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Abstract 

Background:  Circular RNAs (circRNAs) play a significant role in some diseases by 
acting as transcription templates. Therefore, analyzing the interaction mechanism 
between circRNA and RNA-binding proteins (RBPs) has far-reaching implications for the 
prevention and treatment of diseases. Existing models for circRNA-RBP identification 
usually adopt convolution neural network (CNN), recurrent neural network (RNN), or 
their variants as feature extractors. Most of them have drawbacks such as poor parallel-
ism, insufficient stability, and inability to capture long-term dependencies.

Methods:  In this paper, we propose a new method completely using the self-atten-
tion mechanism to capture deep semantic features of RNA sequences. On this basis, 
we construct a CircSSNN model for the cirRNA-RBP identification. The proposed model 
constructs a feature scheme by fusing circRNA sequence representations with statisti-
cal distributions, static local contexts, and dynamic global contexts. With a stable and 
efficient network architecture, the distance between any two positions in a sequence 
is reduced to a constant, so CircSSNN can quickly capture the long-term dependencies 
and extract the deep semantic features.

Results:  Experiments on 37 circRNA datasets show that the proposed model has 
overall advantages in stability, parallelism, and prediction performance. Keeping the 
network structure and hyperparameters unchanged, we directly apply the CircSSNN to 
linRNA datasets. The favorable results show that CircSSNN can be transformed simply 
and efficiently without task-oriented tuning.

Conclusions:  In conclusion, CircSSNN can serve as an appealing circRNA-RBP iden-
tification tool with good identification performance, excellent scalability, and wide 
application scope without the need for task-oriented fine-tuning of parameters, which 
is expected to reduce the professional threshold required for hyperparameter tuning in 
bioinformatics analysis.
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Introduction
Circular RNA (or circRNA) is a single-stranded RNA with a closed-loop structure [1, 
2]. It is resistant to exonuclease-mediated degradation, and is more stable than most 
linear RNA. Recent studies have shown that circRNA molecules are rich in micro-
RNA (miRNA) binding sites, which act as miRNA sponge (miRNA sponge) in cells 
[3–5], thus relieving the repressive effect of miRNA on its target genes and increasing 
the expression level of target genes. This mechanism of action is known as a com-
petitive endogenous RNA (ceRNA) mechanism. By interacting with disease-associ-
ated miRNAs, circRNA plays a significant role in disease [6–8]. It has been shown 
that circRNA is conducive to the suppression of cancer by binding to some RBPs [9]. 
Therefore, an in-depth analysis of the interaction between circRNAs and RBPs to 
understand the development of tumor biology has a remarkable significance.

Benefiting from the high-throughput sequencing of RNA isolated by crosslinking 
immunoprecipitation (HITS-CLIP, also known as CLIP-Seq) sequencing technology, 
researchers have found there are several RBP binding sites in circRNA in eukaryotes 
[10, 11]. Therefore, many bioinformatic methods have been proposed to predict cir-
cRNA-RBP interactions. For example, inspired by the extraction of image features, 
Wang et al. proposed a circRNA-RBP classification model based on CNN, which uses 
the RBP binding sites on CS-circRNAs to predict its relevance to cancer [12]. Based 
on the capsule network, the CircRB [13] model also utilized convolutional operations 
to extract the features of circRNAs, and leveraged the dynamic routing algorithm 
to classify the binding sites. To introduce temporal information in circRNA-protein 
binding sites, Ju et al. first used CNN to extract features, then combined LSTM with 
conditional random fields and proposed a sequence-tagged deep learning model to 
identify circRNA-protein binding sites [14]. Similarly, Zhang et  al. combined CNN 
and BiLSTM into a hybrid neural network in the CRIP model [15]. They also use CNN 
to extract features and use BiLSTM to capture the temporal information and obtain 
long-term association information. Unlike the methods mentioned above, CRIP used 
a codon-based scheme to encode RNA sequences [15]. Also based on a hybrid deep 
network composed of CNN and BiLSTM networks, Jia et  al. applied XGBoost with 
incremental feature selection to conduct feature encoding and proposed PASSION 
[16] algorithm for circRNA-protein binding site prediction. Drawing on the ideas of 
NLP, Yang et  al. proposed a KNFP (K-tuple Nucleotide Frequency Pattern) encod-
ing scheme to describe local information, and applied word2vec to obtain global 
statistical information. The network architecture in Yang’s model is a hybrid model 
consisting of a multi-scale residual CNN, a BiGRU network and the attention Mecha-
nism [17]. On this basis, Circ2CBA [18] uses a one-hot method to encode circRNA 
sequences and replaces the BiGRU network with BiLSTM. DeCban [19] combines 
CNNs with Attention Networks directly for feature extraction. Li et al. and Niu et al. 
introduced multi-view subspace learning and ensemble neural network into Yang’s 
model, and proposed two models named as DMSK [20] and CRBPDL [21], respec-
tively. The models mentioned above have made impressive improvements in the per-
formance of circRNA-RBP prediction, but there are still limitations in the description 
of global relations. This is because that these methods fail to make full use of the con-
textual information of circRNA sequences.
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To overcome this issue, inspired by the newly proposed BERT(Bidirectional Encoder 
Representations from Transformers) model, Yang et.al first pre-trained a DNABERT 
model [22], then fine-tuned the DNABERT to capture the semantic and syntactic infor-
mation of the initial RNA sequence, and finally used the deep temporal convolutional 
network(DTCN) to predict the circRNA-protein binding sites [23]. Though the existing 
models have made many attempts, from single-view to multi-view, to enrich the diver-
sity of features, they mainly resort to CNN and RNN or a hybrid of them to extract the 
deep features of circRNA, there is still large room for improvements regarding the issues 
such as the poor parallelism of network architecture, inability to flexibly capture long-
term dependencies of features, and insufficient algorithm stability.

