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Abstract

For several decades, few substantial therapeutic advances have been made for patients with
acute myeloid leukaemia. However, since 2017 unprecedented growth has been seen in the
number of drugs available for the treatment of acute myeloid leukaemia, with several new
drugs receiving regulatory approval. In addition to advancing our therapeutic armamentarium,
an increased understanding of the biology and genomic architecture of acute myeloid leukaemia
has led to refined risk assessment of this disease, with consensus risk stratification guidelines
now incorporating a growing number of recurrent molecular aberrations that aid in the selection
of risk-adapted management strategies. Despite this promising recent progress, the outcomes of
patients with acute myeloid leukaemia remain unsatisfactory, with more than half of patients
ultimately dying from their disease. Enrolment of patients into clinical trials that evaluate novel
drugs and rational combination therapies is imperative to continuing this progress and further
improving the outcomes of patients with acute myeloid leukaemia.

Introduction

Acute myeloid leukaemia is a malignant disorder of haemopoietic stem cells characterised
by clonal expansion of abnormally differentiated blasts of myeloid lineage. Consequences of
this proliferation of immature myeloid cells include accumulation of immature progenitors
(blasts) with impairment of normal haemopoiesis, leading to severe infections, anaemia,

and haemorrhage. Some patients might also present with extramedullary disease, including
involvement of the CNS. Prompt diagnosis and initiation of acute myeloid leukaemia
directed therapy is imperative, especially when rapid proliferation of malignant blasts is
accompanied by tumour lysis syndrome or disseminated intravascular coagulation, both of
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which can be rapidly fatal without aggressive supportive management and treatment of the
underlying acute myeloid leukaemia.2

This Seminar provides an overview of the most recent advances in genomics,
prognostication, and therapeutics for acute myeloid leukaemia. We aim to provide an
understanding of the complex interactions of disease-related and patient-related factors that
both affect outcomes of patients with acute myeloid leukaemia and help to guide therapeutic
decisions. In light of recent regulatory approval of several promising new drugs for acute
myeloid leukaemia, we focus on how they have altered the therapeutic algorithm for patients
with acute myeloid leukaemia and on their therapeutic strategies.

Epidemiology

Acute myeloid leukaemia is the most common acute type of leukaemia in adults, accounting
for 1-3% of new cancer cases in the USA and affecting an estimated 0-5% of the population
at some point in their lifetime.3 Although acute myeloid leukaemia can occur in any

age group, acute myeloid leukaemia is predominantly a disease in older adults, with a
median age at diagnosis of 68 years. The incidence of acute myeloid leukaemia is rising,
partly due to an increasing prevalence of therapy-related acute myeloid leukaemia as

more patients with cancer treated with cytotoxic chemotherapy are cured of their primary
malignancy.* Several genetic and environmental risk factors have been identified that
predispose individuals to the development of acute myeloid leukaemia (appendix). Germline
predisposition to acute myeloid leukaemia might be more common than previously thought,
although, despite a robust history and genomic testing, most patients still do not have a clear
predisposing factor for acute myeloid leukaemia.® History of antecedent haematological
disorders, including the myelodysplastic syndromes or myeloproliferative neoplasms, is
also associated with a substantially increased likelihood of progression of acute myeloid
leukaemia.5”

Pathogenesis

Advances in stem cell biology and large, comprehensive genomic analyses have greatly
improved our understanding of the mechanisms by which acute myeloid leukaemia
develops. Although leukaemogenesis is still incompletely understood, acute myeloid
leukaemia is believed to originate from the oncogenic transformation of a haemopoietic stem
cell or of progenitors that have reacquired stem cell-like properties of self-renewal & The
resultant self-renewing leukaemic stem cell is capable of maintaining the malignant clone.
These leukaemic stem cells are both rare and quiescent, making them particularly resistant
to cytotoxic chemotherapy and contributing to relapse.® Progenitors from leukaemic stem
cells undergo further genetic events, leading to karyotypic and molecular heterogeneity of
the bulk leukaemic population, with multiple coexisting, competing clones present at the
time of diagnosis.19-12 However, of note, the pathogenesis of acute myeloid leukaemia

is probably quite different between subtypes of acute myeloid leukaemia;13 therefore, no
singular model of pathogenesis is likely to account for all cases.
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Specific mutations occur early in leukaemogenesis and might provide a selective advantage
for clonal expansion of haemopoietic stem cells and eventual progression to acute myeloid
leukaemia. In particular, epigenetic mutations of DNMT3A, TETZ, and ASXL1 have

been identified in preleukaemic haemopoietic stem cells decades before the development

of acute myeloid leukaemia, suggesting that these are early founder events that precede
leukaemogenic transformation.1415 Expanded clones containing these somatic mutations
can be identified in the peripheral blood or bone marrow of patients without evidence of
overt haematological malignancy. This is a newly defined entity called clonal haemopoiesis
of indeterminate potential (CHIP).18 CHIP has been identified in 10% of patients older

than 65 years of age, with an incidence that increases with age, and predisposes to

acute myeloid leukaemia and other haematological malignancies, including myelodysplastic
syndromes.1718 Notably, the rate of transformation of CHIP into overt haematological
disease is about 0-5-1% per year.1® Through incompletely understood mechanisms, CHIP is
also associated with an increased risk of atherosclerotic cardiovascular disease.18:19

In roughly 10% of patients with acute myeloid leukaemia, the development of the

disease is preceded by exposure to cytotoxic chemotherapy (particularly alkylating agents
or topoisomerase inhibitors) or ionising radiation, usually as treatment for a primary
malignancy. In some cases, direct genotoxic effects from chemotherapy or irradiation can
serve as the leukaemogenic event, directly leading to the development of acute myeloid
leukaemia. However, emerging data suggest that some patients harbour CHIP before
treatment for their primary malignancy and that these patients are at increased risk for the
development of therapy-related myeloid neoplasms such as acute myeloid leukaemia.20-21
Some somatic mutations associated with these clones (eg, 7P53 mutations, which are
present in up to 37% of therapy-related myeloid neoplasms?2) are relatively resistant to
chemotherapy and, therefore, have a competitive advantage over healthy haemopoietic
stem cells when exposed to cytotoxic drugs. These mutations have been hypothesised to
be enriched in the post chemotherapy bone marrow and, in the case of 7P53 mutations,
contribute to genomic instability and the acquisition of new leukaemogenic mutations during
regenerative haemopoiesis.??

