in progenitor and neurons, respectively. We assessed whether cell-type-specific trans-
eQTL results were replicated in fetal bulk brain data (Ndonor = 235) [14, 15]. The frac-
tion of significant progenitor and neuron eSNP-trans (downstream) gene pairs that are 
non-null associations in fetal bulk trans-eQTL data (π1) was estimated to be 95.5% and 
74.2% when subsetting to SNP-Gene pairs detectable in both datasets, providing strong 
evidence for replication. After performing mediation analysis, we discovered 11 and 12 
downstream genes that were mediated via trans-regulation by 13 and 10 cis-regulated 
upstream genes in progenitors/neurons, respectively (Fig.  4a; posterior probability for 
causal forward > 0.5, Additional file 3: Table S2).

As an example, XPO1 on chromosome 2, was cis-regulated by a progenitor-specific 
eSNP (rs138286618), and the same variant was associated with the expression of genes 
PTBP1 on chromosome 19 and BBX on chromosome 3 (Fig. 4b and c). PTBP1 and XPO1 
genes were positively correlated; whereas BBX and XPO1 genes were negatively corre-
lated (Fig. 4d). The mediation analysis showed that the genetic effects of the variant on 
PTBP1 and BBX were mediated via XPO1 gene expression (posterior probabilities sup-
porting causal forward = 0.99 and 0.99 for both PTBP1 and BBX, Fig. 4e). XPO1, which 
is a nuclear export protein [61], induced apoptosis of cortical neural progenitors in mice 
[62] and intronic mutations within XPO1 were associated with autism [62, 63]. PTBP1 
protein is an RNA-binding protein, which was upregulated in glioblastoma [64] and had 
a role in the regulation of neuronal differentiation [65]. BBX protein is a transcription 
factor which is highly expressed in progenitor cells of developing neocortex and found 
as a downstream target of NFIX transcription factor regulating neural development 
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[66]. XPO1 may therefore represent an important master regulator of disease-associated 
genes in progenitors during neural development.

Proposing regulatory mechanisms of brain‑related GWAS loci via genetically mediated gene 

expression

We further leveraged cell-type-specific causal pathways to interpret the function of 
GWAS loci associated with brain-relevant traits (Additional file  4: Table  S3). As a 
specific example, we observed that an indel variant (rs10717382) was significantly 

Fig. 4  Cell-type-specific gene expression mediated by trans-regulation. a Circle plots illustrating genes 
mediated by trans-regulation in progenitors (left) and in neurons (right). Upstream genes (external circle 
color matches line color) are shown interacting with downstream genes (external circle color does not 
match line color). b Genomic tracks illustrating the association of variants cis-regulating XPO1 upstream 
gene with the expression XPO1, and downstream genes PTBP1 and BBX. Data points were colored based 
on the pairwise LD r2 with the rs138286618 (reference SNP). Dashed lines indicate the p-value threshold for 
significance in cis-eQTL or trans-eQTL analysis. c Boxplots showing the relationship between expression of 
genes residualized by the covariates and rs138286618 variant. d Correlation between XPO1 vs PTBP1 genes 
and XPO1 vs BBX genes. Residualized expression by covariates are shown for all genes. e bmediatR posterior 
probability for causal forward, independence versus causal reactive models for the regulation of PTBP1 and 
BBX genes by XPO1. Posterior probabilities of causal reactive were set to zero by bmediatR since reactive 
model priors were not evaluated for mediation via trans-regulation
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associated with chromatin accessibility at a peak (chr8:91179881–91181040) upstream 
of the SLC26A7 gene as well as its expression in progenitors. The variant rs10717382 
was also co-localized with an index SNP (rs57117164) associated with inter-individual 
differences in the surface area of a specific cortical region, the Middle Temporal Gyrus 
[4] for progenitor eQTLs, also the significance of caQTL dramatically reduced upon 
conditioning on rs57117164 (p-value was changed from 8.3 × 10−26 to 0.0009) (Fig. 5a). 
Importantly, we detected that deletion of the T allele decreased the binding affinity of 
the NKX2-2 transcription factor based on in silico analysis (Fig. 5b) [57]. NKX2-2 was 
previously found to function as a transcriptional repressor [67–69], and consistent with 
this, we observed that the deletion of the T allele was also associated with increased 
chromatin accessibility and gene expression in progenitor cells, but did not survive cor-
rection for multiple comparisons for association with expression in neurons (Fig.  5c). 
The deletion of T allele was also associated with increased Middle Temporal Gyrus area. 