In this study, we developed a novel end-to-end circRNA-binding site prediction model 
called CircSSNN (CircRNA-binding site prediction via Sequence Self-attention Neural 
Network). To capture the hierarchical relationship between nucleotide sequences, we 
extract the initial features of circRNA sequence by a scheme of aggregating multiple 
gene encoding, including static local context and dynamic global context information. 
We then use the Transformer to design a network architecture i.e., Seq_Transformer, 
to extract the latent nucleotide dependencies to complete the task of CircRNA-RBP site 
prediction.

In the proposed model, the ResNet and LayerNorm modules are incorporated into the 
deep network to improve the robustness and reduce the sensitivity to hyperparameters, 
which also allows the algorithm to generalize well to different RNA-RBP combination 
recognition tasks. We compared CircSSNN with several state-of-the-art baselines on 
37 popular circRNA benchmark datasets to verify its effectiveness and generalizability. 
Moreover, while keeping the network structure and hyperparameters unchanged, we 
directly applied CircSSNN to 31 linear RNAs datasets, and also obtained better perfor-
mance than existing methods. The experimental results show that CircSSNN is superior 
to existing methods in terms of the recognition performance, and generalizability to dif-
ferent types of RNA-RBP. As such, it can serve as a competing candidate for the task of 
RNA-RBP prediction with a wide range of applications.

Materials and methods
Datasets

To verify the effectiveness of the CircSSNN, we adopted 37 circRNA datasets as bench-
mark datasets following the baselines we compared [15, 16]. We first downloaded the 
datasets from the circRNA interactome database (https://​circi​ntera​ctome.​nia.​nih.​gov/). 
Subsequently, we obtained 335,976 positive samples and 335,976 negative samples fol-
lowing the process of iCircRBP-DHN [17].

To demonstrate the generalizability of CircSSNN regarding different types of RNA-
RBP, we also tested the algorithm on 31 linear RNA datasets [24, 25] coming from CLIP-
Seq data. Each linear RNA dataset has 5000 training samples and 1000 test samples [16].

Feature multi‑descriptors

In CircSSNN, all CircRNA fragments were encoded into three types of quantified fea-
tures: KNFP for expressing different levels of local contextual features, CircRNA2Vec for 

https://circinteractome.nia.nih.gov/
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capturing contextual features representing long-term dependencies, and DNABERT for 
describing the global embedding features with learnable position encoding.

K‑tuple nucleotide frequency pattern

To describe the local dependencies of circRNA sequences, KNFP is used to count the 
word frequency of substrings of circRNA with different lengths, thus the local context 
with varying lengths can be effectively captured [26].

Figure 1 shows the KNFP used in this paper consisting of three parts [17]: mononu-
cleotide composition, dinucleotide composition and trinucleotide composition, i.e., 
k = 1,2,3. Considering a circRNA sequence with length n, i.e., S = [S1, S2, . . . Sn] , in 
which Si ∈ {A,G,C ,U} , K-tuple nt composition can be employed to encode the raw 
sequence to get vector mixed by P1, P2, P3, in which each vector represents an individual 
k-tuple nt composition pattern, and it contains 4 k components as following:

CircRNA2Vec

We adopted the Doc2Vec model [27] to learn the global expression of circRNAs. 
Doc2Vec first obtains the circRNA substrings by moving a sliding window of width ten 
letter each step over the CircRNA sequence, and then tokenizes the obtained substrings 
into circRNA words by using the Circrna corpus from circBase [28].

We used Doc2Vec to learn the distributed expression of circRNA after tokenization. 
Specifically, for a central word wt obtained by tokenization, considering its context 
words wt−k ∼ wt+k , the conditional probability of this central word can be modeled as 
following,

(1)Pk = p1, p2, p3, p4, . . . , p4k

Fig. 1  Encoding scheme of KNFP
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where d is the matrix of the document containing the substring considered, this is the 
difference between Doc2Vec and word2vec [29], i.e., the former considers the informa-
tion of the document [27].

Global embedding features based on CircRNA sequences

BERT is a language model that has achieved great success recently. Based on Trans-
former, BERT trains its network by using unsupervised learning. Different from word-
2vec and Doc2Vec, BERT contains learnable positional parameters and thus can express 
relative position in the context. Pre-training with BERT can obtain well-generalized base 
parameters, which can be applied to a specific task just with corresponding fine-tuning.

Similar to HCRNet [23], we first tokenized a circRNA sequence by k-mer in which k 
is set as 3. Next, we performed fine-tuning on a large amount of circRNA data. Similar 
to the original BERT, this pre-training and fine-tuning strategy will save a lot of training 
time and facilitate the following learning tasks remarkably.

