Genes That Are Uniquely Stress Regulated in Salt Overly Sensitive (*sos*) Mutants¹

Zhizhong Gong², Hisashi Koiwa, Mary Ann Cushman, Anamika Ray, Davi Bufford, Shin Kore-eda, Tracie K. Matsumoto, Jianhua Zhu, John C. Cushman, Ray A. Bressan, and Paul M. Hasegawa*

Center for Plant Environmental Stress Physiology, 1165 Horticulture Building, Purdue University, West Lafayette, Indiana 47907–1165 (Z.G., H.K., T.K.M., J.Z., R.A.B., P.M.H.); Department of Biochemistry MS200, University of Nevada, Reno, Nevada 89557–0014 (M.A.C., S.K., J.C.C.); and Department of Biochemistry and Molecular Biology, Oklahoma State University, Stillwater, Oklahoma 74078 (A.R., D.B.)

Repetitive rounds of differential subtraction screening, followed by nucleotide sequence determination and northern-blot analysis, identified 84 salt-regulated (160 mM NaCl for 4 h) genes in Arabidopsis wild-type (Col-0 *gl1*) seedlings. Probes corresponding to these 84 genes and *ACP1*, *RD22BP1*, *MYB2*, *STZ*, and *PAL* were included in an analysis of salt responsive gene expression profiles in *gl1* and the salt-hypersensitive mutant *sos3*. Six of 89 genes were expressed differentially in wild-type and *sos3* seedlings; steady-state mRNA abundance of five genes (*AD06C08*/unknown, *AD05E05*/vegetative storage protein 2 [*VSP2*], *AD05B11*/S-adenosyl-L-Met:salicylic acid carboxyl methyltransferase [*SAMT*], *AD03D05*/cold regulated 6.6/inducible2 [*COR6.6/KIN2*], and salt tolerance zinc finger [*STZ*]) was induced and the abundance of one gene (*AD05C10*/circadian rhythm-RNA binding1 [*CCR1*]) was reduced in wild-type plants after salt treatment. The expression of *CCR1*, *SAMT*, *COR6.6/KIN2*, and *STZ* was higher in *sos3* than in wild type, and *AD06C08*/unknown, *CCR1*, *SAMT*, *COR6.6/KIN2*, and *STZ* were similar to *sos3*. *VSP2* is regulated presumably by *SOS2/3* independent of *SOS1*, whereas the expression of the others is *SOS1* dependent. *AD06C08*/unknown and *VSP2* are postulated to be effectors of salt tolerance whereas *CCR1*, *SAMT*, *COR6.6/KIN2*, and *STZ* are determinants that must be negatively regulated during salt adaptation. The pivotal function of the SOS signal pathway to mediate ion homeostasis and salt tolerance implicates *AD06C08*/unknown, *VSP2*, *SAMT*, *6.6/KIN2*, *STZ*, and *CCR1* as determinates that are involved in salt adaptation.

High soil salinity, which is caused typically by NaCl, results in ion toxicity and hyperosmotic stress leading to numerous pathologies including generation of reactive oxygen species (ROS) and programmed cell death (Niu et al., 1995; Zhu et al., 1997; Hasegawa et al., 2000b). Salt tolerance determinants are categorized either as effectors that directly modulate stress etiology or attenuate stress effects, or as regulatory molecules that are involved in stress perception, signal transduction, or modulation of effector function. Enzymes that catalyze rate-limiting steps in the biosynthesis of compatible solutes or osmoprotectants, e.g. sugar alcohol, quaternary ammonium, and tertiary sulfonium compounds, are categorical examples of osmotic stress tolerance effectors (Hanson et al., 1994; Ishitani et al., 1997; Yoshiba et al., 1997; Nelson et al., 1998; Hasegawa et al., 2000b). Other effectors include proteins that protect membrane integrity, control water or ion homeostasis, and ROS scavenging (Bray, 1994; Ingram and Bartels, 1996; Hasegawa et al., 2000b). Determinant function of some effectors has been confirmed because expression in transgenic plants enhances salt tolerance sufficiency (Hasegawa et al., 2000b).