Fig. 5  Colocalization of shared ca/eQTLs at SLC26A7 locus with middle temporal gyrus area GWAS. a 
Genomic tracks illustrating regional association of variants with SLC26A7 gene expression, chromatin 
accessibility at its promoter, and middle temporal gyrus area GWAS. Colocalization of middle temporal gyrus 
area GWAS index SNP with shared ca/eQTL SNP was detected via conditional analysis. Data points were 
colored based on the pairwise LD r2 with the caQTL index variant rs10717382 within the chromatin-accessible 
region. The dashed lines correspond to p-value thresholds for significance for each dataset. b Coverage 
plot illustrating ATAC-seq reads within the chromatin-accessible region per genotype. Genomic position of 
the variant rs10717382 was shown along with the NKX2-2 TF motif disrupted by rs10717382. c Phenotype 
(chromatin accessibility and SLC26A7 expression) versus genotype boxplots per cell type. d Mediation scan 
plot overlaid with caQTL data for the causal forward model of epigenetic regulation of SLC26A7 expression 
in progenitors indicated by lines in different colors with corresponding p-value on the left y-axis, and the 
posterior probability of each possible model shown with different shapes on the right y-axis. The location 
of the peak supporting the causal forward model was highlighted. e bmediatR posterior probability for 
causal forward, independence versus causal reactive models for the regulation of SLC26A7 by chromatin 
accessibility. Posterior probabilities of causal reactive were set to zero by bmediatR since reactive model 
priors were not evaluated for mediation via chromatin accessibility. f The cartoon illustrating a causal forward 
model for the regulation of SLC26A7 by chromatin accessibility
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Mediation analysis showed that this variant impacts SLC26A7 gene expression through 
chromatin accessibility (Fig.  5d–e, posterior causal forward complete/causal forward 
partial: 0.028/0.966). SLC26A7 encodes an anion transporter and mutations in the 
SLC26A7 protein were found in individuals with congenital hypothyroidism, though the 
role of this gene in brain structure is unclear [70–72]. Overall, here we proposed a cell-
type-specific genetic causal path where regulation of the SLC26A7 gene impacts brain 
structure, possibly through thyroid metabolism, that can be experimentally validated in 
future studies.

Discussion
Here, integrating multiple QTLs, we identified cell-type-specific causal gene regulatory 
mechanisms in a model system of the developing human brain. Our approach demon-
strated several important features of gene regulation: (1) testing causality for shared 
QTLs between chromatin accessibility and gene expression and between cis- and trans-
regulated genes provided insights into epigenomic and transcriptomic features of gene 
regulatory networks by linking variant to peak to gene and variant to gene to gene; (2) 
utilization of a cell-type-specific system allowed us to observe context-dependent causal 
networks that may have been masked by tissue heterogeneity in previous causal infer-
ence efforts on bulk tissue from the human brain; (3) applying a Bayesian strategy rather 
than traditional regression-based mediation, we could evaluate models of genetic effects 
on gene expression via chromatin accessibility in terms of the posterior probability of 
fully, partially, or independent mediation.

Different molecular assays require unique experimental procedures resulting in differ-
ent levels of technical noise across molecular phenotypes, which may bias estimates of 
mediated effects [23, 73]. Importantly, based on simulations, we demonstrated that reli-
able measurements are required to make accurate conclusions about causal mechanisms 
after data integration. We attempted to eliminate false positive causal relationships by 
implementing an algorithm that detects a threshold ICC value. We observed that for-
ward models can be identified as reactive at low ICC values; whereas reactive to forward 
model flipping is very unlikely to occur. Several adjustments including larger sample 
sizes, more donors with replicates, and a higher read coverage for sequencing data might 
reduce the measurement error. Moreover, despite our attempt to avoid potential false 
positive reactive models via this strategy, we were not able to identify any biologically 
meaningful examples of reactive candidates. This observation may be interpreted in light 
of the fact that (1) observation of a reactive model, chromatin accessibility mediated by 
gene expression, is an unlikely biological mechanism in this dataset, and (2) small sam-
ple size and measurement error may obscure distinguishing partial forward and partial 
reactive, as observed by the authors of the bmediatR method in simulation analyses [22]. 
We expect that increasing the statistical power of QTLs using a larger number of sam-
ples will be helpful to determine how often, if at all, reactive regulatory models exist.