Deep neural network architecture

In this section, we propose the CircSSNN framework to fully exploit the latent repre-
sentation of features and facilitate the subsequent classification tasks. The overall frame-
work of network is shown in Fig.  2. The CircSSNN consists of two parts in total, i.e., 
the feature encoding module and the Sequence Self-Attention Mechanism module. As 
stated above, multiple initial features are extracted from the raw sequence by KNFP, 
CircRNA2vec and DNABERT, and these initial features are first input into the feature 
encoding module to obtain the unified feature sequences, which are subsequently input 
into the next module to extract features with self-attention. The final step of classification 

(2)
1

T

T−k
∑

t=k

logp
(

wt |wt−k , . . . ,wt+k , d
)

Fig. 2  The network framework of the CircSSNN
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is carried out by SoftMax. The experimental flowchart of the CircSSNN is illustrated in 
Fig. 3.

Feature encoding module

The multiple initial features obtained from different feature descriptors have inconsist-
ent channel numbers, magnitudes, magnitude units, etc. Such issues will hinder the later 
analysis. To overcome these issues, data unifying is needed to ensure that the initial fea-
tures share the same form to facilitate the subsequent feature fusion.

We construct the feature encoder layer by CNN to unify the channels of multiple ini-
tial features and conduct data normalization. The feature encoder layer consists of three 
sublayers, i.e., the one-dimensional CNN layer, the one-dimensional BatchNorm layer, 
and the ReLU activation function.

Sequence self‑attention mechanism module

Transformer [30] is a network architecture based on attention mechanisms and aban-
doned traditional CNN and RNN. More precisely, a Transformer module consists only 

Fig. 3  Experimental flowchart of the CircSSNN
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of Self-Attention and Feedforward Neural Network (FNN). This simple architecture 
of the Transformer brings better performance, higher parallelism, and less time-com-
plexity. It has been successfully applied to various fields such as NLP and CV, and many 
researchers [31–33] have incorporated the Transformer as a sub-model and achieved 
impressive success.

We partially adopt the architecture of the Transformer with slight modification as the 
extractor of deep structure, i.e., the Seq_Transformer as shown in Fig. 4.

When constructing a neural network using the Transformer architecture superimpos-
ing multiple sub-layers, either in the encoder or in the decoder, leads to poor informa-
tion propagation through the network, thus making the training very difficult [34, 35]. 
To overcome this issue, we leveraged the residual module to improve the efficiency of 
information propagation and conduct layer normalization to reduce the variance of the 
sub-layers. There are two ways to incorporate layer normalization into the residual net-
work. Let F be a sub-layer (either in the encoder or decoder) in the Transformer archi-
tecture, and denote its parameter set by θl.

Post‑norm

In the pioneering works of the Transformer [30], it is common practice to do residual 
addition followed by Layer Normalization (LN) as follows,

Pre‑norm

In recent years, many researchers [36] prefer to conduct Layer Normalization (LN) on 
the inputs of sublayers rather than the outputs, like this,

The effect of Post-Norm or pre-Norm is comparable for shallow networks. Both meth-
ods can effectively improve the distribution of parameters, which facilitates smooth 
training. However, for a deeper network, it has been pointed out that Pre-norm is bet-
ter than Post-norm [34, 35]. Specifically, for CircSSNN, since DNABERT is used in the 
initial feature extraction and the Seq_Transfomer is designed next, the network is rather 
deep in general. Therefore, for the cirRNA-RBP prediction, which is the task of the pro-
posed model, we argue that the Pre-norm is more effective than the Post-norm. We 

(3)yl = xl + F(xl; θl)

(4)xl+1 = LN(yl)

(5)xl+1 = xl + F(LN(xl); θl)

Fig. 4  The structure of Seq_Transformer
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have empirically demonstrated this point in the ablation experiments in the Section of 
Results.

Theoretically, this phenomenon can be explained by carefully examining of the 
nature of network training. It is well known that the training network is essentially the 
backward propagation of error computed by the loss function and the corresponding 
adjustment of weight parameters of the network according to the error propagation. 
Take a submodule containing L-layers for example, the error back-propagated from 
the next layer is represented by ε, and xL represents the output of the last layer. If the 
Transformer adopts the Post-Norm strategy, according to the chain rule, the partial 
derivative of ε with respect to xL can be calculated for a particular sublayer xl as fol-
lows [35],

where 
∏L−1

k=l
∂LN(yk)

∂yk
 denotes the normalized information which is propagated backward, 

and 
∏L−1

k=l

(

1+ ∂F(xk ;θk )
∂xk

)

 indicates the information which is back-propagated through 

the residual module. Similarly, for the case of the Pre-norm, we can obtain the gradient 
as follows [35],

From Eq. (7), it is easy to find out that the term “1” in the parenthesis enables the direct 
backward propagation of ∂E

∂xL
 from the last layer to the lth layer, i.e., the propagation 

through the residual module no longer depends on the number of layers.
Comparing the calculation of the information propagation of the residual module in 

Eq. (6) and Eq. (7), one can find that in Eq. (6) the information passing through the resid-
ual module does not propagate directly from layer L to layer l. This is because in Post-
norm, the residual connection module is not a real bypass of the layer-normalization 
layer, resulting in a concatenated multiplicative term for the gradient propagation of the 
residual module in Eq. (6), i.e., 

∏L−1
k=l

∂LN(yk)
∂yk

 , in which it can be found obviously, if the 
number of layers goes deeper, this term will suffer from gradient vanishing or exploding.

Therefore, our model is connected by Pre-norm residual blocks [34, 35], and fea-
tures are normalized before passing through the multi-headed self-attention network, 
thus producing a more stable gradient.

