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Abstract
Background Population-wide screening for melanoma is not cost-effective, but genetic characterization could facilitate risk stratification and 
targeted screening. Common Melanocortin-1 receptor (MC1R) red hair colour (RHC) variants and Microphthalmia-associated transcription fac-
tor (MITF ) E318K separately confer moderate melanoma susceptibility, but their interactive effects are relatively unexplored.
Objectives To evaluate whether MC1R genotypes differentially affect melanoma risk in MITF E318K+ vs. E318K– individuals.
Materials and methods  Melanoma status (affected or unaffected) and genotype data (MC1R and MITF E318K) were collated from re-
search cohorts (five Australian and two European). In addition, RHC genotypes from E318K+ individuals with and without melanoma were 
extracted from databases (The Cancer Genome Atlas and Medical Genome Research Bank, respectively). χ2 and logistic regression were 
used to evaluate RHC allele and genotype frequencies within E318K+/– cohorts depending on melanoma status. Replication analysis was 
conducted on 200 000 general-population exomes (UK Biobank).
Results The cohort comprised 1165 MITF E318K– and 322 E318K+ individuals. In E318K– cases MC1R R and r alleles increased melanoma 
risk relative to wild type (wt), P < 0.001 for both. Similarly, each MC1R RHC genotype (R/R, R/r, R/wt, r/r and r/wt) increased melanoma risk 
relative to wt/wt (P < 0.001 for all). In E318K+ cases, R alleles increased melanoma risk relative to the wt allele [odds ratio (OR) 2.04 (95% 
confidence interval 1.67–2.49); P = 0.01], while the r allele risk was comparable with the wt allele [OR 0.78 (0.54–1.14) vs. 1.00, respectively]. 
E318K+ cases with the r/r genotype had a lower but not significant melanoma risk relative to wt/wt [OR 0.52 (0.20–1.38)]. Within the E318K+ 
cohort, R genotypes (R/R, R/r and R/wt) conferred a significantly higher risk compared with non-R genotypes (r/r, r/wt and wt/wt) (P < 0.001). 
UK Biobank data supported our findings that r did not increase melanoma risk in E318K+ individuals.
Conclusions RHC alleles/genotypes modify melanoma risk differently in MITF E318K– and E318K+ individuals. Specifically, although all 
RHC alleles increase risk relative to wt in E318K– individuals, only MC1R R increases melanoma risk in E318K+ individuals. Importantly, in 
the E318K+ cohort the MC1R r allele risk is comparable with wt. These findings could inform counselling and management for MITF E318K+ 
individuals.
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Internationally, melanoma is among the most common can-
cers in young adults generally and young women in par-
ticular.1–3 Although population screening for melanoma is 
unlikely to be cost-effective,4 targeted screening of high-
risk populations may be economically feasible.5 Recognizing 
those at greatest risk could facilitate targeted screening lead-
ing to early diagnosis and intervention, which are crucial to 
improving prognosis and outcomes.6,7 As twin studies have 
estimated the heritability of melanoma to be 55–58%,8,9 
genetic information is likely to assist in risk stratification.

Variants in multiple genes confer an increased risk of 
melanoma. Highly penetrant mutations in familial mela-
noma genes, of which Cyclin-dependent kinase inhibitor 
2A (CDKN2A) is the most frequently implicated, increase 
lifetime risk to about 50%,10 while moderate- and low-risk 
variants increase risk by approximately 2–4-fold and 1–2-fold 
above population level, respectively.11,12 The two best-de-
scribed moderate-risk genes are Microphthalmia-associated 
transcription factor (MITF ) and Melanocortin-1 receptor 
(MC1R).13–16 A functional variant, MITF E318K, has a pop-
ulation allele frequency of 0.6–0.8%, but it is significantly 
more common (1.6–2.8%) in melanoma cohorts11,13,17 and 
is associated with an approximate 2.37–2.63-fold increased 
risk of melanoma.18,19 MC1R contains nine common vari-
ants known to be predictive of red hair colour (RHC alleles), 
which are classified as either strong (R) or weak (r). R alleles 
incur a higher odds ratio (OR) of melanoma (OR 1.93) than r 
alleles (OR 1.55).20,21 This risk is dose-dependent with mel-
anoma risk increasing with each additional copy of R or r.20