We explored a variant co-localized with an index SNP for the middle temporal gyrus 
area upstream of the SLC26A7 gene, which alters chromatin accessibility at the region 
leading to changes in gene expression. This observation directed us to propose a com-
prehensive mechanism to interpret how a GWAS locus alters complex brain structure. 
Despite the low number of QTLs that colocalized with any brain-relevant GWAS loci, 
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we detected cis-regulatory elements mediating the expression of genes whose haplo-
insufficiency is associated with rare neurodevelopmental conditions. For instance, we 
found that a genetically altered chromatin-accessible region upstream of the CHL1 gene 
mediated its expression. Heterozygous loss of the CHL1 gene has been observed in indi-
viduals with cognitive delays [54, 55], though a definitive statistical association has not 
yet been conducted. Upon validation by cellular assays, this regulatory region could be 
an appealing candidate upstream enhancer to modulate endogenous gene expression 
for CRISPR-based targeted therapeutic approaches [74–77]. In addition to epigenetic 
regulations, we identified a downstream mediation of the PTBP1 and BBX genes by the 
XPO1 gene. Using the genetic variation within this region as an instrumental variable 
serving as a natural perturbation [78], we identified a causal relationship between two 
genes that would not be possible to infer by merely considering their co-expression. All 
of these three genes have been involved in neocortical differentiation, and exploring 
their regulatory mechanisms can help to find novel neurodevelopmental abnormality-
relevant intracellular pathways.

Although our sample size was comparable with other cell-based QTL studies [79–
82], increasing the number of donors will likely lead to a higher number of shared 
QTLs enabling a more systematic and higher-powered mediation analysis. Also, since 
the detection of some QTLs is dependent on the presence of stimuli, this may prevent 
simultaneous observation of changes in chromatin accessibility and gene expression [83, 
84]. To this end, further studies using more context-dependent conditions can be com-
plementary to our findings with an objective to examine causal networks that connect 
risk variants associated with brain-relevant traits to cellular function.

Conclusion
In this study, we identified epigenetic and trans-regulated causal pathways for the under-
lying mechanism of gene expression, employing a cell-type specific system representing 
an important period of human cortical development. Leveraging these causal networks 
with brain-relevant GWASs, we proposed potential molecular functions for trait-associ-
ated variants, which represent novel candidates for mechanistic studies aiming to under-
stand inter-individual differences in neurodevelopmental traits.

Methods
Establishment of primary human neural progenitor cells (phNPCs)

We generated phNPCs and differentiated them into neurons following the same cell cul-
ture procedure as described in our previous work [13, 14, 85].

Generation of cell‑type‑specific ATAC‑seq and RNA‑seq data

As previously described [4], we prepared ATAC-seq libraries and sequenced some of the 
libraries by using Illumina HiSeq2500 and some of them via MiSeq platforms with 50 bp 
paired-end sequencing with an average depth of 25.5 million read pairs. We aligned them 
to the human genome (GRCh38/hg38) by reducing mapping bias via the WASP method 
after quality control as described previously [4]. We generated RNA-seq libraries, per-
formed sequencing with NovaSeq S2 flow cell using 150 bp paired-end sequencing with 
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an average read depth of 99.8 million read pairs, and also mapped them to the human 
genome (GRCh38/hg38) after quality control as previously described [18].

Genotype processing and imputation

We performed genotyping of some of the DNA libraries via Illumina HumanOmni2.5 
and some of them via HumanOmni2.5Exome platforms. If variants showed variant miss-
ing genotype rate > 5% (–geno 0.05), deviations from Hardy–Weinberg equilibrium at 
p < 1 × 10−6 (–hwe 10−6), and minor allele frequency < 1% (–maf 0.01), we filtered them 
out. We also excluded samples if they had missing genotype rate > 10% (–mind 0.10) as 
described previously [13, 14]. For imputation, we used 1000 Genomes Project Phase 
3 reference panel for multiple ancestries [86] using Minimac4 software [87] by retain-
ing variants with missing genotype rate lower than 0.05, Hardy–Weinberg equilibrium 
p-value greater than 1 × 10−6, minor allele frequency (MAF) bigger than 1% and imputa-
tion R2 greater than 0.3 as described previously [13, 14].