Regulatory determinants include transcription factors and signal pathway intermediates that posttranscriptionally activate effectors (Hasegawa et al., 2000b). Basic Leu zipper motif, MYB and MYC, and zinc finger transcription factors, including rd22BP1 (MYC), AtMYB2 (MYB), DREB1A, and DREB2A (AP2 domain), and ALFIN1 (zinc finger), interact with promoters of osmotic-regulated genes (Abe et al., 1997; Liu et al., 1998; Hasegawa et al., 2000b). The osmotic stress tolerance function of DREB1A in Arabidopsis (Kasuga et al., 1999) and ALFIN1 in alfalfa (Medicago sativa; Winicov, 2000) has been confirmed by ectopic expression in transgenic plants. Regulatory intermediates that modulate plant salt stress responses include SOS3 (Ca²⁺-binding protein), SOS2 (Suc nonfermenting-like) kinase, Ca²⁺-dependent protein kinases, and mitogen-activated protein kinases (Sheen, 1996; Halfter et al., 2000; Kovtun et al., 2000). Additional signal intermediates have been implicated in the plant response to salt (Hwang and Goodman, 1995; Mizoguchi et al., 1996; Mikami et al., 1998; Piao et al., 1999; Hasegawa et al., 2000b).

The Zhu laboratory recently has pioneered identification of salt tolerance determinants using forward

¹ This work was supported by a National Science Foundation Plant Genome award (no. DBI–9813360). This is Purdue University Agricultural Experiment Station paper no. 16427.

² Present address: Department of Plant Sciences, University of Arizona, Tucson, AZ 85721.

^{*} Corresponding author; e-mail paul.m.hasegawa.1@purdue.edu; fax 765-494-0391.

genetics in the plant model Arabidopsis (Hasegawa et al., 2000a; Sanders, 2000; Zhu, 2000). This effort has identified three complementation groups of ion hypersensitive (salt overly sensitive [sos1-sos3]) mutants. Genetic and physiological data indicate that SOS3, SOS2, and SOS1 are components of a signal pathway that regulates ion homeostasis and salt tolerance and their functions are Ca²⁺ dependent. Positional cloning revealed that SOS1 encodes a putative plasma membrane Na^+/H^+ antiporter, $\hat{S}OS2$ encodes a Suc non-fermenting-like (SNF) kinase, and SOS3 encodes a Ca²⁺-binding protein with sequence similarity to the regulatory subunit of calcineurin and neuronal Ca²⁺ sensors (Liu and Zhu, 1998; Liu et al., 2000; Shi et al., 2000). Molecular interaction and complementation analyses indicate that SOS3 is required for activation of SOS2 that regulates SOS1 transcription (Halfter et al., 2000; Shi et al., 2000), further confirming that the order of the signal pathway is SOS3 \rightarrow SOS2 \rightarrow SOS1 (Hasegawa et al., 2000a; Sanders, 2000; Zhu, 2000).

Herein is described a functional dissection of the plant salt stress response by analysis of gene expression controlled by the SOS signal pathway. Differential subtraction and northern analysis identified 84 salt-regulated genes, the majority of which have not been annotated to be salt responsive in Arabidopsis. Comparison of salt regulation in wild type and sos3 identified six genes that are controlled by the SOS signal pathway. Transcription of one gene (VSP2) is controlled as an output from the SOS3/SOS2 pathway, similar to SOS1 (Shi et al., 2000), whereas regulation of five other genes (AD06C08, CCR1, SAMT, COR6.6/KIN2, and STZ) is dependent on both SOS3 and SOS2 as well. Because SAMT, COR6.6/KIN2, and STZ are induced by NaCl, negative control by SOS3 indicates that the SOS pathway functions to reduce the numerous signals induced by salt to those that function more specifically, to mediate processes like ion homeostasis.