The interaction between variants within melanoma sus-
ceptibility genes is still being investigated. However, it has 
been shown previously that MC1R variants modify the pen-
etrance of CDKN2A pathogenic variants, whereby CDKN2A 
carriers who also carry RHC alleles are more likely to develop 
melanoma, be diagnosed at an earlier age and be diagnosed 
with multiple melanomas.22–25 An interactive effect between 
MC1R RHC variants and the MITF E318K variant has been 
hypothesized previously.17 One prior study of 97 MITF E318K 
carriers, of whom 44 had a personal history of melanoma, 
found no evidence that MC1R variants differentially modified 

melanoma risk in E318K carriers compared with noncarri-
ers. However, the subset of E318K+ individuals who also 
carried any MC1R RHC allele (grouping R and r) had a higher 
melanoma risk than E318K+ individuals who were MC1R 
wild type (wt).26 A recent study reported MC1R genotype 
frequencies in MITF E318K+ (n = 20) and E318K– (n = 556) 
cases in a melanoma cohort, but it was not sufficiently 
powered to conduct analysis.27 A functional study showed 
that forced expression of MITF leads to the development 
of malignant cells in MC1R R/R genotypes, while this does 
not occur in MC1R wt genotypes.28 There have been no 
studies investigating how individual MC1R RHC alleles and/
or genotypes moderate the risk of developing melanoma in 
E318K+ individuals. We therefore aimed to evaluate whether 
MC1R RHC alleles and genotypes moderate melanoma risk 
in MITF E318K+ and E318K– cohorts.

Materials and methods

Study design and data collection

This study used data from nine sources: (i) the Brisbane 
Naevi Morphology Study (BNMS),29 a case–control study of 
naevus and melanoma genes in which cases had at least one 
histopathologically confirmed melanoma; (ii) the Australian 
Melanoma Family Study, a population-based case–control 
family study of histopathologically confirmed melanoma 
diagnosed under the age of 40 years;30 (iii) histopathologi-
cally confirmed affected individuals from the University of 
Tübingen, Germany; (iv) the familial melanoma study at The 
Hospital Clinic of Barcelona,13 in which all histopathologi-
cally confirmed melanoma-affected probands were gen-
otyped for MITF E318K status and, when positive, family 
members were also genotyped; (v) histopathologically con-
firmed affected cases from Western Australian Melanoma 
Health Study (WAMHS), a population-based study of adult 
melanoma cases in Western Australia;31 (vi) histopathologi-
cally confirmed individuals from the EPIGENE cohort;32 and 
(vii) histopathologically confirmed cases and unaffected 

What does this study add?

• In E318K+ individuals, the MC1R R allele was associated with increased melanoma risk while the MC1R r allele risk was comparable 
with the wild type (wt).

• Within the E318K+ cohort, R genotypes (R/R, R/r and R/wt) conferred a significantly higher risk compared with non-R genotypes 
(r/r, r/wt and wt/wt).

• Exome data from 200 000 UK residents consistently found that melanoma risk in MC1R r carriers was comparable with wt.

What is already known about this topic?

• Melanocortin-1 receptor (MC1R) red hair colour (RHC) variants additively increase melanoma risk 1.55–1.93-fold. They also modify 
penetrance in CDKN2A carriers.