Intraclass correlation within chromatin accessibility and gene expression data

To quantify cell culture-induced noise, we cultured 11 and 5 donors in progenitors and neu-
rons to prepare ATAC-seq libraries and 11 and 9 donors in progenitors and neurons to pre-
pare RNA-seq libraries multiple times during the course of the experiment. We calculated 
the intraclass correlation coefficient (ICC) of gene expression and chromatin accessibility 
between libraries from the same donors. For neurons, we used gene expression values after 
batch correction with the limma R package [88] for the sorter type, as described previously 
[13, 14]. We performed an unpaired two-sided t-test for statistical assessment of the mean 
difference between these two categories (Additional file 1: Fig. S5a).

Cell‑type‑specific eQTL and caQTL mapping to test causal forward model

To find the candidate SNP-chromatin accessibility-gene candidates to be tested for 
causal forward model or independence, we tested the association of 171,256 and 161,716 
variants located within chromatin-accessible regions and within + / − 1 MB of gene tran-
scription sites both with 55,473 and 54,044 chromatin accessibility regions via caQTL 
analysis, and with 22,710 and 22,696 genes via eQTL analysis in progenitor and neurons, 
respectively. To perform QTL analyses, we utilized a linear mixed effects regression 
model via EMMAX software [89] in which we controlled for population stratification 
(ancestry) and cryptic relatedness. To control for population structure, we computed 
the first 10 MDS components of ancestry for all the individuals with genotype infor-
mation available via PLINK software with (parameters: –cluster –mds-plot 10). To 
control cryptic relatedness, we generated kinship matrix from non-imputed genotype 
data via emmax-kin -v -h -d algorithm in EMMAX software, in which we excluded the 
genetic variants on the same chromosome with the tested variants in QTL analysis [90]. 
We controlled for unknown technical confounders by using the same number of PCs 
of global chromatin accessibility and gene expression models as previously established 
for caQTLs [13] and eQTLs [14] for each cell type. In these studies, the number of PCs 
was determined as the number maximizing caQTL discovery for caQTL analysis at 5% 
FDR and as the number maximizing eGene discovery at 5% FDR for eQTL analysis by 
sequentially adding PCs into the covariate matrix. The models were specified as follows, 
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where for each model a random effect was included with covariance equal to the kinship 
matrix K multiplied by the genetic variance:

We applied the same hierarchical multiple testing correction strategy as previously by 
computing a global eigenMT-FDR p-value after local adjustment per eGene [14]. To per-
form the eigenMT-FDR procedure [91], briefly, (1) nominal p-values of all cis variants per 
gene were locally adjusted via the eigenMT method [92]. (2) We performed multiple test-
ing correction by using these locally adjusted p-values from the top SNPs per gene, which 
resulted in globally adjusted p-values. (3) Genes with globally adjusted p-value lower than 
0.05 were defined as eGenes. For caQTLs, we adjusted association p-values via only the 
Benjamini–Hochberg method given that there were a few chromatin-accessible regions 
with multiple variants and retained the associations with lower than 5% FDR.

Cell‑type specific eQTL and caQTL mapping to test causal reactive model

To find the candidate SNP-chromatin accessibility-gene triplets to be tested for causal 
reactive model against independence, we applied the following strategy: (1) we detected 
(i) eGenes (53 eGenes in progenitors and 12 eGenes in neurons) that encode transcrip-
tion factors with known motifs [93] by calculating eigenMT-FDR threshold p-value by 
using only eGenes encoding TFs, and (ii) variants cis-regulating these eGenes at this sig-
nificant threshold; (2) we searched chromatin-accessible regions throughout the genome 
that harbor 80% matching sequence of the binding motifs [93] of these TF eGenes via 
TFBSTools [94]; and (3) we performed trans-caQTL analysis by using variants from step 
1 and chromatin accessibility at the regions from step 2 with the same caQTL models 
described for the causal forward model. We defined significant trans-caQTLs at 5% FDR.