RESULTS

Identification of Expressed Sequence Tags (ESTs) Corresponding to Salt-Regulated Genes

A combination of approaches was used to identify stress-regulated transcriptional outputs from the SOS pathway on the premise that these are salt tolerance

determinants. A population of ESTs representing salt-regulated transcripts was identified by screening, through three rounds, a subtracted cDNA library prepared from wild-type (Col-0 gl-1) seedlings treated for 4 h without or with 160 mM NaCl. Differential dot-blot hybridization, and sequence and northern-blot analyses identified unique ESTs (saltregulated ESTs [SREs]) that detected salt-regulated transcripts (Table I). The second and third rounds of screening eliminated highly repetitive clones from the initial subtracted library, including those ESTs identified during the first round of screening. The differential subtractive chain selection protocol was used in the third round (Luo et al., 1999) to further enrich for less abundant cDNAs in the library. The different rounds of screening led to identification of 84 nonredundant ESTs that hybridize to saltregulated transcripts based on northern-blot analysis (Table II). The SREs represent the greatest number that has been used in one study to define the transcriptional response of plants to salt stress. These results identify genes whose expression is most likely controlled by transcriptional activation, although other factors such as salt stress-dependent mRNA stability might contribute also to steady-state transcript abundance.

Database comparisons of SREs using Blast programs determined that the corresponding encoded proteins included those involved in primary metabolism, cell wall synthesis or degradation, other cellular functions, transport or nutrient assimilation, signaling, and defensive responses (Table II). The SREs were compared with Arabidopsis genome data using Blastn. Blastp analysis was performed on any SRE ORF, without predicted function, that was identified in an Arabidopsis database. Blastx/Blastp analysis was performed on SRE sequences that were unannotated as an ORF.

Several of the salt-responsive genes identified in this evaluation encode components of octadecanoid signaling through jasmonic acid (Table II, lipid signaling responses). The plant hormone appears to be derived from hydrolysis of membrane phospholipids (Koiwa et al., 1997). Triacyl glycerol lipase (AD03B08) can release free linolenic acid from phospholipids that is then oxidized by lipoxygenase (AD04G12) and cyclized by allene oxide synthase and allene oxide cyclase (AD04D07) to 12-oxo-phytodienoic acid. Two

 Table I. Arabidopsis (Col-1 gl1) SREs identified after successive rounds of differential subtraction

 Salt regulation was based on detection of altered steady-state transcript abundance after NaCl treatment

Round	Dot Blot	Sequenced	Unique Clones	Salt Regulated
First	1,000	137	34	25
Second	6,000	157	91	42
Third	3,000	320	80	17
Total	10,000	614	205	84

Total RNA v the information gene/protein au	vas isolated 1 from the Ar ccession nos.	from seed abidopsis . Highligh	lings transferre genome sequited in bold ar	ed to medium ence project: c e SREs that det	without or with hromosome nc tected transcrip	160 mM NaCl for 4 h SREs were subject ,, section on chromosomes 2 and 4, or B/ ots differentially regulated in <i>gl1</i> and sos3	ted to Bla AC clone . Transcri	stn analysi identificati pt abunda	is and illustrated on no. (for chror nce is rated base	are annotatic nosomes 1, 3 ed on the scal	ons based on , and 5), and le illustrated.
-		8									
GenBank Accession No.	EST No.	Chromo- some	BAC Clone No.	geneID	proteinID	Annotation on Arabidopsis Gene/Homolog ^a	Score	E Value	Comments	gl-1 Control	gl-1 Salt
Primarv metab	olism						bits				
Photosynthe	sis										
BE844959 DE845170	AD04H11	ς Ω	F5N5	ATU05218	AAA21570.1	ATP sulfurylase Butting chloroobull a the hinding	492 780	e-138 0.0		+++++++++++++++++++++++++++++++++++++++	+++++
DE040179	0000000	4	C4	001 008714	1.0000100000	r utative ciriotopriyit <i>alu</i> -biriunitg protein	607	0.0		I	F F
BE845351	AD10C12	4	69	AT4g28750	CAB81463.1	Photosystem I subunit PSI-E-like protein	513	e-144		+ + +	+ + + +
BE845356 Carbohvdrat	AD10D06 e	, -	F12A21	F12A21.11	AAF26934.1	Putative PSBY emblCAA11248	728	0.0		++++	+ + +
BE844849	AD03C01	4	~	dl4575c	CAB46051.1	Putative eta -amylase	1078	0.0	Gene	I	+
BE844998	AD05E02	ς	45 T22E16	AT4g17090 T22E16.70	CAB80980.1 CAB75899.1	2-Oxoglutarate dehydrogenase, E1subunit-like protein	242	2e-63	aupiication	+	+ +
Amino acid						-					
BE844834 BE844976	AD03A02 AD05B09	4 –	59 F1511	AT4g23600 F1511.19	CAB79315.1 AAD25783.1	Tyrosine transaminase-like protein Strong similarity to gblS77096 alde- hude debuderstores bronched from	605 137	e-172 5e-31	Proline	+ +	<pre>< + + + + + + + + + + + + + + + + + + +</pre>
						ingue denyurogenase nomong nom Brassica napus and is a member of PF100171 aldehyde dehydrogenase			ueglauatiolis		
BE845063	AD06C01	ŝ	T21L8	T21L8.90	CAB51206.1	lattility Glutamine-dependent asparagine svnrhetase	210	4e-53		+	+++++++++++++++++++++++++++++++++++++++
BE845111	AD06G04	4	82	AT4g34710	CAB80188.1	Arginine decarboxylase SPE2	809	0.0	Polyamine synthesis	I	+++++++++++++++++++++++++++++++++++++++
Others BE844989	AD05D03	Ŋ	K24M7	I	I	Not annotated	55.4	6e-08	Cytochrome	I	++++++
						pirllA29368 Prostaglandin omega- hydroxylase (EC 1.14.15) cyto- chrome P450 4A4, rabbit ^a	48	e-05			
Cellular functi Cell wall	00 • • • • • • • • • •	L					7 1			-	-
BE044904	AU04612	n	GINNIM	Ab019239.1	DAA9/199.1	Kipening related, protein like; contains similarity to pectinesterase	717	0.0		÷	+ + +
BE845087	AD06E01	IJ	F7K24	I	I	Not annotated pirllT11610 Probable cinnamyl- alcohol dehydrogenase (EC 1.1.1.195) CPRD14 (<i>Vigna</i> <i>unguiculata</i>) ^a	339 191	3e-92 2e-48		+	+++++