Genomics

Acute myeloid leukaemia is characterised by several recurrent mutations that affect disease
biology and phenotype, response to therapy, and risk of subsequent relapse (table 1).24 Great
strides have been made in understanding the genomic diversity of acute myeloid leukaemia
and how these various aberrations interact to affect disease phenotype and prognosis.25:26
Although the number of mutations per acute myeloid leukaemia genome or exome is lower
than for most other cancers,2” with an average of only five recurrent mutations per acute
myeloid leukaemia genome,!1 at least one driver mutation can be identified in 96% of
patients with de-novo acute myeloid leukaemia, and 86% of patients have two or more
driver mutations.2® Tremendous diversity exists in the overlap of these mutations and the
subclonal genomic architecture of the disease. In addition to informing prognosis, some of
these mutations serve as potential targets for acute myeloid leukaemia directed therapies.28
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As conventional cytogenetics have an established prognostic impact for acute myeloid
leukaemia, consideration of both karyotype and mutations is necessary, to classify

acute myeloid leukaemia subtypes in a clinically meaningful way. To further refine
prognostication of acute myeloid leukaemia, a large, comprehensive analysis of acute
myeloid leukaemia genomics was done using targeted sequencing of 1540 patients with
acute myeloid leukaemia.2® By incorporating cytogenetic analysis into genomic profiling, 11
mutually exclusive subtypes of acute myeloid leukaemia were identified, unambiguously
classifying 80% of patients into distinct disease subgroups. In addition to eight well
established acute myeloid leukaemia subsets, defined by gene fusions or the presence of

an NPM1 mutation or biallelic CEBPA mutations, three new heterogeneous subtypes of
acute myeloid leukaemia were defined. These groups included acute myeloid leukaemia
with mutations of genes regulating RNA splicing (eg, SRSF2and SF3B1), chromatin (eg,
ASXLI), or transcription (eg, RUNXZ), acute myeloid leukaemia with mutation of 7P53or
cytogenetically visible copy number alterations, and, provisionally, acute myeloid leukaemia
with /DHZR12 mutation. Further studies are needed to confirm the prognostic significance
of these novel acute myeloid leukaemia subgroups and their justification as distinct disease
entities.

Diagnosis

A diagnosis of acute myeloid leukaemia requires identification of 20% or more myeloid
blasts (eg, myeloblasts, monoblasts, or megakaryoblasts) with morphological assessment
of the peripheral blood or bone marrow. Exceptions to this blast cutoff, in which acute
myeloid leukaemia can still be diagnosed, include isolated extramedullary acute myeloid
leukaemia (ie, myeloid sarcoma) or the presence of recurrent karyotypic or molecular
aberrations that are pathognomonic for acute myeloid leukaemia. These acute myeloid
leukaemia-defining genomic changes consist of t(8;21) forming the RUNX1-RUNXIT1
fusion and inv(16) or t(16;16) forming CBFB-MYH11, which define core-binding factor
acute myeloid leukaemia, and the t(15;17) fusion gene PML-RARA, which defines acute
promyelocytic leukaemia.

In addition to morphological assessment of peripheral blood and bone marrow,
immunophenotyping by flow cytometry3 is used at the time of diagnosis to confirm the
myeloid origin of malignant blast populations and to aid in further categorisation of acute
myeloid leukaemia subtype. Cytogenetic analysis and screening for commonly occurring
gene mutations and rearrangements should also be done. Such screening is necessary,
because, although some myeloid neoplasms are characterised primarily by morphological
and immunophenotypic assessment, the 2016 WHO update recognises 11 acute myeloid
leukaemia subgroups defined by the presence of specific recurrent genetic abnormalities,
including balanced translocations, gene fusions, or single molecular mutations.4® Further
to testing for NPM1, CEBPA, and RUNX1, which each define specific acute myeloid
leukaemia subtypes, additional genomic testing for FL73internal tandem duplication (ITD),
7P53 and ASXL 1 should also be done, as mutations in these genes have prognostic
importance and have been incorporated into consensus risk stratification guidelines.*!
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Risk stratification

The outcome of acute myeloid leukaemia is heterogeneous, with both patient-related

and disease-related factors contributing to an individual patient’s likelihood of achieving
response to therapy and long-term survival. Accurate prognostication of acute myeloid
leukaemia is imperative, as postremission therapies (eg, consolidation chemotherapy vs
haemopoietic stem cell transplantation [HSCT] for patients in first remission) are assigned
largely according to a patient’s anticipated risk of relapse in the absence of HSCT and
their anticipated risk of non-relapse mortality with HSCT.#2 Of note, the risk categories
established by the consensus guidelines are not fixed and might evolve with emerging
therapies, requiring continued reassessment of their prognostic importance. In addition to
pretreatment characteristics, such as cytogenetics or molecular mutations, depth of response
(ie, presence or absence of minimal residual disease) achieved with initial therapy is
emerging as a powerful factor in assessing relapse risk.43