• Microphthalmia-associated transcription factor (MITF ) E318K increases melanoma risk 2.37–2.63-fold.
• MITF E318K+ combined with an RHC variant is hypothesized to increase melanoma risk.
• Functional research suggests that MC1R R/R genotypes are most susceptible to melanocytic cell transformation by forced expres-

sion of MITF.
• No studies have explored the interactive effect of E318K and individual MC1R RHC variants.
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controls from the population-based Queensland QSkin Sun 
and Health Study Cohort,33 which recruited participants 
through the Australian Electoral Roll. Additional databases 
were analysed that included MITF E318K+ individuals with 
and without a history of melanoma, specifically: (viii) the 
Medical Genome Reference Bank (MGRB), which contains 
genomic data on healthy elderly individuals;34 and (ix) The 
Cancer Genome Atlas (TCGA), which contains genotypes 
on over 20 000 samples across various cancer types, includ-
ing a subset with melanoma.35 Clinical data included mela-
noma status (affected or unaffected), age at initial diagnosis, 
number of melanomas and sex. RHC frequencies in E318K+ 
individuals with and without a history of melanoma are pre-
sented in Table S1 (see Supporting Information).

Finally, to determine whether findings in the study cohorts 
were reflective of the general population, interactive effects 
were explored in a 10th dataset, exome data from 200 000 
UK residents with and without a personal history of mela-
noma, who were all participants in the UK Biobank study.36 
These individuals were aged between 40–69 years of age 
and those with a histopathologically confirmed case of mel-
anoma were classified as affected.

Genotyping

MC1R R (D84E/rs1805006, R142H/rs11547464, R151C/
rs1805007, R160W/rs1805008 and D294H/rs1805009) and 
r (V60L/rs1805005, V92M/rs2228479, I155T/rs1110400 and 
R163Q/rs885479) and the MITF E318K/rs149617956) vari-
ants were genotyped in the BNMS and German samples 
(University of Tübingen) at the University of Queensland 
using either Sanger sequencing or TaqMan single-nucleo-
tide polymorphism (SNP) Genotyping Assays with polymer-
ase chain reaction. These methods have been described 
previously.17 In the Barcelona samples MITF E318K SNPs 
were genotyped using TaqMan,13 Sanger sequencing 
or using gene-panel testing (Trusight Hereditary Cancer 
panel; Illumina, San Diego, CA, USA); and MC1R vari-
ants were assessed by Sanger sequencing as previously 
described,37 while the Australian Melanoma Family Study 
samples were genotyped using Sanger sequencing.16,20 
WAMHS samples were genotyped using Illumina Infinium 
HumanOmniExpressExome (Illumina). EPIGENE sam-
ples were genotyped using the Illumina CoreExome array 
(Illumina). QSkin samples were genotyped using the Illumina 
Global Screening Array (Illumina). For the WAMHS, EPIGENE 
and QSkin cohorts, plink v1.90b6.26 was used for all steps 
except for converting imputed SNP dosages to hard-call 
genotypes which used plink v2.00a3 (14 Aug 2022).38,39 For 
three MC1R RHC variants across three cohorts (WAMHS 
rs1805009, EPIGENE rs1805009 and rs1805005, and QSkin 
rs1805009 and rs885479), direct genotypes were not avail-
able, and data imputed to Haplotype Reference Consortium 
v1.1 was used (Table S2; see Supporting Information). 
Details of data cleaning and imputation details have been 
previously reported.19

TCGA uses microarrays to genotype or impute the gen-
otypes for all variants. All MGRB samples underwent 
whole-genome sequencing.34 The MC1R genotypes in 
E318K– individuals were obtained from cases and controls 
of the BNMS exclusively as the sample size was sufficiently 
large. It has been shown previously that frequencies of the 

MC1R variants were consistent with other affected and control 
cohorts.40 In the first four cohorts, individuals were screened 
for high-risk variants in CDKN2A, and positive cases were 
excluded. Participants in the WAMHS, EPIGENE and QSkin 
cohorts were not screened for CDKN2A variants. CDKN2A 
sequence data were available from all TCGA samples and 13 
of 19 MGRB participants and no variants were identified.