gl-1 Salt	+ + +	$\begin{array}{c} + & + & + \\ + & + & + \\ + & + & + \end{array}$	$\begin{array}{c} +\\ +\\ +\\ +\end{array}$	+ + + + + +	+ + + +	+ + + + + + + + + + + + + + + + + + +	+ + + +	$\begin{array}{c} + \\ + \\ + \\ + \\ + \end{array} +$
gl-1 Control	+	+ 1 1 +	ı + + +	1 1	I +	+ + + + + +	1 1	+
Comments		PDZ domain Protease Vesicle transport Vesicle transport	Cell division and expansion Ccr1	Plant growth Pre-rRNA	processing Chaperon Protease	Chaperon Transposon	Transporter?	Nitrogen Transporter Transporter
E Value	e-118	0.0 e-106 6e-55 2e-36	0.0 e-08	e-134 e-114	e-143 4e-37 3e-09	4e-46 0.0 0.0	0.0 1.6	e-112 e-173 e-148
Score	bits 424	856 385 216 155	692 749 59.7	480 412	509 157 64	186 638 1086	424 995 35.2	406 609 527
Annotation on Arabidopsis Gene/Homolog ^a	Strong similarity to similar to pectines- terase, contains pectinesterase signa- tures AA407-414	Periaxin-like protein Similar to vacuolar processing enzyme Putative protein transport protein SEC61 alpha subunit Putative transport protein	reflNP_062761.11 SEC23B (Saccharo- myces cerevisiae) ^a Putative protein: similarity to Arabi- dopsis nap gene, PID:e1234813 Gly-rich protein (clone AtGRP8): Con-	tains eukaryotic putative RNA- binding region RNP-1 signature AA47-54 Putative protein: similarity to PIT1, Arabidopsis, GB: AF130849 Fibrillarin-like protein: strong similarity	to probable fibrillarin (5b21) mRNA, <i>Picea mariana</i> , AF051216 Chaperone protein (atj) Unknown protein, splO594131PFPI_PYRHO PROTEASE 1 (<i>Pyrococcus horikoshi</i>) ^a	Mitochondrial chaperonin (HSP60) Putative retroelement pol polyprotein Contains similarity to Pfam family PF00240, ubiquitin family	Containts stimulating to sugar transporters Putative protein, splQ96250IATP3_ARATH ATP SYN- THASE GAMMA CHAIN, MITO- CHONDRIAL PRECURSOR ^a	Ferredoxin-nitrite reductase Putative peptide transporter Putative protein: similarity to amino acid transport protein, Arabidopsis,
proteinID	CAB80726.1	CAB89377.1 AAF19550.1 AAC27401.1 AAF79733.1	CAB81391.1 CAB80589.1	CAB61981.1 CAB81373.1	AAB86799.1 AAC79625.1	AAC04902.1 AAD25832.1 CAB81047.1	CAB87674.1	AAD17406.1 AAF07386.1 CAB89334.1
geneID	AT4g02330	F17l14_270 F23N19.7 At2g34250 T25N20.17	AT4g27400 AT4g39260	F1P2.100 AT4g25630	ATHATJ At2g38860	At2g33210 At2g04460 AT4g05050	F14F18_180	At2g15620 T17F3.10 F8M21_130
BAC Clone No.	9	F17I14 F23N19 189 T25N20	67 06	F1P2 63	? 210	185 21 14	F14F18	91 T17F3 F8M21
Chromo- some	4	- 7 - ⁻	4 4	- 4	~ ~	7 7 7 J	nц	7 - 7
nued EST No.	AD06H02	ein trafficing AD06A05 AD06A07 AD06C02 AD06D12	ar functions AD04F04 AD05C10	AD06A09 AD06B07	AD06E12 AD07C05	AD07H10 AD08B06 AD10H03 trrient uptake	AD04C05	AD04E04 AD05E11 AD06B06
Table II. Conti, GenBank Accession No.	BE845121	Vesicle/prote BE845046 BE845048 BE845064 BE845064 BE845086	Other cellula BE844934 BE844985	BE845050 BE845059	BE845095 BE845137	BE845172 BE845190 BE845392 Transporters/nu	BE844907 BE844907	BE844924 BE845007 BE845058 BE845058