Pretreatment factors

Pretreatment factors that affect prognosis for patients with acute myeloid leukaemia can be
divided into those related to the patient’s ability to tolerate therapy and those related to the
inherent chemosensitivity or chemoresistance of the disease itself, although some overlap
between these two features exists. Patient-related variables that affect a patient’s ability

to receive adequate antileukaemic therapy include advanced age, poor performance status,
and the presence of clinically significant medical comorbidities. Patients with these risk
factors have higher treatment-related mortality when treated with intensive chemotherapy.*
Due, in part, to their poor tolerance of intensive treatment, the outcomes of many older
patients (particularly those patients 60 years of age and older) are significantly worse than
their younger counterparts (<60 years).*> However, less intensive therapies might not be
adequate to result in long-term remission.#8 Although higher treatment-related mortality
could account for some of the differential outcomes observed between older and younger
patients with acute myeloid leukaemia, older patients have more adverse-risk cytogenetic
and molecular abnormalities, which also contribute to their poorer outcomes.36:47 Similarly,
the presence of an antecedent haematological disorder (eg, myelodysplastic syndromes

or myeloproliferative neoplasms) or previous treatment with cytotoxic chemotherapy or
irradiation are historical factors that are associated with poorer response to acute myeloid
leukaemia directed therapy and shorter survival.48

Genetic analyses, including both karyotyping and screening for recurrent gene fusions and
molecular mutations, provide important information about disease biology and strongly
inform prognostic assessment, which in turn is used to guide decisions about postremission
therapy (table 2).41 Based on karyotypic analysis, the favorable risk group includes patients
with core-binding factor acute myeloid leukaemia—eg, t(8;21) or inv(16)—whereas the
adverse risk group includes patients with complex karyotype (defined as three or more
cytogenetic abnormalities) or specific chromosomal aneuploidies (eg, —5/-5q, -7, and
-17/17p).*° However, cytogenetics cannot effectively risk stratify many patients with acute
myeloid leukaemia, as up to 50% of adult patients present with cytogenetically normal
acute myeloid leukaemia.®® Historically, the majority of patients with a normal karyotype,
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in whom outcomes are particularly heterogeneous, were classified into an intermediate-
risk group.®0 In this large subset of patients with cytogenetically normal acute myeloid
leukaemia and in patients without a well established prognostic karyotypic abnormality,
identification of recurrent gene mutations is especially important for risk stratification. The
presence of biallelic mutations of CEBPA defines an acute myeloid leukaemia subset with
relatively favorable prognosis,®1:52 whereas mutations of RUNX1, ASXL 1, or TP53are
associated with a high risk of relapse and are classified as adverse risk.24:3753

Mutations of different genes frequently interact in complex ways to affect prognosis,
associations that are just beginning to be elucidated on the basis of analyses with large
annotated genomic databases.28 Thus, in many cases, the prognostic impact of a specific
gene mutation can only be understood in the context of the other genomic aberrations.

For example, NPM1 and FLT3-ITD mutation status interact to affect prognosis, and
knowledge of the mutational status of both of these genes, as well as the FL73-ITD

allelic ratio, are required to fully assess relapse risk in an individual patient.*! Data have
suggested that DAVMT3A mutation status could in part mediate the effect of this prognostic
association between NPMI and FLT31TD.26 Prognostic gene—gene interactions have also
been described with respect to mutation status of NRAS, DNMT3A, and NPM1, and
DNMT3A and /DHZR140, further adding to the complexity of devising a comprehensive
genomics-based risk stratification algorithm for acute myeloid leukaemia.26

Post-treatment factors

A patient’s response to acute myeloid leukaemia directed therapy is a strong determinant

of future outcomes. Achievement of a complete remission requires bone marrow assessment
showing less than 5% blasts with recovery of peripheral blood elements (ie, neutrophil count
>1000 per uL and platelet counts >100 000 per L) and no evidence of extramedullary
disease. Less stringent criteria for response, in which blasts decrease to less than 5% but
with incomplete peripheral blood recovery, are associated with less favourable outcomes
than in patients achieving complete remission, but better than non-responders.54

More sensitive tests for minimal (also called measurable) residual disease, allow for better
discrimination of relapse than does morphological assessment alone.®® The two methods

in routine clinical practice for minimal residual disease detection are multiparameter flow
cytometry (MFC) and quantitative real-time PCR, which both have their own advantages
and disadvantages.>® MFC-based minimal residual disease assessment relies on comparison
of leukaemia-associated immunophenotypes (ie, aberrant patterns of antigen expression
found on leukaemic blasts) between diagnostic and remission samples. In the absence of

a baseline sample, flow cytometric analysis of the remission sample evaluating different
than normal immunophenotype can also be used to detect minimal residual disease.>’ By
contrast, real-time PCR requires the presence of a defined target (eg, fusion transcripts,
such as PML-RARA, or gene mutations, such as MPMI) at diagnosis that can be monitored
with high sensitivity in follow-up remission peripheral blood or bone marrow samples.
Both MFC-based and real-time PCR-based minimal residual disease measurements are
highly prognostic for long-term survival in acute myeloid leukaemia.3358-61 |n one study
of patients with acute myeloid leukaemia undergoing HSCT, those in complete remission
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but with detectable minimal residual disease by MFC had similar post-transplant relapse and
overall survival to those individuals transplanted when not in morphological remission.52
These studies have supported the development of a new acute myeloid leukaemia response
criterion: complete remission without minimal residual disease.*!