Whole-exome sequencing (WES) for the UK Biobank was 
performed using library preparation, exome enrichment and 
sequencing data processing as previously described.41 WES 
data were filtered to retain good-quality variants in CDKN2A, 
which were rare (minor allele frequency < 0.05), within con-
trol populations (Genome Aggregation Database, gnomAD), 
were in conserved bases/regions (GERP) and/or were pre-
dicted to be deleterious using in silico predictions (SIFT, 
Polyphen2, MutationTaster, FATHMM). Any potentially del-
eterious variants were explored for previous disease asso-
ciations (CLINVAR).

Data analysis

Logistic regression using IBM SPSS Statistics (v. 28) was 
used to compare melanoma ORs associated with each RHC 
allele and genotype in MITF E318K– and E318K+ groups rel-
ative to the wt allele and wt/wt genotype. χ2 analysis was 
used to identify any significant differences in melanoma fre-
quencies between genotypes containing an R allele (R/R, 
R/r and R/wt) and genotypes not containing R allele (r/r, r/wt 
and wt/wt). Analyses were repeated in a population control 
cohort (200 000 exomes from UK Biobank).

Results

We analysed genotypic and phenotypic data from 322 
E318K+ heterozygotes, comprised of both melanoma-af-
fected (n = 136) and unaffected (n = 186) individuals. The 
breakdown of sample origins is presented in Table 1, and 
the MC1R genotypes of MITF E318K+ individuals from each 
site are shown in Table S1. The control cohort consisted of 
1165 E318K– individuals, including both melanoma-affected 
(n = 532) and unaffected (n = 633) individuals. Specific RHC 
variants were reported for each cohort in Table 2.

The frequency of RHC alleles and genotypes, and asso-
ciated melanoma ORs (logistic regression) in E318K+ and 
E318K– individuals are presented in Table 3. Within the MITF 
E318K– cohort, the presence of MC1R RHC alleles, R and 
r significantly increased the OR for melanoma [OR 2.04 
(95% confidence interval, CI, 1.67–2.49) and OR 1.64 (1.35–
2.00), respectively] relative to the E318K– MC1R wt allele. 
Similarly, within the E318K– cohort, all RHC genotypes –  
R/R [OR 4.40 (2.65–7.29)], R/r [OR 3.28 (2.21–4.87)],  
R/wt [OR 2.19 (1.50–3.20)], r/r [OR 2.52 (1.54–4.13)] and  
r/wt [OR 1.91 (1.31–2.77)] – were associated with a signif-
icantly higher melanoma risk compared with the E318K– 
MC1R wt/wt genotype; P < 0.001 for all (Table 3).

In the E318K+ cohort, the MC1R R allele was associated 
with a significantly higher risk of melanoma [OR 1.67 (1.13–
2.49)] relative to the E318K+ MC1R wt allele, while the r 
allele was not associated with increased melanoma risk [OR 
0.78 (0.54–1.14)]. For the E318K+ group, RHC genotypes – 
R/R [OR 2.01 (0.68–5.98)], R/r [OR 1.64 (0.77–3.49)], R/wt 

http://academic.oup.com/bjd/article-lookup/doi/10.1093/bjd/ljad041#supplementary-data
http://academic.oup.com/bjd/article-lookup/doi/10.1093/bjd/ljad041#supplementary-data
http://academic.oup.com/bjd/article-lookup/doi/10.1093/bjd/ljad041#supplementary-data
http://academic.oup.com/bjd/article-lookup/doi/10.1093/bjd/ljad041#supplementary-data
http://academic.oup.com/bjd/article-lookup/doi/10.1093/bjd/ljad041#supplementary-data
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[OR 1.86 (0.96–3.59)], r/r [OR 0.52 (0.20–1.38)] and r/wt 
[OR 0.81 (0.43–1.53)] – were not significantly associated 
with an increased risk of melanoma relative to the E318K+ 
MC1R wt/wt genotype. The r/r genotype was inversely but 
not significantly associated with melanoma risk [OR 0.52 
(0.20–1.38), P = 0.19]. However, when the E318K+ RHC gen-
otypes were grouped, all MC1R R genotypes (R/R, R/r and 
R/wt) were associated with significantly higher melanoma 

risk compared with non-R genotypes (r/r, r/wt and wt/wt) 
(P < 0.001) (data not shown in Table 3).