Table II. Cont	tinued										
GenBank Accession No.	EST No.	Chromo- some	BAC Clone No.	genelD	proteinID	Annotation on Arabidopsis Gene/Homolog ^a	Score	E Value	Comments	gl-1 Control	gl-1 Salt
71 C 1 C 1 C	20007	L			0 4 7 1 F 00 1		bits г 4 1	C L T			-
BE845350 BE845350	AD10C11 AD10C11	იო	F4P12	F4P12_210	DAA/4309.1 CAB67658.1	ABC transporter-like protein	5866 5	e-122 0.0	Transporter		+ + + +
Signaling General sigi	nal componer	lts									
BE844894	AD04B01	2	106	At2g18190	AAD31347.1	Putative AAA-type ATPase	884	0.0		+	+++++
BE844899	AD04B07		T10024	T10024.2	AAD39582.1	Hypothetical protein, dbj1BAB11554.11	1085	2.9e-185	Transcrip-	I	+++++
						(AB011479), contains similarity to bHLH DNA-binding protein: gene_id:MNA5.5 (Arabidonsis)ª	36.7	0.16	tion		
BE844973	AD05B05	Ŋ	MJC20	MJC20.11	BAB08434.1	Contains similarity to unknown protein (AF117897), rab11-binding protein (Bos taurus) ^a	507 187	e-142 4e-46	WD repeat	+	+ + +
BE845012	AD05F04	3	MMM17	MMM17.7	BAB01914.1	Casein kinase-like protein	353	4e-96		+++++	+++++++++++++++++++++++++++++++++++++++
BE845028	AD05G10	n	T5P19	T5P19_160	CAB88054.1	Putative protein: similarity to TATA- binding protein-binding protein, ABT1: <i>Mus musculus</i> , EMBL AB021860	291	e-77	Transcrip- tion	+	++++
BE845052	AD06A11	IJ	MQN23	MQN23.23	BAB11664.1	G protein-coupled receptor-like protein	377	e-103		++++++	+++++++++++++++++++++++++++++++++++++++
BE845077	AD06D03	ŝ	F24M12	F24M12.170	CAB62635.1	Putative protein: similarity to lin-10 protein: <i>Rattus norwegicus</i> , PIR:	268	2e-70	Receptor targeting	+	+++++
BE845082	AD06D08	-C	MAC9	MAC9.10	BAB10078.1	Transcription factor-like protein	317	2e-85	Transcrip- tion	+	+ + +
BE845106	AD06F11		F24B9	F24B9.4	AAF75068.1	Contains similarity to a protein kinase gbID88207	139	9e-33		+	+ + +
BE845234	AD08G06	m	F26F24	F26F24.8	AAF86997.1	Hypothetical protein, emblCAB92072.11 (AL121575), dJ914N13.2.1 (cofactor required for Sp1 transcriptional activation, sub- unit 3; 130kd; CRSP130, DRIP130, SUR2, and KIAA1216; isoform 1)	274 84.3	2e-72 9e-15		I	+
BE845243		5	77	At2g13790	AAD28318.1	Putative receptor-like protein kinase	184	7e-46		- - -	- + - + - -
400040010		n	MULD		DADUUU09.1	rransiauonany controned turnor pro- tein like	<i>ксс</i>	/CI-a	binding	+ + +	+ + + +
Lipid signal BE844846	ing/response AD03B08	Υ	T8P19	T8P19.200	CAB62358.1	Putative protein, splP244841LIP2_MORSP LIPASE 2	1176 58.6	0.0 9e-08	Lipase	+	+ + +
RF844917		ć	K13N2	K13N2 11	RAA95764 1	(TRIACYLGLYCEROL LIPASE) ^a Llnknown emhlCAB95731 11	472	е-13 <i>7</i>	lA synthesis	+	+ + +
		3				(A)272026) allene oxide cyclase (<i>Ly-copersicon esculentum</i>) ^a	249	3e-65			- - -
BE844950	AD04G12	ς	T14D7 2	T14D3.80	CAB72152.1	Lipoxygenase AtLOX2	432	e-120		+	<+
BE845UUI	ADUJEUD	ŋ		ABUU6//0	BAA33447.1	Vsp2 gene for vegetative storage protein	60¢	e-143		I	+ + +