Cell‑type specific trans‑eQTL mapping

To perform trans-eQTL analysis, we first selected a list of variants with significant evidence 
of cis-regulation for at least one gene in our previous analysis (Ndonor = 85 in progenitors 
and Ndonor = 74 in neurons) [14]. We further included variants with minor allele frequency 
greater than 0.025 and included primary SNPs associated with cis genes and pruned vari-
ants via PLINK v.1.90b3 software [95] (parameters –indep-pairwise 50 5 0.5). We excluded 
cis- or trans-pseudogenes, and any upstream–downstream gene pairs if they had a cross-
mappability value [96] greater than 5 at log2 scale. For trans-eQTL analysis, we included 

Progenitor caQTL ∶ chromatin accessibility ∼ SNP + 10 MDS of global genotype

+ 8 PCs of global chromatin accessibility

Neuron caQTL ∶ chromatin accessibility ∼ SNP + 10 MDS of global genotype

+ FACS sorter + 7 PCs of global chromatin accessibility

Progenitor eQTL ∶ expression ∼ SNP + 10 MDS of global genotype

+ 10 PCs of global gene expression

Neuron eQTL ∶ expression ∼ SNP + 10 MDS of global genotype + FACS sorter

+ 12 PCs of global gene expression
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variant-gene pairs if the distance between the variant and TSS of the gene was larger than 
1 MB on the same chromosomes or if the variant was on a different chromosome than the 
gene. We tested associations of the filtered variants with all the filtered genes in the genome 
that were expressed in our dataset. To conduct trans-eQTL analysis, we utilized EMMAX 
software [89] controlling for population structure and unknown technical confounders by 
adding the number of PCs of global expression maximizing eGene discovery in our previ-
ous cis-eQTL analysis [14]. The following models were used for trans-eQTL analysis per cell 
type, where for each model a random effect was included with covariance equal to the kin-
ship matrix K multiplied by the genetic variance:

To detect significant trans-eQTLs, we performed multiple testing correction and 
defined the associations as significant at 10% FDR.

Bayesian approach for mediation analysis

For mediation of gene expression through chromatin accessibility: for each X-M-Y tri-
plet where X is a genetic variant (encoded as − 1,0,1) within a chromatin accessibility 
region that is significantly associated with both chromatin accessibility and gene expres-
sion; M is the chromatin accessibility and Y is the gene expression, we ran mediation 
analysis applying bmediatR [22] using the covariates for caQTL and eQTL data corre-
sponding to population structure and technical factors. We applied the default setting 
for hyperparameters representing the effect sizes to φ2 = (1, 1, 1) relationships between 
X and M, M and Y, and X and Y, respectively, assuming them to be equal a priori for 
each, since we observed that φ2 = (1, 1, 1) as one of the values maximizing the sum of 
marginal log likelihoods (Additional file 1: Fig. S1c). To test the causal forward model, 
we set the ln_prior_c parameter for model prior as “complete” by assuming that observa-
tion of the causal reactive model is not plausible. To evaluate the causal reactive model 
and simulations used to remove false positive causal relationships, it was set as “reactive” 
to include reactive model priors [22]. We used the non-informative default priors for the 
scaling parameters (κ, λ) = (0.001, 0.001) and fixed effect coefficients, both the intercept 
and covariates τ = (1000, 1000). This analysis calculated the posterior distribution of θ, 
which denotes the edges of the DAG relating X-M-Y) by multiplying a joint likelihood 
for Y and M with a prior distribution for θ as p(θ|y,m) α p(y,m|θ)p(θ). We defined the 
relationship as causal forward if the sum of the posterior probabilities of complete and 
partial mediation was higher than 0.5, and as reactive if the sum of the posterior prob-
abilities of complete reactive and partial mediation models was higher than 0.5.

To limit potential false positive (FP) causal relationships that may result from imbal-
anced measurement error across M and Y, we simulated normally distributed random 
variables introducing variable error added to M (M’) and Y (Y’). We then detected false 
positive causal reactive and forward mediation, respectively, using percent of variance of 