The overall process of CircSSNN is as follows. We first extract multiple initial fea-
tures using KNFP, CircRNA2vec, and DNABERT respectively. These initial features 
are then integrated into multi-view fused feature zl, which is divided into two ways 
using the residual connection module as follows,

In Eq. (8), one way of information remained as it was and propagated from right to 
left directly, while the other way of information was first normalized by Pre-norm LN 
before passing through the MHA module. The Pre-norm LN is defined as,

(6)
∂E

∂xl
= ∂E

∂xL
×

L−1
∏

k=l

∂LN
(

yk
)

∂yk
×

L−1
∏

k=l

(

1+ ∂F(xk; θk)
∂xk

)

(7)
∂E

∂xl
= ∂E

∂xL
×

(

1+
L−1
∑

k=l

∂F(LN(xk); θk)
∂xl

)

(8)p = zl +MultiHeadAttention(LN(zl))
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In Eqs. (9–11), M is the number of neurons. Features are extracted using scaled dot-
product multi-head attention to capture contextual features as follows,

In Eqs. (12–14), h is the number of heads, qi, ki and vi, i ∈
{

1, 2, . . . h
}

 denote the query, 
key, and value respectively. Q, K and V indicate the aggregation of multiple qi, ki, and 
vi, respectively. In Eq.  (15), d is the dimension of the input vector. Then, the informa-
tion passing through the MHA module and bypassing it are added together to get p as 
described in Eq. (8). Similarly, before the information passes through the FFN module, 
it is also processed by Pre-norm LN. In this way, the input information is finally turned 
into a unified structured deep feature to conduct the subsequent classification.

From the network architecture of CircSSNN, one can find it differs from the existing 
models in two aspects.

First, to the best of our knowledge, this is the first attempt to introduce the residual 
module with Pre-norm LN in CircRNA recognition. As stated in [34, 35], the residual 
module with Post-norm LN brought about a higher risk of gradient vanishing or explod-
ing when the network goes deeper. Therefore, we adopt the Pre-norm LN scheme to 
avoid this problem while using the residual connection to improve the efficiency of 
information transmission.

Second, we proposed the Seq_Transformer module based on self-attention to extract 
temporal contextual features. Most of the existing works proposed for CircRNA-RBP 
prediction, such as DMSK [20], CRBPDL [21], iCircRBP-DHN [17], and CRIP, etc., 
mainly use RNN such as LSTM or GRU for capturing temporal dependence. However, 
the computation of RNN or its variants is sequential, i.e., calculatiing results of time step 
t must depend on that of time step t-1, which dramatically limits the parallelism. In addi-
tion, long-term dependency is prone to loss during propagation along the sequential 

(9)µ = 1

M

M
∑

i=1

zi

(10)σ 2 = 1

M

M
∑

i=1

(zi − µ)2

(11)ẑ = z − µ√
σ 2 + ǫ

⊙ γ + β � LNγ,β(z)

(12)Q = Concat(q1, . . . , qh)

(13)K = Concat(k1, . . . , kh)

(14)V = Concat(v1, . . . , vh)

(15)MultiHeadAttention(Q,K ,V ) = softmax

(

QKT

√
d

)

V

(16)zs = p+ FFN(LN(p))
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RNN network. LSTM and GRU adopted some gating mechanisms to mitigate this 
problem to a certain extent, but the effectiveness of gating mechanisms is undesirable 
for long-term dependencies. Therefore, compared with the models based on the Self-
Attention mechanism, these models suffer from insufficient parallelism and poor abil-
ity to capture long dependencies. However, the attention mechanism has seldom been 
employed to extract features directly in this field. Up to now, only Yang et al. used the 
Attention mechanism in the iCircRBP-DHN model they proposed in 2020. But in iCir-
cRBP-DHN, the attention mechanism was not employed as a direct feature extractor but 
as a supplement to the GRU mechanism, i.e., iCircRBP-DHN use the attention modules 
to capture features after GRU processing, which to some extent destroys the dependency 
relationship of the original data and makes the Attention mechanism play little role. In 
their subsequent work, i.e., the HCRNet proposed in 2022, they omitted the attention 
mechanism. In HCRNet, Yang et al. used DTCN to extract discriminative information 
from hybrid features and combine the parallelism of CNN with residual connection, and 
thus making various perceptual field sizes available and gradients stable. DTCN alleviates 
the limitations of RNN regarding to parallelism to some extent. However, it is still lim-
ited by the fixed perceptual field size of CNN, and the two issues of existing models, i.e., 
insufficient parallelism and inefficiency in capturing long-term dependencies, still exist. 
In contrast, in CircSSNN, after the initial multiple features were integrated into a unified 
one, feature extraction is performed directly using Seq_Transformer without interme-
diate processing by RNN or its variants. As a result, we solved the above two issues by 
adopting the Seq_Transformer. The advantages of Seq_Transformer can be analyzed as 
follows. First, it is constructed based on the Attention mechanism rather than sequen-
tial structure, so its calculation can be performed in the format of matrix multiplication, 
which can be easily parallelized and accelerated by modern deep learning frameworks 
based on GPUs. Second, by using the Seq_Transformer, the distance between any two 
positions in the sequence can be reduced to a constant, and long-term dependence can 
be effectively captured. In addition, due to the excellent parallelism of the Seq_Trans-
former, we can make the full use of multi-headed attention to focus on contextual infor-
mation from different locations simultaneously. Therefore, the deep structure features 
extracted by the Seq_Transformer have good classification performance.