General approach

With the approval of several new drugs in 2017, the frontline management of acute

myeloid leukaemia is rapidly changing, and rapid, targeted genomic analysis is becoming
increasingly necessary to identify genomic and molecular changes that inform the selection
of appropriate upfront therapy (table 3).83 Another important consideration in designing a
treatment plan for a patient with newly diagnosed acute myeloid leukaemia is to determine
whether they are suitable candidates to receive intensive chemotherapy (figure 1). Such
assessment is based largely on the anticipated treatment-related mortality of this approach,4
which defines the patient’s fitness for a given anti-leukemic therapy. Thus, fitness is
primarily influenced by patient-related factors such as advanced age, performance status,
and pretreatment co-morbidities. Although the predicted mortality can be affected by patient
age, it is important to consider all patient-related and disease-related factors when designing
an appropriate treatment plan. Owing to better supportive care measures and better selection
of patients for intensive versus less intensive acute myeloid leukaemia directed therapies,
treatment-related mortality with intensive therapy in large clinical trials has declined over
the past two decades from 15-20% to less than 5% in many studies.5®

For patients who achieve remission with induction therapy, appropriate selection of
postremission therapy is essential.86 Postremission therapies are generally selected by
balancing the treatment-related mortality and morbidity associated with HSCT in first
remission with the patient’s risk of relapse. Patients with an increased risk of relapse in

the absence of HSCT (eg, >35%) are usually considered for HSCT in first remission.
Various models exist to help determine a patient’s candidacy for HSCT, accounting for both
non-relapse mortality associated with transplantation and the relapse risk with and without
HSCT.87 Patients with favourable disease-related features generally receive postremission
consolidation chemotherapy, whereas those individuals with adverse-risk disease are usually
offered HSCT in first remission.*2 For those patients with intermediate-risk disease, no
consensus exists regarding the optimal postremission therapy, and treatment should be
individualised on the basis of full assessment of relapse risk, patient fitness, adequacy of a
suitable donor, and patient preference.

Induction therapy

For over four decades, a combination of cytarabine and an anthracycline has been the
standard induction regimen for patients deemed suitable for intensive acute myeloid
leukaemia therapy.58:69 With the 7+3 regimen of 7 days of infused cytarabine (100-200
mg/m? daily) plus 3 days of an anthracycline (eg, daunorubicin or idarubicin), complete
remission of 60—-85% was achieved in patients younger than 60 years and 40-60% was
achieved in patients aged 60 years or older, respectively.”0 In an attempt to increase these
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responses, various studies have evaluated the optimal dosing of the anthracycline and
cytarabine for acute myeloid leukaemia induction, as well as whether the addition of a
third drug to this backbone can further improve long-term outcomes (appendix).’!

Gemtuzumab ozogamicin is an anti-CD33 antibody-drug conjugate that carries
calicheamicin, a potent DNA-damaging toxin. In a meta-analysis of five randomised clinical
trials enroling patients 15 years of age and older with newly diagnosed acute myeloid
leukaemia, the addition of gemtuzumab ozogamicin to induction chemotherapy was shown
to improve overall survival at 6 years compared with standard induction chemotherapy
(6-year overall survival 34-3% vs30-6%:; odds ratio 0-90, 95% CI 0-82-0.98; p=0-01).78 This
beneficial effect is most pronounced among patients with favourable-risk or intermediate-
risk cytogenetics. Notably, gemtuzumab ozogamicin initially gained regulatory approval in
the USA in 2000, but was subsequently withdrawn from the market in June, 2010, after

one randomised trial of intensive chemotherapy with or without gemtuzumab ozogamicin

in patients 18-60 years of age with acute myeloid leukaemia found an excess of early
mortality, which reduced the clinical benefit in the gemtuzumab 0zogamicin containing
group. However, owing to promising results from several subsequent randomised trials,
gemtuzumab ozogamicin was again approved by the US Food and Drug Administration

in September, 2017, for treatment of adults with either newly diagnosed or relapsed or
refractory CD33-positive acute myeloid leukaemia. The approval includes single-drug use,
as well as combined (in a fractionated dosing schedule) with standard chemotherapy, and,
importantly, includes paediatric patients.

Few effective treatments are available for patients with acute myeloid leukaemia who
harbour adverse risk features. CPX-351 is a liposomally encapsulated formulation of
cytarabine and daunorubicin that preserves a 5:1 molar ratio and has several theoretical
advantages over the standard 7 + 3 regimen, including delivery of the drugs at a more
sustained synergistic ratio, bypassing drug efflux pumps, and prolonged drug exposure

in the bone marrow.”® Initial randomised phase 2 studies in both the frontline and

relapsed or refractory settings showed improved proportions of patients who achieved an
objective response compared with conventional therapies, especially in patients with poor-
risk features, including secondary acute myeloid leukaemia (ie, arising from a preceding
haematological disorder or therapy related).80.81 A subsequent randomised phase 3 trial
was done in older patients (aged 60-75 years) with secondary acute myeloid leukaemia

or de-novo acute myeloid leukaemia with myelodysplastic syndromes related cytogenetic
abnormalities.”* Compared with standard 7 + 3 induction, CPX-351 resulted in higher
proportions of patients with an objective response and longer survival (median overall
survival 9:6 months vs 6-0 months; hazard ratio [HR] 0-69; p=0.-005), without an increase
in early mortality or toxicity, although data on absolute survival benefit are still awaited.
CPX-351 therefore represents a reasonable treatment option for patients with secondary
acute myeloid leukaemia who are considered suitable for intensive acute myeloid leukaemia
therapy.

Mutations of the FL73gene are present in about 30% of patients with newly diagnosed
acute myeloid leukaemia.24:82 Many FLT3 inhibitors have been developed. When used by
themselves in patients with FL73 mutations, they induce a rapid decrease in peripheral
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blood and bone marrow blasts in a substantial percentage of patients.83:84 However, most
responses are partial or without full haemopoietic recovery, and typically of short duration.
Thus, FLT3 inhibitors have been combined with chemotherapy in patients harbouring FL73
mutations.8586 Midostaurin is an oral multitargeted kinase inhibitor that is active against
FLT3. In a large, multicenter phase 3 study, patients younger than 60 years of age with
newly diagnosed FL73-positive acute myeloid leukaemia (either ITD or a point mutation

in the tyrosine kinase domain) received standard induction followed by consolidation
chemotherapy (or HSCT, if indicated) and were randomly assigned to receive either
midostaurin or placebo.”? Midostaurin was given with induction and consolidation, followed
by up to an additional year of maintenance midostaurin. Compared with the placebo group,
the midostaurin group had a significant improvement in overall survival, both in patients
with FLT3-ITD and those with FL73kinase domain mutations (4-year overall survival
51-4% vs44-3%; median overall survival 74-7 months vs 25-6 months; HR 0-78; 95% CI
0-63-0-96; p=0-009]). Based on these results, midostaurin was approved in the USA and is
now standard therapy for patients with a /.73 mutation in combination with conventional
therapy.