Progenitor eQTL ∶ expression ∼ distal SNP + 10 MDS of global genotype

+ 10 PCs of global gene expression

Neuron eQTL ∶ expression ∼ distal SNP + 10 MDS of global genotype

+ FACS sorter + 12 PCs of global gene expression
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M explained by X (PVE_A) and the percent of variance of Y explained by M on the odds 
scale (PVE_B) per X-M-Y triplet from the real data. We performed analysis separately for 
each scenario of model flipping: (1) from forward to reactive to detect FP reactives, and (2) 
from reactive to forward to detect FP forwards. After running mediation analysis, we fit-
ted the posterior probabilities supporting forward and reactive models against ICC values 
changed upon application of the error term via local polynomial regression. Following the 
fitting, we attempted to define an ICC threshold at which the model flips from forward to 
reactive or from reactive to forward. To this end, we calculated the distance between the 
two curves corresponding to two models and defined the ICC value that minimized the 
distance if the slope of the wrong model is positive and the slope of the correct model is 
negative relative to ICC values bigger than this threshold (Additional file 1: Fig. S5c). We 
performed this simulation 10 times and averaged ICC threshold values per X-M-Y triplet 
whose corresponding PVE_A and PVE_B values were used during the simulation. We fil-
tered out X-M-Y triplets with ICC for chromatin accessibility was lower than the thresh-
old ICC value for the results supporting the reactive model, respectively. Additionally, we 
retained only X-M-Y triplets with positive ICC values for chromatin accessibility and gene 
expression or both models. We detected that model flipping from reactive to forward was 
only possible when both PVE_A and PVE_B values were bigger than 0.9 (data not shown). 
Since we did not have such large PVE values for X-M-Y triplets tested in our study, we did 
not need to apply this algorithm to limit potential false-positive forwards.

For mediation of gene expression through the expression of a distal gene, each X-M-Y 
triplet where X is a genetic variant that is significantly associated with the expression of 
both genes; M is the gene cis-regulated by X and Y is the gene trans-regulated by X, sim-
ilarly, we applied bmediatR [22]. We used the covariates for eQTL data corresponding 
to population structure and technical factors with the same hyperparameters described 
for mediation through caQTL above. Given that the reactive model was not biologically 
interpretable for trans-regulation, we only considered the forward direction for cau-
sality, and we considered the relationship as causal forward if the sum of the posterior 
probabilities of complete and partial mediation were higher than 0.5.

Regression‑based approach for mediation analysis

We additionally applied a traditional mediation approach with regression analysis to 
detect the mediation of genetic effects on gene expression via chromatin accessibility. 
For each cell type, we established the linear models where ZY and ZM are the covariate 
matrices used for eQTL and caQTL analyses, Mresidualized is chromatin accessibility resid-
ualized by ZM and Yresidualized is gene expression residualized by ZY and tested alternative 
hypothesis H1 below:

For causal forward model:

We performed multiple testing applying a mediation scan strategy as previously described 
[44]. For a causal forward model, per each gene–SNP pairs, we randomly selected chroma-
tin accessibility regions from another chromosome to condition on. Then after permuting 

H0 : Y ∼ X + Zy

H1 : Y ∼ X + Zy +Mresidualized
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the mediator 1000 times for the sample index, we selected the maximum conditional 
p-value (the least significant) from each permutation and fit a generalized extreme value 
distribution (GEV). Finally, we calculated the FWER-controlled mediation p-values using 
the cumulative density function of the GEV and set a significance threshold of 0.05.

To evaluate a forward model with a high partial mediation probability for CHL1 gene 
regulation (Additional file 1: Fig. S2c), we applied a similar strategy. We tested if there 
was any significant association between residualized CHL1 expression by both technical 
covariates and chromatin accessibility at the peak harboring the variant (that was also 
residualized by technical covariates), and peak 1 and 2 chromatin accessibilities, sepa-
rately (that were also residualized by technical covariates).

Replication of ca/eQTL data and mediation analysis in the ROSMAP/xQTL data

To assess the replication of our ca/eQTL data in the ROSMAP/xQTL data [43], we 
initially liftovered the positions of methylation sites and variants from hg19 to hg38. 
Within this dataset, we detected methylation sites or CpG islands harboring the meth-
ylation sites (obtained from Illumina HumanMethylation450 manifest file) overlapped 
with chromatin accessibility peaks in our caQTL data and defined these as overlapping 
regulatory regions. We estimated the fraction of progenitor and neuron primary SNP-
overlapping regulatory region pairs that are non-null associations in adult brain ROS-
MAP methylation QTL data by using the corresponding p-values to SNP-regulatory 
region pairs that were detectable in both datasets via π1 statistics [58]. For the com-
parison of our cell-type-specific eQTL data with adult brain ROSMAP eQTL data, we 
estimated the fraction of progenitor and neuron primary eSNP-eGene pairs that are 
non-null associations in ROSMAP eQTL data (π1) by using the corresponding p-val-
ues to SNP-Gene pairs detectable in both datasets. To demonstrate that the π1 value 
calculated via non-null associations was not by chance, we also randomly sampled an 
equal number of SNP-regulatory region pairs or SNP-gene pairs in ROSMAP data, 
that were not significant associations in cell-type-specific ca/eQTL data. We used the 
qvalue() function with lambda parameters equal to seq(0.2,0.8,0.1) from the qvalue R 
package [97] to estimate π0 value, and calculated π1 which is equal to 1 − π0.