Table II. Cont	'inued										
GenBank Accession No.	EST No.	Chromo- some	BAC Clone No.	genelD	proteinID	Annotation on Arabidopsis Gene/Homolog ^a	Score	E Value	Comments	gl-1 Control	gl-1 Salt
BE845091 BE845100	AD06E08 AD06F05	υc	MTI20 T02O04	MTI20.3 T02O04.11	BAB08850.1 AAB63638.1	Lipid transfer protein; glossy1 homolog Jasmonate-inducible protein isolog,	<i>bits</i> 414 466	e-114 e-130		+ +	+ + + + + + + +
Hormone re	alated					myrosinase binding protein like					
BE844978	AD05B11	m	F28D10	F28D10_50	CAC03536.1	AtPP-like protein: prokaryotic mem- brane lipoprotein lipid attachment site AA199-209 (AF133053), S-ad- enosyl-L-methionine:salicylic acid carboxyl methyltransferase (Clarkia brewern ^a	706 129	0.0 6e-29	SA	I	+++
BE845401 BE845084 Cell death	AD05C05 AD06D10	~ . 6	? T10D17	AF183827 T10D17_90	AAF22295.1 CAB88998.1	Beta-glucosidase homolog (BG1) Nitrilase 2	3515 202	0.0 e-50		· +	+ + + + + + +
BE844851	AD03C06	5	MQL5	MQL5.19	BAA97167.1	Palmitoyl-protein thioesterase precur- sor like	422	e-117	Anti- apoptosis?	+	+ +
BE844958	AD04H10	ŝ	F28D10	F28D10_70	CAC03538.1	Lethal leaf-spot 1 homolog Lls1: con- tains prokaryotic membrane lipopro- tein lipid attachment site AA150-160	472	e-132	Dioxygenase	+	+++++
Defense respc Defense pro	onse oteins										
BE844875 BE844896	AD03C09 AD04B03	— ю	F22K20 MSG15	F22K20.19 MSG15.3	AAC00625.1 BAB11043.1	Alcohol dehydrogenase Mandelonitrile lyase-like protein	486 519	e-136 e-146	Cyanogene-	+ 1	$\overset{+}{\overset{+}{\overset{+}{\overset{+}{\overset{+}{\overset{+}{\overset{+}{\overset{+}$
BE844926	AD04E06	3	MDB19	MDB19.5	BAB02775.1	Contains similarity to endo-1,3-1,4-	414	e-115	cic	+	+ + +
BE844972	AD05B03		F5F19	F5F19.6	AAD12691.1	Similar to gblY09437 myrosinase bind- ing protein from <i>B</i> papers	194	8e-49		I	+
BE844990 BE845403	AD05D04 AD06E03	~ ~	F24B9 F15K9	F24B9.34 F15K9.17	AAF75098.1 AAC72119.1	Metallothionein Strong similarity to gblD14550 extra- cellular dermal glycoprotein (EDGP)	605 745	e-172 0.0		+ + + +	+ + + + + + + +
BE845117	AD06G10		F14N23	F14N23.25	AAD32887.1	precursor from <i>Daucus carota</i> Similar to glutathione S-transferase TSI-1 (øil7190992)	763	0.0	Cyanogene- sis	+	+ + + +
BE845152 BE845153	AD07F07 AD07F08	5	236 MOJ9	At2g43620 MOJ9.4	AAB64044.1 BAB11145.1	Putative endochitinase Polygalacturonase-inhibiting protein	549 509	e-154 e-142	2	+ 1	+ + + + + + + + + + + + + + + + + + +
LOVKU Pro BE844850	teins AD03C02	4	73	AT4g30650	CAB79783.1	Strong similarity to low temperature and salt-responsive protein LTI6A,	383	e-105		+	+ + +
BE844854 BE844855	AD03D05 AD03D11	2 2	F1N13 F14N22	F1N13_110 At2g42540	CAC01796.1 AAD22999.1	Cold-regulated protein COR6.6 (KIN2) Cold-regulated protein cor15a	341 519	2e-92 e-14		1 1	<pre></pre>
BE844865	AD03F02	5	K24M7	D13044	BAA02376.1	precursor Desiccation-responsive rd29A	371	e-101		I	< + + + + + + +
BE845022 BE845049	AD05G04 AD06A08	- 1	T14C9 F15M15	ATHRD22 F5M15.21	BAA01546.1 AAF79613.1	rd22 Gene Similar to cold-regulated protein cor47	448 127	e-124 4e-28		- ~-	+ + + + +