Postremission therapy

Consolidation chemotherapy with a cytarabine-based regimen is standard of care for
patients who achieve remission after induction chemotherapy and in whom HSCT is not
recommended, owing to favourable disease-related factors, high expected transplant-related
mortality, or lack of suitable donor availability.56 In patients who were given cytarabine and
were younger than 60 years of age, the decreased relapse and prolonged survival appeared
to be dose dependent.8” Therefore, in younger patients with acute myeloid leukaemia,
single-drug high-dose cytarabine, typically at a dose of 3 g/m? every 12 h over 3 days of
each cycle, is the most commonly used consolidation strategy, although multiple variations
of the dose and schedule have been reported, and such high doses of cytarabine are unlikely
to be required for optimal antileukaemic activity.88 Four consolidation cycles are generally
administered, although the optimal number of consolidation cycles has not been firmly
established. With this high-dose cytarabine consolidative regimen, long-term survival of
about 50% has been achieved in patients younger than 60 years of age who achieve complete
remission with induction chemotherapy.8” The benefit of high-dose cytarabine consolidation
is largely limited to those with favourable-risk or cytogenetically normal acute myeloid
leukaemia, which represent subtypes of acute myeloid leukaemia that are generally more
chemosensitive.82 Older patients (=60 years) are less likely to benefit from or tolerate
intensive cytarabine, except perhaps the small proportion of those with favourable-risk
cytogenetics.

The addition of other drugs to the cytarabine backbone for consolidation might also be
beneficial in some acute myeloid leukaemia subgroups. For example, midostaurin should
be given with consolidation for patients with £L7:3mutated acute myeloid leukaemia.”?

In one study of younger patients (18-59 years) with intermediate-risk or adverse-risk
cytogenetics, the addition of the purine nucleoside analogue clofarabine to intermediate-
dose cytarabine significantly prolonged relapse-free survival, although no overall survival
benefit was observed.%® After consolidation chemotherapy, no role for further maintenance
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in the management of acute myeloid leukaemia has been established. However, several
maintenance strategies, such as targeted drugs (eg, FLT3 inhibitors) and immune approaches
(eg, checkpoint inhibitors and monoclonal antibodies), are being investigated.

Several variables are part of the considerations for HSCT, in addition to proper patient
selection, including the optimal preparative regimen, donor, and stem cell source (appendix).
The mechanistic role of allogeneic HSCT in acute myeloid leukaemia is in two parts:

the high-dose preparative conditioning regimen provides antileukaemic cytoreduction, and,
perhaps more importantly, engrafted donor T cells exert an immunological graft-versus-
leukaemia effect to further eliminate residual leukaemic cells.% Allogeneic HSCT improves
outcomes of patients with both poor-risk and intermediate-risk acute myeloid leukaemia,
although the magnitude of benefit in patients with intermediate-risk disease is lower,
probably due to the substantial heterogeneity of this group and because chemotherapy is
generally more effective than in patients with poor-risk disease.?2-94 For these intermediate-
risk patients, minimal residual disease status might have a particularly informative role in
defining the risk-benefit ratio of HSCT for a given patient, although the optimal use of
minimal residual disease to inform such decisions remains controversial.®> Although HSCT
for high-risk patients with acute myeloid leukaemia consistently decreases the frequency

of relapse compared with chemotherapy alone, many patients still relapse. In an effort to
improve outcomes for these high-risk patients, several studies have evaluated the use of post-
HSCT maintenance with mixed results.% Studies evaluating post-HSCT hypomethylating
agents, lenalidomide, and FLT3 inhibitors are in progress.

Patients unfit for intensive therapy

As almost half of patients with acute myeloid leukaemia are older than 70 years of

age at the time of diagnosis, frequently with comorbidities and poor performance status,
many are considered unfit for intensive chemotherapy.®4 Of note, this assessment is often
subjective and some older patients can still benefit from intensive chemotherapy.®’ Several
less intensive therapies are commonly used for these unfit patients, including low-dose
cytarabine and hypomethylating agents.*® Although these regimens are associated with
lower treatment-related mortality than intensive chemotherapy, long-term outcomes for older
patients (=60 years) with acute myeloid leukaemia remain dismal, with a median survival of
about 6-9 months. Therefore, enrolment in a clinical trial should always be considered for
these patients.

In patients deemed unfit for intensive chemotherapy, low-dose cytarabine (eg, 20 mg
subcutaneously twice daily for 10 days administered every 4 weeks) is associated with a
complete remission of 15-25% and improves overall survival compared with hydroxyurea
plus best supportive care.% However, response to low-dose cytarabine is minimal in patients
with adverse karyotype. Given the potential for haematological toxicity with low-dose
cytarabine and the high proportion of older adults with poor-risk cytogenetics, low-dose
cytarabine is a suboptimal strategy for the majority of older patients with acute myeloid
leukaemia.