Evaluation of MC1R/MITF variant interactions in 
the UK Biobank

In 200 000 exomes from UK residents (UK Biobank) there 
were 1519 MITF E318K+ individuals, of whom the majority 

Table 1 Melanoma status and source of MITF E318K carriers and noncarriers

Melanoma status

MITF 
status

Source N Recruitment Affected Unaffected

MITF 
E318K–

Brisbane Naevi Morphology Study 1165 Population and clinic recruitment of affected cases 
and unaffected family members

532 633

MITF 
E318K+

Brisbane Naevi Morphology Study 25 (As above) 17 8
QSkin 148 Histopathologically confirmed cases and unaffected 

controls recruited through Australian Electoral Roll
34 114

EPIGENE 17 Histopathologically confirmed individuals recruited 
through a cancer registry

17 0

WAMHS 27 Histopathologically confirmed affected cases 
recruited through a cancer registry

27 0

Melanoma Unit of Hospital Clinic Barcelona 52 High-risk clinic 23 29
German Cohort 4 Affected individuals recruited through high-risk clinic 4 0
Australian Melanoma Family Study 24 Population-based case–control family study of 

melanoma diagnosed < 40 years
8 16

The Cancer Genome Atlas 6 Genotypes from > 20 000 samples from various 
cancer types

6 0

  The Medical Genome Research Bank 19 4000 healthy elderly individuals 0 19

WAMHS, Western Australian Melanoma Health Study.

Table 2 Frequency of individual MC1R RHC variants in MITF E318K carriers

MITF E318K 
status

R alleles, n (%) r alleles, n (%) wt allele

D84E R142H R151C R160W D294H V60L V92M I155T R163Q

MITF E318K+ alleles 
(n = 618)

8 (1.3) 5 (0.8) 52 (8.4) 48 (7.8) 17 (2.8) 64 (10.4) 88 (14.2) 17 (2.8) 15 (2.4) 304 (49.2)

MITF E318K– alleles 
(n = 1924)

25 (1.3) 14 (0.7) 234 (12.2) 188 (9.8) 57 (3.0) 216 (11.2) 170 (8.8) 218 (11.3) 87 (4.5) 715 (37.2)

MAF (gnomAD) 0.0051 0.0051 0.0448 0.0476 0.0092 0.0842 0.0779 0.0057 0.1457

Data were not available for specific variant data from 203 of 1165 participants from MITF E318K– cohort. Data were not available for specific variant 
data from 13 of 322 participants from the MITF E318K+ cohort (three from BNMS, six from MGRB, four from the German cohort).MAF, minor allele 
frequency; gnomAD, Genome Aggregation Database; wt, wild type.

Table 3 Comparison of melanoma risk within each MC1R red hair colour allele and genotype in MITF E318K– and E318K+ individuals

MC1R MITF E318K– MITF E318K+

Unaffected
n (%)

Melanoma
n (%) OR (95% CI)

Unaffected
n (%)

Melanoma
n (%) OR (95% CI)

Alleles 1266 1064 372 272
wt 621 (49.1) 367 (34.5) 1.0 184 (49.5) 128 (47) 1.0
R 300 (23.7) 362 (34.0) 2.04 (1.67–2.49) 67 (18.0) 78 (28.7) 1.67 (1.13–2.49)
r 345 (27.3) 335 (31.5) 1.64 (1.35–2.00) 121 (32.5) 66 (24.3) 0.78 (0.54–1.14)
Genotypes 633 532 186 136
wt/wt 164 (25.9) 65 (12.2) 1.0 47 (25.3) 30 (22.1) 1.0
R/R 35 (5.5) 61 (11.5) 4.40 (2.65–7.29) 7 (3.8) 9 (6.6) 2.01 (0.68–5.98)
R/r 93 (14.7) 121 (22.7) 3.28 (2.21–4.87) 21 (11.3) 22 (16.2) 1.64 (0.77–3.49)
R/wt 137 (21.6) 119 (22.4) 2.19 (1.50–3.20) 32 (17.2) 38 (27.9) 1.86 (0.96–3.59)
r/r 48 (7.6) 48 (9.02) 2.52 (1.54–4.13) 21 (11.3) 7 (5.1) 0.52 (0.20–1.38)
r/wt 156 (24.6) 118 (22.2) 1.91 (1.31–2.77) 58 (31.2) 30 (22.1) 0.81 (0.43–1.53)