Results
Experimental setting

For both circRNA and linRNA datasets, 80% of the samples were randomly selected as 
training data. The remaining 20% of them were used as test data. To show the generaliz-
ability of CircSSNN rather than the performance improvement brought by hyperparam-
eter tuning, we didn’t set validation sets for hyperparameter tuning in experiments. The 
hyperparameters of CircSSNN were set to be the same across all datasets, which elimi-
nates the trouble of hyperparameters tuning.

We used Adam as the optimizer, and set the parameters weight_decay and batch_size 
as 3e-4 and 64 respectively. The learning rate of Adam was controlled by the built-in 
learning rate scheduler of Pytorch in which the parameter initial_rate was set to be 3e-3. 
As the Seq_Transformer can capture deep features effectively and quickly, we let the 
learning rate decay to one-tenth every two rounds to accelerate the convergence.
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Experimental results on circRNA datasets

We compared the CircSSNN with seven baselines on 37 circRNA-RBP datasets. To be 
fair, all the parameters were set as reported in the corresponding papers.

Four metrics including AUC, ACC, precision, and recall, were used to compare the 
performance of the competing methods. The performances of all methods, averaging 
over 37 circRNA datasets, were shown in Fig. 5. In Fig. 5, the colors of the solid cir-
cles correspond to the performance of each algorithm with respect to a certain met-
ric, and these numbers can be obtained by looking at the color bars on the right side 
of Fig. 5, e.g., the green solid circle in the fourth row of the last column (from top to 
bottom) represents the performance of the PASSION model with respect to recall, 
which is about 80% (the third block in the color bar). The size of the circles indicates 
the ranking of the performances, i.e., the largest circle of size 5 corresponds to the 
best algorithm for each metric, while the smallest circle of size 1 corresponds to the 
worst one. Take the last column as an example again, since the Recall of CircSSNN, 
HCRNet and iCircRBP all are around 85% (the same color), but the size of the solid 
circles gives their ranking, i.e., in terms of recall, CircSSNN has the best performance 
among the three algorithms and iCircRBP has the worst performance.

As can be seen from Fig. 5, the performance of CircSSNN is superior to all compet-
ing methods regarding to AUC and Recall, and is slightly inferior to HCRNet regard-
ing ACC and Precision, but is higher than the other six methods by a large margin. 
The detailed average value of different methods regarding ACC, AUC, Precision and 
recall are 85.71%, 93.07%, 85.14%, 86.69% for CircSSNN; 85.81%, 93.04%, 85.68%, 
86.35% for HCRNet. As the performances of other baselines are obviously by far infe-
rior to that of the two methods mentioned above, we don’t list them here for simplic-
ity. The detailed AUC values are summarized in Table 1.

Apparently, CircSSNN outperformed other competing baselines on 18 out of 37 
circRNAs datasets, and produced the highest average AUC of 93.1%. The number of 
samples in each the 37 benchmark datasets ranges from 892 to 40,000, which vali-
dates that CircSSNN is applicable for datasets with an extensive range of scales. Even 
for small-scale datasets, CircSSNN still achieved competing performance.

Fig. 5  The average performance of competing methods on 37 circRNA datasets
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To demonstrate the stability of the CircSSNN, we selected a moderate-scale dataset 
TIAL1 with 10,912 samples, and repeated the test of the top two models, i.e., CircSSNN 
and HCRNet, ten times on TIAL1. The fluctuation of performance was illustrated in 
Fig. 6. In Fig. 6, the curve of CircSSNN fluctuated more mildly than that of the HCRNet. 
It further illustrated that the Seq_Transformer used in the CircSSNN was more flexible, 
and less affected by sample randomness, and the features extracted by the Seq_Trans-
former are more stable.

To compare the efficiency and parallelism of the CircSSNN and HCRNet, we trained 
the two models on 37 circRNA datasets ten times with the same hardware and software 
configuration, and the results showed the average training times of the two models are 