To assess replication of mediation analysis, we extracted variant-methylation site-
gene triplets in ROSMAP/xQTL data, if CIT p-value [59] for causal model (pCausal or 
pCausalM) was lower than a p-value threshold (0.05/m = 2.39 × 10−6, where m is the 
number of tested triplets) and p-value for reactive model (pReactive or pReactiveM) 
was higher than same p-value threshold as described in the ROSMAP/xQTL study 
[43]. If a variant in ROSMAP/xQTL mediation data was in LD (LD r2 > 0.8 computed 
by using our study population) with another variant in the cell-type-specific mediation 
results, we considered these two variants as the same locus.

Replication of cell‑type‑specific trans‑eQTL data in fetal bulk brain

To assess replication, we also compared our cell-type-specific trans-eQTL data to 
trans-eQTLs performed in fetal bulk tissue with a higher sample size (Ndonor = 235) 
[15]. To this end, we tested the association of variants significantly associated with 
cis-eGenes detected in our previous study [14] with the other non-pseudogenes 
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across the genome by using the following model where a random effect was included 
with covariance equal to the kinship matrix K multiplied by the genetic variance:

To evaluate the overlap between two datasets, we applied π1 statistics via the qvalue 
R package with lambda parameters equal to seq(0.1,max(p-values),0.05) (p-values cor-
respond to list of p-values from bulk trans-eQTL data) [97]. We estimated that the frac-
tion of significant progenitor and neuron eSNP-trans (downstream) gene pairs that are 
non-null associations in fetal bulk trans-eQTL data (π1) by using corresponding p-values 
SNP-Gene pairs detectable in both datasets (nSNP-Gene pairs = 34 in progenitors and nSNP-

Gene pairs = 36 in neurons).

GWAS co‑localization analysis

To find eQTLs colocalized with index GWAS loci, we performed LD-thresholded colo-
calization analysis for each cell type separately [98]. We used summary statistics from 
GWAS for schizophrenia (SCZ) [2], major depression disorder (MDD) [99], educational 
attainment (EA) [6], and cortical thickness and surface area from ENIGMA project 
[5], UKBB [4], bipolar disorder (BP) [100], neuroticism [101], IQ [102], cognitive per-
formance (CP) [6], attention-deficit/hyperactivity disorder (ADHD) [103], Alzheimer’s 
disease (AD) [104], and Parkinson’s disease (PD) [105]. We defined index GWAS SNPs 
where two LD-independent GWAS signals so as to have pairwise LD r2 < 0.2 based on 
LD matrix computed with the European population of 1000 Genomes (1000G European 
phase 3) at genome-wide significant threshold p-value (5 × 10–8). Then, we found (1) 
two highly correlated variants (pairwise LD r2 between GWAS and QTL index variant 
was higher than 0.8 based on either our study or European population), and (2) if the 
gene expression/chromatin accessibility was no longer significantly associated with QTL 
index variant upon conditioning on GWAS index variant, these two loci were considered 
co-localized.

Cross‑mappability of genes

We used a pre-computed multi-mapping score from a previous study [96]. For each 
upstream–downstream gene pair, we used symmetric cross-mappability between 
upstream gene (gene A) and downstream gene (gene B) that was calculated as (crossm
ap(A,B) + crossmap(B,A))/2 [96]. We discarded upstream–downstream gene pairs if the 
cross-mappability scores between them were higher than 5 at the log2 scale.

Transcription factor motif analysis

We used motif breaker R to detect the disruption of the transcription motif binding 
site where there was a variant within a chromatin accessibility peak [57]. To detect 
transcription motifs within gene promoters, we used TFBStools [94] with 80% mini-
mum matching score by searching a target sequence within + / − 500 bp window from 
gene TSS.