OR, odds ratio; CI, confidence interval; Bold indicates statistical significance (P < 0.05).
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(n = 1483) had no documented history of melanoma and 
36 had a histologically confirmed melanoma diagnosis. 
Within the MITF E318K– group (199 083) there were 1615 
cases of melanoma and ORs for R and r alleles [OR 1.97 
(95% CI 1.81–2.14) and OR 1.40 (1.28–1.52), respectively] 
were consistent with the ORs of our study cohorts (Table 
S3; see Supporting Information). In the E318K+ group, a 
trend was observed for an association for a higher mela-
noma risk with the R allele compared with the wt allele 
[OR 1.65 (0.95–2.86), P = 0.07] and for the R/R genotype 
compared with the wt/wt genotype [OR 3.23 (0.89–11.72), 
P = 0.06]. Consistent with our study cohorts, the mela-
noma risk for r allele carriers was comparable with the wt 
[OR 1.12 (0.63–2.01), P = 0.694]. Similarly, the remaining 
RHC genotypes (R/r, R/wt, r/r and r/wt) were not signif-
icantly associated with the risk of melanoma relative to 
the wt/wt genotype. Within this E318K+ cohort of the UK 
Biobank, we found no evidence that the risk of melanoma 
differed between grouped R genotypes (R/R, R/r and R/
wt) and non-R genotypes (r/r, r/wt and wt/wt) (P = 0.146). 
These results should be interpreted with caution given the 
limited number of reported melanoma cases in the UK 
Biobank.

Discussion

The interaction between MC1R and MITF, two moder-
ate-risk genes for melanoma, has long been debated in 
the literature.17,26,28 Understanding the interactive relation-
ship between MITF E318K and MC1R RHC variants may 
be able to help facilitate individualized risk stratification and 
the customization of screening recommendations. We have 
shown that RHC alleles and genotypes modified melanoma 
risk differentially in MITF E318K+ and E318K– individuals. 
Specifically, the RHC R allele increased melanoma risk in 
E318K+ and E318K– individuals, while the r allele increased 
risk in E318K– individuals alone.

In accordance with past research,20,40,42 we found that in 
E318K– individuals, MC1R RHC alleles R and r were associ-
ated with an increased risk of melanoma compared with the 
wt. Specifically, MC1R R was associated with a greater risk 
than r allele frequencies.20,42,43 Comparing MC1R genotypes 
across the E318K– cohort revealed that, as expected, the 
risk of melanoma is increased with the addition of each R 
and r allele, where R conferred a higher risk than r.

The risk profile differed in E318K+ individuals, where 
only the MC1R R allele was significantly associated with a 
higher melanoma risk relative to the wt allele. The r allele 
was associated with the lowest OR for melanoma, which 
was comparable with the wt allele [OR 0.78 (95% CI 0.54–
1.14) vs. 1.0, respectively]. A previous study, with a smaller 
cohort, grouped R and r alleles in E318K+ individuals and 
reported that MC1R RHC alleles increased melanoma risk 
in E318K+ individuals relative to MC1R wt alleles.26 It is 
possible that the increased risk in that study was driven by 
the R allele alone. In our study, no RHC alleles were signifi-
cantly associated with melanoma risk relative to the wt/wt 
genotype in E318K+ individuals, although this is likely due 
to the small sample size. However, we did find higher mel-
anoma frequency (approximately 2–3-fold) in genotypes 
containing an R allele (R/R, R/r and R/wt) compared with 