The hypomethylating agents azacitidine and decitabine are epigenetic therapies that inhibit
DNA methylation and are believed to lead to re-expression of silenced tumour suppressor
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genes, which can, in part, explain their efficacy in both myelodysplastic syndromes and
acute myeloid leukaemia.%° In a randomised study comparing azacitidine (75 mg/m?2
subcutaneously daily for 7 days administered every 4 weeks) with conventional care
regimens (eg, standard induction chemotherapy, low-dose cytarabine, or supportive care
only) in patients with acute myeloid leukaemia aged 65 years or older, azacitidine
significantly improved survival (median overall survival 12:1 months vs6:9 months, HR
0-76; 95% ClI, 0-60-0-96; p=0-019), an effect that was seen across subgroups, including in
patients with poor-risk cytogenetics.190 A randomised trial comparing decitabine (20 mg/m?
intravenously daily for 5 days administered every 4 weeks) with low-dose cytarabine or
supportive care in a similar population of older patients (=65 years) with acute myeloid
leukaemia showed a modest overall survival benefit for patients treated with decitabine.101
The proportion of patients who achieve an objective response with hypomethylating agents
is 20-30%, which is lower than that observed with intensive chemotherapy.’? However,
overall survival is similar or possibly superior compared with what can be expected with
intensive chemotherapy in these older patients with acute myeloid leukaemia, probably
driven by lower treatment-related mortality with these less intensive strategies.102.103

Of note, epigenetic therapy could be particularly beneficial in patients harbouring 7P53
mutations, which confer resistance to traditional cytotoxic chemotherapy.104

In several studies, gemtuzumab ozogamicin alone has been shown to be effective in older
adults (>60 years), including those who are deemed unfit for intensive chemotherapy. In

a randomised study of gemtuzumab ozogamicin treatment versus best supportive care,
low-dose gemtuzumab ozogamicin (6 mg/m? on day 1 and 3 mg/m?2 on day 8 of induction,
followed by monthly doses of 2 mg/m? as consolidation) resulted in a response of 27% and
improved overall survival compared with the control group, without an increase in adverse
events.’6

The benefit of gemtuzumab ozogamicin was seen across most subgroups, especially
patients with high CD33 expression status and those with favourable or intermediate-risk
cytogenetics. With the reapproval of gemtuzumab ozogamicin, future studies evaluating
its optimal use in older patients with acute myeloid leukaemia, including combination
strategies, are needed.

Relapsed or refractory acute myeloid leukaemia

With standard chemotherapy, long-term survival for patients with acute myeloid leukaemia
is achieved in only 35-45% of those younger than 60 years of age and 10-15% of those aged
60 years and older.#! Relapsed disease and the associated leukemia-associated complications
are the most common causes of death. Acute myeloid leukaemia relapse is associated

with a substantial increase in molecular complexity, with multiple new subclones and
mutations identified at the time of relapse, contributing to increased resistance to cytotoxic
chemotherapy.1%:105-107 For patients in first relapse, the median survival is roughly 6 months
with only about 10% of patients achieving long-term survival 108109 predictors for poorer
outcomes in patients with first acute myeloid leukaemia relapse include a duration of first
remission of 6 months or less, unfavourable karyotype, previous HSCT, and advanced
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age.108 Patients with primary induction failure or multiply relapsed disease have especially
poor outcomes.

For patients with primary induction failure or who develop relapsed disease, the goal of
further antileukaemic therapy is to achieve remission and proceed to allogeneic HSCT,
which offers the best chance of cure.110 For older (>70 years) or unfit patients with relapsed
or refractory disease and in whom allogeneic HSCT is not feasible, further treatment is
largely palliative. For patients with a first remission duration longer than 1 year, retreatment
with an intermediate-dose or high-dose cytarabine-containing regimen should be considered,
as this subset of patients often relapse with somewhat chemosensitive disease.108 This
regimen should still be followed by HSCT whenever feasible. However, for patients with

a shorter first remission duration or with primary induction failure, there is no consensus
reinduction regimen. In a large, multicenter trial of 381 patients with relapsed or refractory
acute myeloid leukaemia, most of whom had multiply relapsed disease, patients were
randomly assigned to the experimental therapy (elacytarabine) or investigator’s choice

of one of seven commonly used acute myeloid leukaemia salvage regimens, including
high-dose cytarabine, multidrug chemotherapy, hypomethylating agents, hydroxyurea, or
supportive care.111 Overall survival did not differ among any of the therapies administered.
The proportion of patients who achieved an objective response to salvage therapy was
20-25% and the median survival was 3—4 months regardless of the regimen received,
highlighting the need for more effective therapies for patients with relapsed or refractory
acute myeloid leukaemia and the necessity of enrolling these patients in clinical trials.

As knowledge of the genomic landscape of acute myeloid leukaemia continues to grow,
therapies targeting specific pathogenic mutations are likely to have an increasing role in
the management of acute myeloid leukaemia and improve outcome. One such example

is enasidenib, an oral, selective inhibitor of mutant IDH2. When mutated, IDH2 has pro-
leukaemic properties mediated by epigenetic phenomena; the use of enasidenib reverts
these effects and induces differentiation of malignancy myeloblasts.112 /DH2 mutations are
identified in 10-20% of patients with acute myeloid leukaemia.113:114 |n a phase 1/2 trial
of patients with /DHZ2-mutant relapsed or refractory acute myeloid leukaemia, enasidenib
was associated with overall response of about 40%, complete remission of about 20%,

and median survival of 9:3 months.”3 In August, 2017, enasidenib was approved in the
USA for use in patients with relapsed or refractory acute myeloid leukaemia harbouring

an /DHZ2 mutation. As retrospective studies suggest that intensive chemotherapy is also
effective in patients with /DH2 mutations,1° future combinations of IDH2 inhibitors with
chemotherapy might improve these outcomes. Clinical trials of other targeted therapies for
relapsed or refractory acute myeloid leukaemia are continuing, including drugs targeting
mutant FLT3, IDH1, and RAS.53 Incorporation of several of these drugs into frontline acute
myeloid leukaemia management is also being investigated.