Table 1  The AUC of competing methods on 37 circRNA datasets

Dataset CircSSNN HCRNet CRBPDL iCircRBP-
DHN

DeCban PASSION CircRB circ2CBA

AGO1 0.92 ± 0.004 0.929 ± 0.017 0.9232 0.898 ± 0.003 0.873 0.909 ± 0.003 0.750 ± 0.003 0.9009

AGO2 0.847 ± 0.037 0.856 ± 0.236 0.8233 0.797 ± 0.004 0.846 0.822 ± 0.003 0.624 ± 0.008 0.8029

AGO3 0.949 ± 0.006 0.941 ± 0.034 0.9472 0.920 ± 0.016 0.89 0.909 ± 0.008 0.718 ± 0.004 0.9105

ALKBH5 0.99 ± 0.033 0.989 ± 0.013 0.9952 0.979 ± 0.004 0.919 0.752 ± 0.030 0.593 ± 0.009 0.7696

AUF1 0.987 ± 0.003 0.988 ± 0.013 0.981 0.985 ± 0.002 0.959 0.979 ± 0.003 0.938 ± 0.003 0.9888

C17ORF85 0.982 ± 0.05 0.981 ± 0.047 0.9881 0.987 ± 0.002 0.915 0.860 ± 0.021 0.634 ± 0.021 –

C22ORF28 0.947 ± 0.073 0.936 ± 0.101 0.9088 0.913 ± 0.004 0.877 0.894 ± 0.008 0.731 ± 0.005 –

CAPRIN1 0.912 ± 0.007 0.904 ± 0.006 0.8765 0.858 ± 0.012 0.887 0.860 ± 0.009 0.685 ± 0.002 –

DGCR8 0.915 ± 0.054 0.917 ± 0.305 0.9236 0.906 ± 0.002 0.847 0.917 ± 0.002 0.770 ± 0.002 –

EIF4A3 0.847 ± 0.03 0.848 ± 0.035 0.853 0.799 ± 0.003 0.819 0.823 ± 0.004 0.662 ± 0.002 –

EWSR1 0.955 ± 0.011 0.949 ± 0.086 0.9443 0.942 ± 0.004 0.938 0.938 ± 0.006 0.805 ± 0.004 –

FMRP 0.925 ± 0.027 0.933 ± 0.02 0.8966 0.892 ± 0.002 0.845 0.900 ± 0.002 0.737 ± 0.001 –

FOX2 0.962 ± 0.005 0.961 ± 0.136 0.9618 0.958 ± 0.005 0.936 0.830 ± 0.034 0.535 ± 0.003 –

FUS 0.888 ± 0.002 0.888 ± 0.008 0.8618 0.855 ± 0.004 0.842 0.859 ± 0.002 0.697 ± 0.004 –

FXR1 0.995 ± 0.013 0.984 ± 0.019 0.9948 0.994 ± 0.001 0.934 0.959 ± 0.009 0.838 ± 0.015 0.9579

FXR2 0.966 ± 0.043 0.96 ± 0.023 0.9518 0.939 ± 0.009 0.909 0.941 ± 0.003 0.774 ± 0.003 –

HNRNPC 0.973 ± 0.002 0.981 ± 0.002 0.9771 0.977 ± 0.001 0.97 0.976 ± 0.001 0.941 ± 0.003 –

HUR 0.908 ± 0.011 0.906 ± 0.009 0.8758 0.867 ± 0.005 0.841 0.879 ± 0.006 0.666 ± 0.001 0.8741

IGF2BP1 0.889 ± 0.019 0.886 ± 0.021 0.8554 0.843 ± 0.002 0.859 0.845 ± 0.003 0.679 ± 0.003 –

IGF2BP2 0.871 ± 0.004 0.875 ± 0.082 0.8426 0.831 ± 0.004 0.886 0.827 ± 0.009 0.644 ± 0.009 –

IGF2BP3 0.867 ± 0.006 0.871 ± 0.298 0.8229 0.816 ± 0.004 0.867 0.831 ± 0.003 0.635 ± 0.004 –

LIN28A 0.897 ± 0.014 0.901 ± 0.071 0.8751 0.857 ± 0.007 0.871 0.875 ± 0.005 0.671 ± 0.003 –

LIN28B 0.919 ± 0.038 0.912 ± 0.178 0.9014 0.892 ± 0.004 0.893 0.889 ± 0.005 0.731 ± 0.003 –

METTL3 0.892 ± 0.147 0.901 ± 0.365 0.8649 0.852 ± 0.009 0.918 0.878 ± 0.010 0.731 ± 0.006 –

MOV10 0.87 ± 0.207 0.866 ± 0.498 0.8674 0.838 ± 0.006 0.958 0.845 ± 0.005 0.698 ± 0.004 –

PTB 0.854 ± 0.042 0.851 ± 0.096 0.8347 0.822 ± 0.006 0.873 0.829 ± 0.004 0.663 ± 0.002 –

PUM2 0.974 ± 0.053 0.979 ± 0.041 0.9758 0.970 ± 0.004 0.959 0.952 ± 0.004 0.854 ± 0.001 –

QKI 0.988 ± 0.005 0.989 ± 0.013 0.9879 0.971 ± 0.006 0.933 0.927 ± 0.005 0.807 ± 0.006 –

SFRS1 0.981 ± 0.001 0.979 ± 0.002 0.9684 0.964 ± 0.000 0.891 0.965 ± 0.003 0.836 ± 0.003 –

TAF15 0.996 ± 0.001 0.996 ± 0.003 0.9945 0.992 ± 0.002 0.925 0.967 ± 0.002 0.883 ± 0.006 0.9851

TDP43 0.932 ± 0.043 0.939 ± 0.058 0.9336 0.926 ± 0.002 0.964 0.934 ± 0.002 0.829 ± 0.004 –

TIA1 0.982 ± 0.091 0.972 ± 0.009 0.9666 0.961 ± 0.004 0.967 0.935 ± 0.006 0.827 ± 0.008 –

TIAL1 0.936 ± 0.067 0.921 ± 0.241 0.9249 0.917 ± 0.003 0.965 0.906 ± 0.003 0.820 ± 0.004 –

TNRC6 0.952 ± 0.016 0.953 ± 0.124 0.9797 0.967 ± 0.002 0.925 0.785 ± 0.010 0.550 ± 0.017 –

U2AF65 0.934 ± 0.036 0.932 ± 0.104 0.9306 0.926 ± 0.002 0.931 0.930 ± 0.002 0.787 ± 0.003 –

WTAP 0.973 ± 0.007 0.983 ± 0.86 0.9713 0.967 ± 0.006 0.934 0.794 ± 0.069 0.621 ± 0.025 –

ZC3H7B 0.855 ± 0.06 0.863 ± 0.021 0.8151 0.804 ± 0.003 0.909 0.804 ± 0.005 0.634 ± 0.006 –

AVG 0.931 ± 0.054 0.93 ± 0.071 0.9188 0.908 ± 0.060 0.9047 0.884 ± 0.060 0.729 ± 0.102 –
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10 h and 13 h, respectively, which showed that CircSSNN was more efficient and paral-
lelizable. The reason is that the Seq_transformer used in the CircSSNN is entirely based 
on the attention mechanism, which converts data into Query, Key, and Value at the same 
time, and thus facilitates the parallel retrieval of feature information.