Fetal bulk brain eQTL ∶ expression ∼ distal SNP + 10 MDS of global genotype

+ 10 PCs of global gene expression
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Additional file 1: Figure S1. Colocalized ca/eQTLs and hyperparameter selection for bmediatR. a) The number 
of variants, chromatin accessible regions and gene expression tested as candidate X-M-Y triplets. b) Proportion of 
shared and unshared candidate X-M-Ytriplets based on the directionality of the genetic effect for each cell-type. c) 
Sum of marginal joint likelihood at different PVE_A, PVE_B and PVE_C hyperparameters at odds scale. Figure S2. ca/
eQTLs at CHL1 and FOXD4L1 loci for each cell type. a) Phenotypevs genotype boxplots per cell-type. b) Association 
of the residualized CHL1 expression by technical covariates and chromatin accessibility at the peak harboring the 
variant residualized by technical covariates with the chromatin accessibility at peak1or peak2residualized by techni-
cal covariates. c) Phenotypevs genotype boxplots per cell-type. Figure S3. Comparison of bayesian and regression-
based mediation analyses. a) Comparison of X-M-Y triplets supporting causal forward model detected by regression-
based vs bmediatR method in progenitorsand neurons. b) Comparison of X-M-Y triplets supporting causal forward 
model detected by regression-based vs bmediatR method in progenitors after they were downsampled. Figure S4. 
Replication of cell-type-specific ca/eQTL data in xQTL ROSMAP data. a) Replication of cell-type-specific caQTLsand 
eQTLsin ROSMAP/xQTL DNA methylation QTL and eQTL data via π1 statistics. π1 was estimated for ROSMAP mQTL/
eQTL data corresponding to primary caQTL/eQTL datawas estimated for randomly sampled ROSMAP mQTL/eQTL 
data. The error bars represent 95% confidence intervals upon bootstrapping of p-values. b) Number of overlaps 
between cell-type-specific mediation analysis and ROSMAP xQTL mediation analysis. c) Genomic tracks illustrating 
association of the variants with DNA methylation and DNAJC15 expression in ROSMAP data, chromatin accessibil-
ity and DNAJC15 expression in progenitors, and chromatin accessibility and DNAJC15 expression in neurons. Data 
points were colored based on the pairwise LD r2 with the rs17553284. The dashed lines indicate p-value threshold 
for significance in each dataset. d) Coverage plot illustrating ATAC-seq reads within the chromatin accessible region 
per genotype. The genomic position of the DNA methylation site and rs17553284 were shown. The right diagram 
illustrates the relationship between rs17553284 and molecular phenotypes. e) Mediation analysis results for ROSMAP, 
progenitor and neuron data at the locus. CIT p-values at -log10 scale for ROSMAP/xQTL data, and bmediatR posterior 
probabilities for cell-type-specific data per model are given on the y-axis. Posterior probabilities of causal reactive 
were set to zero by bmediatR since reactive model priors were not evaluated for mediation via chromatin accessibil-
ity. Figure S5. Measurement error differences between ATAC-seq and RNA-seq and detection of false positive reac-
tive models. a) Intraclass correlation coefficientfor ATAC-seq measured peaks and RNA-seq measured genes in pro-
genitors and in neurons. Unpaired t-test p-values were shown. b) Simulation analysis for model flipping from causal 
forward to causal reactive given the error term on mediator. The impact of ICC, mediated heritability and heritability 
of mediator values on model flipping. Posterior probability of each model was indicated by different colored lines. c) 
Depiction of the algorithm used to eliminate false positive reactive results at a low threshold ICC value. Figure S6. 
Evaluation of causal reactive model at DBX2 locus. a) Genotype vs phenotype boxplots for DBX2 expression and chro-
matin accessibility in progenitors. b) Location of chromatin accessibility within DBX2 gene body, and coverage plot 
for chromatin accessibility across genotypes. c) Mediation scan plot illustrating causal reactive model whereby only 
DBX2 gene expression leads to chromatin accessibility, but not any other genes encoding TFs with matching motifs 
within chromatin accessible region. d) Another variant, rs2731038, within the chromatin accessible region that was 
in LD with rs2731040, showed allele-specific-chromatin accessibility. Padj: Adjusted p-value after ASCA analysis.

Additional file 2: Table S1. Causal forward and reactive mediation results for ca/eQTL colocalizations, and repli-
cated data with ROSMAP/xQTL study.

Additional file 3: Table S2. Causal forward and reactive mediation results for cis/trans eQTL colocalizations.

Additional file 4: Table S3. Colocalization of ca/eSNPs with GWAS.
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