Acute myeloid leukaemia in the paediatric patient

Acute myeloid leukaemia in childhood accounts for 20% of paediatric leukaemias, with
5-1% of patients with acute myeloid leukaemia being diagnosed at younger than 20 years
of age.3 Several genetic syndromes have been associated with the development of acute
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myeloid leukaemia in childhood (appendix). As paediatric acute myeloid leukaemia is a
relatively rare entity, much of the approach regarding prognostic factors and treatment

are derived from data and studies in adult patients. Risk stratification for paediatric acute
myeloid leukaemia is, therefore, largely based on the same genetic categories that have been
established in adult acute myeloid leukaemia.*! However, some notable differences exist

in the prevalence of different karyotypic and molecular abnormalities between adult and
paediatric populations. For example, acute myeloid leukaemia that presents in childhood is
associated with higher rates of t(8;21), inv(16), and rearrangements of 11923 (KMT2A).116
By contrast, mutations of NPM1 and FLT3-1TD appear to be less frequent in children than in
their adult counterparts.11” As in adults, flow cytometric minimal residual disease response
to acute myeloid leukaemia directed therapy is a powerful prognostic factor in the paediatric
population,118-120

Treatment of paediatric acute myeloid leukaemia uses a multidrug cytarabine

and anthracycline-based induction, followed by either post-remission consolidative
chemotherapy or HSCT.121 Similar to the approach in adults, HSCT in first remission is
generally reserved for patients with high-risk disease features, including poor response to
induction chemotherapy or poor-risk cytogenetics, although proper patient selection remains
controversial.122 With contemporary treatment, the proportion of patients cured in some
subgroups of paediatric acute myeloid leukaemia can approach 70%.123 The anti-CD33
antibody-drug conjugate gemtuzumab ozogamicin has shown particular promise in further
improving these outcomes. A randomised phase 3 study in children and young adults

(<29 years) with newly diagnosed acute myeloid leukaemia showed that the addition

of gemtuzumab ozogamicin to standard chemotherapy was associated with a significant
improvement in 3-year event-free survival (53-1% v546-9%; HR 0-83; 95% CI 0-70-0-99;
p=0-04), although no overall survival benefit was observed.124 In a subsequent analysis, this
benefit was primarily restricted to the around 50% of patients who have the CC genotype of
a CD33 splicing polymorphism.125 As with adult acute myeloid leukaemia, supportive care
has an essential role in improving outcomes in paediatric acute myeloid leukaemia.126

Future directions

Despite progress in recent years, with several new drugs gaining regulatory approval for
the treatment of adults with acute myeloid leukaemia since 2017, many important questions
remain. Ongoing efforts to understand the genomic background of acute myeloid leukaemia,
including the mechanisms by which each mutation drives the disease phenotype and how
these mutations interact with one another to affect risk of relapse, will be crucial, not

only in risk stratification of acute myeloid leukaemia, but also in developing novel targeted
therapies and rational combinations. The development of novel minimal residual disease
assays might also further refine selection of patients with HSCT in first remission.127 For
example, mutation clearance using next-generation sequencing of recurrent myeloid gene
mutations done on remission bone marrow has been associated with improved survival, but
is still a research tool.128.129 Ultrasensitive methods for minimal residual disease detection
with digital droplet PCR to target low amounts of residual gene mutations are also being
developed.130 Ultimately, comprehensive prognostic models are needed that incorporate
both pretreatment prognostic factors (eg, karyotype and molecular mutations) with minimal
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residual disease status to improve assessment of relapse risk. Furthermore, whether a reliable
measure of minimal residual disease could serve as a surrogate endpoint for regulatory drug
approval is also an area of active investigation and controversy.43:131

The development of future therapies for acute myeloid leukaemia must be informed by

an increased understanding of the biology of acute myeloid leukaemia, including its
heterogeneity and subclonal nature, as well as an appreciation of the presence of leukaemic
stem cells that are generally chemoresistant and serve as an important reservoir of disease
that can lead to relapse after initial response to therapy (figure 2). Many compounds with
novel and diverse mechanisms of action are actively being tested in clinical trials, including
drugs such as monoclonal antibody constructs against CD33 or CD123, bromodomain

and extra terminal protein inhibitors, and B-cell lymphoma 2 (BCL-2) inhibitors, all of
which are capable of targeting and potentially eliminating leukaemic stem cells.® Given the
substantial advances made with immunotherapy in the field of solid oncology, efforts are
also ongoing to investigate immune-based therapies in acute myeloid leukaemia, including
the use of checkpoint inhibitors (eg, anti-CTLA-4 and anti-PD1 monoclonal antibodies) and
novel chimeric antigen receptor T-cell therapies that target epitopes highly expressed on
acute myeloid leukaemia blasts.132 Several novel epigenetic therapies are in clinical trials,
including guadecitabine (SGI-110), an oral formulation of azacitidine (CC-486), and IDH1
inhibitors (eg, AG-120; table 4). Because the role of the microenvironment is increasingly
recognised as being protective, allowing leukaemic cells to survive the effect of therapy,
treatment strategies directed at reversing this protective effect are actively being pursued.

We have outlined the ongoing phase 3 trials enrolling patients with newly diagnosed

acute myeloid leukaemia or those who have achieved remission with standard therapy

(ie, maintenance trials; table 4). Most of these studies combine investigational drugs with
chemotherapy or hypomethylating agents, an approach that is most likely to maximise

the benefit of these novel drugs.133 Multi-arm, biomarker-driven trials (such as the BEAT
AML study134) offer a novel way to rationally select therapies for patients on the basis

of specific genomic alterations present at diagnosis and for testing multiple compounds
within a single umbrella trial. However, given the genomic complexity of acute myeloid
leukaemia, whether single drugs targeting a specific genomic alteration will be sufficient
to eradicate the disease is unclear. Therefore, strategies targeting more universal pathways
(eg, immune-based therapies) might be a more successful therapeutic strategy. Beyond
mutation-driven or antigen-driven drug selection, the use of in-vitro drug screening or
functionality testing (eg, BH3 profiling to predict sensitivity to BCL-2 inhibitors) or the
individualised study of induced pluripotential stem cells derived from primary acute myeloid
leukaemia cells could further personalise acute myeloid leukaemia directed therapy.135.136
To evaluate the growing list of promising drugs for acute myeloid leukaemia, increased
enrolment of patients with acute myeloid leukaemia into clinical trials will be needed to
rapidly investigate the safety and efficacy of these promising therapies and ultimately bring
them to the general population so that all patients can benefit. However, as data accumulate
from rigorously monitored trials, in which patients are carefully selected for enrolment, we
must be judicious in extrapolating these results to general practice.137 As we now have
improved tools to approach these complex tasks, the work is ready to be done.
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Search strategy and selection criteria