Gong et al.

Iable II. Con	tinuea										
GenBank Accession No.	EST No.	Chromo- some	BAC Clone No.	genelD	proteinID	Annotation on Arabidopsis Gene/Homolog ^a	Score	E Value	Comments	gl-1 Control	gl-1 Salt
A nthornau	a evothacie						bits				
BE844845	AD03B06	Ŋ	MOP10	MOP10.14	BAB11549.1	Leucoanthocyanidin dioxygenase-like	664	0.0		I	<+++++++++++++++++++++++++++++++++++++
BF844892	AD04A11	6	206	At2ø38240	AAC27173.1	protein Putative anthocvanidin svnthase	203	4e-87		I	+ + + +
BE845101	AD06F06	14	 T29A15	AT4g27560	CAB38268.1	Strong similarity to UDP chamose- anthocyanidin-3-glucoside chamo- evitmetersee Detroid behavid-	837	0.0		+	. + . +
Antioxidatic	u										
BE844884	AD04A02	IJ	F5O24	AB035137	BAA86999.1	Blue copper-binding protein	494	e-138	Anti- oxidation	+	+ + + +
Unknown											
BE844860	AD03E08	3	T19D11	Ι	I	Not annotated, dbjlBAB02819.11	135	4e-31		Ι	+++++
						(AB024036), dbjlBAA87936.1: gene_id:MQC12.15, similar to	46.1	5e-05			
						unknown					
BE844992	AD05D06	5	K3M16	K3M16_30	CAC01890.1	Hypothetical protein	777	0.0		I	++++++
BE845016	AD05F09	ŝ	F14O13	F14O13.28	BAB03026.1	Similar to unknown protein	476	e-133		+	+++
BE845069	AD06C07	. 	F22O13	F22O13.29	AAF99773.1	Unknown protein	690	0.0		+	+++
BE845070	AD06C08	ŝ	F16J14	I	I	Not annotated	910	0.0		+	++
						emblCAB86422.11 (AL1 38648) puta-	78.8	4e-14			
						tive protein (Arabidopsis) ^a					
BE845097	AD06F02	ż	ż	I	I	Not annotated				+	+ + + +
BE845355	AD10D05		F24J8	I	I	Not annotated	775	0.0	Transporter	I	++++++
						gblAAF28474.11AF173553_1 (AE1735553) // ATD355 110 LD into	29.7	16			
						gral membrane subunit (Manduca					
						sexta) ^a					
BE845376	AD10F07	. 	T27G7	I	I	Not annotated	579	e-164		+	+++++
						SPIQ08180IICCR_DROME_IRREGULAR CHIASM_C-ROLICHEST_PROTEIN	32.1	3.7			
						PRECURSOR (IRREC PROTEIN) ^a					
^a Blastp ané	Ivsis was per	rformed on	anv Arabidor	osis open read	ing frame (ORF) that corresponded to an SRE that is not f	functiona	llv annotat	ed. Anv SRE se	equence that di	d not match
an Arabidopsi	s ORF was si	ubjected to) Blastx/Blastp	analysis.	0						