To demonstrate the advantage of Pre-norm over Post-norm, we kept the other mod-
ules of the CircSSNN unchanged, and compared the effect of Pre-norm and Post-norm 
on 37 circRNA datasets. In Fig. 7, the blue bar represents the performance of the Circ-
SSNN with the Post-norm strategy, while the red bar represents the performance of the 
Pre-norm. As shown in Fig. 7, the Pre-norm strategy brings performance gains on 36 out 
of 37 datasets, with an increase of more than two percents on about half of the datasets.

Fig. 6  Comparison of the stability of HCRNet

Fig. 7  Comparison of the effect of pre-norm and post-norm on 37 circRNA datasets
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Finally, to demonstrate that the proposed feature fusion scheme is more effective than 
a single feature descriptor, ablation experiments were conducted while keeping other 
modules (except the feature descriptors modules) unchanged, and the results were plot-
ted as violin plots, as shown in Fig. 8. It can be seen that, in terms of the AUC values of 
the proposed algorithm on 37 circRNA datasets, the distribution of the results obtained 
by the feature fusion scheme is more concentrated compared to that of a single feature 
descriptor, and the mean AUC values obtained by the feature fusion scheme are also the 
largest. The performance of the two descriptors, KNFP and CircRNA2Vec, varies obvi-
ously across different datasets, while the results of DNABert descriptors are more evenly 
distributed compared to the previous two, but its performance is also slightly inferior 
compared to the results of the feature fusion scheme. From Fig. 8, it can be seen that fea-
ture fusion scheme makes full use of the consistent and complementary information of 
each view and obtains excellent overall performance.

The prediction performance of CircSSNN on linear RNA datasets

The CircSSNN is highly transformable, and can be applied to other types of RNA-RBP pre-
diction tasks without hyperparameters tuning. To verify this, we tested the CircSSNN and 
the baselines on 31 linear RNA datasets, and the results were shown in Fig. 9. As shown 
in Fig.  9, without hyperparameters tuning, the CircSSNN achieved favorable perfor-
mance over other state-of-the-art baselines, which demonstrated the CircSSNN was stable 
and transformable. The detailed value of AUC was listed in Table 2. Because the models 
designed for the cirRNA datasets, such as HCRNet and iCircRBP-DHN, do not specify 
the necessary details of operation and parameter settings for migrating them from the cir-
RNA dataset to the linRNA dataset, we cannot reproduce the results of these models in our 
experiments, and just list in Table 2 the AUC values published in their original papers for 
comparison. However, as can be observed in Fig. 9 and Table 2, even though compared with 
their results which were produced after fine-tuning of hyperparameters with validate sets, 
the results of the CircSSNN, which was obtained without hyperparameters tuning, still out-
performed these models in most cases. In detail, the proposed CircSSNN achieved the best 
AUC on 21 out of the 31 linear RNA datasets, and the average value of AUC is 0.931, which 

Fig. 8  Comparison of the effect of different feature descriptors
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is 0.7 percent higher than that of the HCRNet. In some datasets, the CircSSNN outper-
forms the HCRNet quite a bit, for example, the AUC of the CircSSNN is 4.5 and 3.6 percent 
higher than the HCRNet on the hnRNPL 1 dataset and the hnRNPL-2 dataset, respectively. 
Therefore, even directly keeping unchanged the network architecture and parameters 
designed for circRNA datasets, the CircSSNN can still produce competitive results when 
applied to linear RNA datasets.

In addition, to investigate the transformability of different methods, we also compared 
the CircSSNN and the HCRNet, the newest and most representative algorithm, on linear 
RNA with their hyper-parameters setting on CircRNA. The experimental results on the 31 
linear RNA benchmark datasets are shown in Fig. 10.

As shown in Fig. 10, when both the CircSSNN and the HCRNet were tested on the lin-
RNA datasets with their hyper-parameters settings on the CircRNA datasets, the Circ-
SSNN outperformed the HCRNet about two, two and six percent regarding ACC, AUC, 
and Precision, respectively, while just slightly inferior to HCRNet regarding Recall by 
0.7 percent. These results verified that the CircSSNN was more transformable than the 
HCRNet, and was able to obtain favorable results even without hyperparameter tun-
ing. The AUC of the HCRNet was reported as 0.924 in its original paper, which was the 
result obtained by fine-tuning the hyperparameters with validate sets, but it dropped to 
0.91 when no task-oriented fine-tuning of hype-parameters was conducted. Therefore, 
although HCRNet also achieved good performance on the linRNA datasets, the tuning 
of its hyperparameters requires expertise and a lot of trial and error, which is not condu-
cive to generalization. In contrast, CircSSNN can be simply and efficiently transformed 
to other RNA-RBP identification tasks and has a wide range of applications.