We searched the Cochrane Library and PubMed for relevant randomised trials and

other high-quality studies (eg, systematic reviews and meta-analyses) published in
English between Jan 1, 2007 and Oct 1, 2017. We used the search terms “acute

myeloid leukaemia” or “AML” in combination with the terms “genomics”, “outcomes”,
“prognosis”, and “treatment”. We largely selected publications from the past 5 years,

but did not exclude commonly referenced and highly regarded older publications. We
also searched the reference lists of articles identified by this search strategy and selected
those we deemed relevant. Our reference list was modified based on comments from peer
reviewers.
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Investigations

« Laboratory studies including complete blood count with differential,
electrolytes, uric acid, renal function, liver function tests, coagulation studies,
and HLA typing

cytometry for immunophenotyping, conventional karyotype, screening for
common gene fusions (eq. RUNX 1-RUNX1T1, CBFE-MYH11, and PML-RARA),
and molecular studies (FLT3, NPM1, CEBPA, RUNX1, ASXL1, and TP53 at least)

« Some patients with significant leukocytosis or
rapidly proliferative disease might require
aytoreduction (eg, leukopheresis or hydraxyurea)
before definitive therapy s started

« Bone marrow biopsy and aspirate for assessment of morphology, and flow --p  If acute promyelocytic leukaemia is suspected, start

all-trans retinoic acid immediately, and continue

with acute promyek lewk d

ytic ted

+ Lumbar puncture if evidence of CNS involvement

ifdiag £y

.

Patient fit for intensive chemotherapy

.

Patient unfit for intensive chemotherapy (eg, advanced age, poor
| bidities)

lonal therapy should be

> | I » encouraged for all patlents, especially for
AQlemarek older patients and thosewith ARogeeHIct

adverse-risk disease

Figure 1: Management of acute myeloid leukaemia in adults

Peric status, or
Induction Consalidation
Induction chemotherapy with Intermediate-dose or high-dose Options include:
“'l Favourable risk I—" anthracycline plus cytarabine-based P cytarabine-based regimen (eg, 1-3 g/m? —bl Favourable risk |—b « Low-dose cytarabine (not
g (eq.7+3) every 12 h for 3 days per 4 cycles) re ded in patients with
= FLT3 Inhibitor (eg, midostaurin) should adverse-risk disease)
be added if FLT3 mutation and = Hypomethylating agents (eq
continued through consolidation and azacitidine or decitabine)
for at least 1 year of maintenance v g « Gemtuzumab ozogamicin (especially
« Addition of b azogamicin TR erre if ble-risk or diate-risk
can be considered if CD33-positive [;aciﬁ s :“ z cytogenetics and high CD33
: i especially If favourable-risk or i on regarding chemotherapy vs P )
I B : . risk cytogenetics) P HSCT should be based on patient's _.l Intermediate risk |_’ + Best supportive care (Including
+ CPX-351 Is preferred over7+3 for individual risk of relapse, donor hydroxyurea)
patients with therapy-related acute source, performance status, g I therapy is preferred and
myeloid leukaemia or acute myeloid comorbidities, and patient preference should be strongly encouraged
syndrome-related‘mange's

HLA=human leukocyte antigen. HSCT=haemopoietic stem cell transplant.

Lancet. Author manuscript; available in PMC 2023 May 31.




1duosnuepy Joyiny 1duosnuely Joyiny 1duosnuepy Joyiny

1duosnuely Joyiny

Short etal.

« FLT3 inhibitors (eg, midostaurin,
sorafenib, quizartinib, and
crenolanib)

« KIT inhibitors (eg, dasatinib for
CBF-AML)

* MEK inhibitors (eg trametinib,
and cobimetinib)

+ BH3 mimetics (eg, venetoclax)
+ MDM2 inhibitors (eg, idasanutlin)

+ OXCR4 antagonists (eg, plerixafor)

+ E-selectin antagonists (eq,
GMI-1271)

+VLA-4 inhibitor (eg, AS101)

« Hypoxla-targeting agents (eg,
TH-302)

Oncogenic
kinases

]

Regilatos A
of apoptosis Epigenetice
Leukaemic
stem cells
= \ /

\/
Micro- Immune
environment therapies
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« Novel hypomethylating agents (eg. oral azacitidine, and
guadecitabine)

+ IDHY/2 inhibitors (eg, AG-120, and enasidenib)

« Bromodomain inhibitors (eg, 0TX015)

» Histone deacetylase inhibitors (eg, vorinostat, pracinostat,
and panobinostat)

« DOTL1 inhibitor (eq, EPZ-5676)

« Antibody-drug conjugates (eg, vadastuximab talirine)

« Bispecific antibodies (eg, AMG 330: anti-CD33/CD3
bispecific T-cell engager)

« Immune checkpoint blockade (eq, ipilimumab, nivolumab,
durvalumab)

«Vaccines (eg, WT1 and PR1 peptide vaccines, dendritic cell
vaccines)

« Chimeric antigen receptor T cells (eg, anti-CD123 CAR
T-cells CART-123)

Figure 2: Examples of selected novel therapeutic strategiesin acute myeloid leukaemia
Five therapeutic targets being developed for the management of acute myeloid leukaemia are

highlighted, as well as representative compounds that are in clinical trials. These examples
are not intended to be all inclusive. Strategies that eliminate leukaemia stem cells, which are
generally chemoresistant and serve as a reservoir for relapse, are needed to achieve cure.
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