genotypes that did not contain an R allele. Interestingly, 
we also found that r/r genotypes were associated with the 
lowest OR for melanoma relative to the wt/wt genotype 
[OR 0.52 (0.20–1.38)], although again this did not reach sta-
tistical significance. A recent study in melanocyte cell lines 
showed that the forced expression of MITF, consistent with 
the effects of the E318K variant, leads to the development 
of malignant cells in MC1R genotype R/R cells, while this 
did not occur in the wt/wt genotype cells.28 Unfortunately, 
the study did not explore the impact of forced expression of 
MITF on other RHC genotypes, such as r/r. Based on find-
ings from our study, it is possible that forced expression 
of MITF may have a similar impact on cells heterozygous 
for the R allele and have little to no impact on cells with 
non-R genotypes (r/r, r/wt and wt/wt). The impact of forced 
expression of MITF on MC1R genotypes could possibly be 
related to the influence of MC1R RHC alleles on mutational 
burden. A study evaluating mutational burden in E318K– 
melanoma tumours relative to MC1R genotypes showed 
that R genotypes (R/R, R/r and R/wt) were associated with 
a significant increase in mutational burden (OR 1.68–2.86) 
compared with the wt/wt genotype.44 Conversely, while 
the presence of one r allele (grouping R/r and r/wt geno-
types) increased the mutational load (OR 1.45) compared 
with the wt, the r/r genotype was not associated with 
an increased mutational load compared with the wt (OR 
0.97).44 There is no such study in E318K+ cells that could 
provide insight regarding whether a susceptibility to high 
mutational burden paired with forced expression of MITF 
is the driving factor for the development of malignant cells 
within this cohort.

We noted similar findings in the population-based UK 
Biobank cohort, although we are hesitant to overinterpret 
these results given the limited number of confirmed mela-
noma cases. Within E318K+ individuals, the R allele trended 
(P = 0.07) towards being associated with a higher melanoma 
risk compared with the wt allele, while the r allele was com-
parable with the wt. In addition, no RHC genotypes were 
associated with increased melanoma risk relative to the wt/
wt genotype.

Population-level screening for melanoma is not thought 
to be cost-effective in Australia as the number of people 
needed to screen may be too high.4 However, targeted 
screening of high-risk individuals may be economically via-
ble.5 The information presented in this study could assist 
in identifying susceptible individuals, thereby facilitating tar-
geted screening. Our findings suggest that the MC1R RHC 
R allele may increase the risk of melanoma in E318K+ indi-
viduals, while the r allele does not.

To our knowledge, our study includes the largest cohort of 
MITF E318K+ individuals genotyped for MC1R RHC alleles. 
However, our high-risk cohort is not sufficiently powered 
to detect the effects of individual MC1R RHC genotypes 
within the E318K+ group. We note that there are always lim-
itations to pooling data from different studies given nuances 
in recruitment and evaluation. Lack of consistency in the 
documentation of other important risk factors for melanoma 
such as age, sex, geographical location and naevi size and 
number meant that we were not able to account for those 
factors in our analysis. Furthermore, the diverse aetiology 
of our cohorts limited our ability to compare MC1R RHC 
frequencies in MITF E318K+ vs. E318K– groups.

http://academic.oup.com/bjd/article-lookup/doi/10.1093/bjd/ljad041#supplementary-data
http://academic.oup.com/bjd/article-lookup/doi/10.1093/bjd/ljad041#supplementary-data
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In summary, we have shown an interactive relationship 
between the MITF E318K variant and MC1R RHC alleles 
and genotypes in high-risk cohorts. Specifically, in E318K+ 
individuals, the MC1R R allele increases melanoma risk rel-
ative to the wt allele while the r allele is comparable with 
the wt allele. If replicated in a larger cohort MITF and MC1R 
sequencing could further inform risk stratification and man-
agement recommendations.
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