Discussion
The above experimental results verify the Seq_transformer adopted in the CircSSNN 
can effectively capture the semantic and global context of sequences and produce dis-
criminative features, and the CircSSNN is more parallelable, stable and transformable 
than other baselines.

Fig. 9  Boxplot comparison results of different models on 31 linear RNA datasets regarding to AUC​
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Compared with existing methods, the CircSSNN network architecture proposed in 
this paper can achieve excellent performance for the following two reasons: First, after 
integrating data from multiple views, directly use Seq_Transformer and make full use of 
multiple attention to simultaneously pay attention to contextual information from dif-
ferent locations to extract deep features. Without intermediate processing by RNNs or 
their variants. The distance between any two positions in the sequence can be reduced to 
a constant, effectively capturing long-term dependencies. Second, the Pre-norm based 
attention mechanism first applied to CircRNA recognition task can avoid the gradient 
disappearance or explosion risk brought by deep network, so that network training can 
obtain more stable gradient update.

Although the improvement of the CircSSNN over the HCRNet was not very remark-
able, the HCRNet needed to tune its hyperparameters by validation sets, which is 

Table 2  Average value of AUC obtained by different methods on 31 linear RNA datasets

The top-2 results of every column are highlighted in bold

Dataset CircSSNN HCRNet iCircRBP-DHN CRIP CSCRSites CircSLNN CircRB

AGO1234 0.907 0.909 0.788 0.737 0.708 0.662 0.588

AGO2-M 0.825 0.809 0.736 0.598 0.583 0.557 0.538

Binding_1 0.968 0.967 0.925 0.862 0.842 0.795 0.588

Binding_2 0.972 0.959 0.929 0.852 0.828 0.754 0.676

AGO2 0.805 0.804 0.800 0.638 0.636 0.562 0.609

eIF4AIII_1 0.975 0.970 0.963 0.952 0.937 0.894 0.769

eIF4AIII_2 0.979 0.973 0.963 0.954 0.944 0.897 0.775

ELVAL1-1 0.956 0.946 0.939 0.918 0.910 0.882 0.808

ELVAL1-M 0.807 0.825 0.695 0.604 0.581 0.520 0.525

ELVAL1-A 0.937 0.938 0.922 0.898 0.876 0.845 0.762

ELVAL1-2 0.966 0.954 0.943 0.926 0.925 0.898 0.784

EWSR1 0.943 0.937 0.918 0.912 0.884 0.851 0.765

FUS 0.949 0.951 0.947 0.941 0.907 0.905 0.791

mut-FUS 0.960 0.961 0.946 0.939 0.907 0.907 0.760

IGF2BP1-3 0.891 0.888 0.781 0.693 0.703 0.597 0.523

hnRNPC-1 0.973 0.965 0.952 0.963 0.936 0.935 0.862

hnRNPC-2 0.987 0.980 0.974 0.985 0.967 0.962 0.863

hnRNPL-1 0.891 0.842 0.829 0.748 0.650 0.670 0.584

hnRNPL-2 0.836 0.800 0.761 0.740 0.636 0.654 0.583

HnRNPL-L 0.835 0.824 0.779 0.685 0.632 0.636 0.555

MOV10 0.932 0.919 0.885 0.814 0.803 0.764 0.588

NSUN2 0.913 0.898 0.832 0.865 0.798 0.776 0.672

PUM2 0.969 0.977 0.969 0.963 0.959 0.920 0.814

QKI 0.963 0.971 0.962 0.967 0.956 0.929 0.818

SFRS1 0.939 0.941 0.912 0.886 0.885 0.794 0.659

TAF1S 0.966 0.972 0.971 0.963 0.922 0.925 0.796

TDP-43 0.961 0.948 0.928 0.911 0.913 0.841 0.762

TIA1 0.966 0.955 0.945 0.930 0.891 0.894 0.817

TIAL1 0.941 0.928 0.915 0.898 0.864 0.847 0.804

U2AF65 0.981 0.978 0.971 0.968 0.918 0.932 0.852

Y2AF65 0.961 0.962 0.951 0.935 0.906 0.893 0.792

Avg 0.931 0.924 0.895 0.860 0.832 0.803 0.712
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time-consuming and laborious. In contrast, the CircSSNN used the same set of hyper-
parameters for all datasets, i.e., it didn’t need validation sets to fine-tune the hyperpa-
rameters, which demonstrated that the CircSSNN was more flexible and insensitive to 
hyperparameters. This appealing characteristic made it easier to use, especially for non-
computer professionals.

Conclusion
At present, most existing models for circRNA-RBP identification adopt CNN, RNN or 
their variant as feature extractors and have drawbacks such as poor parallelism, insuf-
ficient stability, and inability to capture long-term dependence. We propose the Circ-
SSNN model based on the sequence self-attention mechanism. The CircSSNN extract 
deep features completely by the self-attention mechanism with good parallelism and can 
capture the long-term dependencies by reducing the distance between any two posi-
tions in a sequence to a constant. Multiple experiments on 37 circRNAs datasets and 
31 linRNAs datasets using the same hyperparameters show that the CircSSNN achieves 
excellent performance, has good stability and scalability, and eliminates the problem of 
hyperparameters tuning compared with existing models. In conclusion, CircSSNN can 
serve as an appealing option for the task of circRNA-RBP identification.
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