SREs were annotated previously as jasmonic acid regulated, VSP2 (AD05E05) and AD06F05. Furthermore, the genes of a number of SREs are involved in plant defense and may be regulated by the octadecanoid signal pathway. Some of these genes have been shown to express upon dehydration in tomato (*Lycopersicon esculentum*; Reymond et al., 2000). Several abscisic acid (ABA)-responsive SREs are included in Table II and the plant hormone is a potentiator of octadecanoid signaling.

Genes Differentially Regulated by Salt in Wild Type and *sos*3

The salt regulated expression profile of SRE transcripts, as well as that of previously characterized stress-regulated genes (ACP1, RD22BP1, MYB2, STZ, and *PAL*), revealed that most are controlled similarly in wild type and sos3. Six of the salt-responsive genes, including STZ (Lippuner et al., 1996), were differentially regulated in wild type and *sos3* (Fig. 1). Transcript abundance of two was lower (AD06C08/ unknown and AD05E05/vegetative storage protein2 [VSP2]) and of four was higher (encoding AD05C10/ cold-circadian rhythm-RNA binding1 [CCR1], STZ/ salt tolerance zinc finger [not shown], AD05B11/Sadenosyl-L-Met: salicyclic acid carboxyl methyltransferase [SAMT], AD03D05/cold regulated/cold inducible [COR6.6/KIN2]) in the salt-sensitive mutant. SAMT and COR6.6/KIN2 transcript abundance was slightly elevated in sos3 but the steady-state mRNA levels were hyper-induced by salt treatment. CCR1 was the only gene for which transcript abundance is reduced by salt treatment.

Salt regulation of *VSP2* is similar in wild type and *sos1* indicating that transcriptional activation is not

Figure 1. Salt-responsive gene expression that is dependent on the SOS pathway in *Arabidopsis*. Genes that are differentially regulated in wild-type (Col-0 *gl1*) and *sos3*. Total RNA (40 μ g) from seedlings grown in liquid culture (14 d) and treated without or with 160 mM NaCl for 4 h. The northern blot was hybridized with ³²P-labeled probe corresponding to: *COR6.6/KIN2, SAMT, CCR1, VSP2*, and *AD06C08* (unknown). *AtGAPDH* (glyceraldehyde-3-phosphate-dehydrogenase) is the control.

dependent on SOS1 (Fig. 2). Methyl jasmonate (MeJA) induces VSP2 transcript abundance in wild type and sos3 (not shown). The SOS3/2 pathway and the hormone seem to regulate VSP2 independently. Signal pathways often converge to regulate transcription of key effectors involved in cellular adaptation to environmental perturbation (Rep et al., 2000). VSP2 is a member of a two-gene family (87% nucleotide sequence identity over the coding region) that encodes a protein with similarity to soybean VSPs (Berger et al., 1995; Utsugi et al., 1998), which are vacuolarlocalized glycoproteins with acid phosphatase activity (Mason and Mullet, 1990). These proteins are presumed to be amino acid sinks during water deficit but are important reduced nitrogen sources after stress relief (Mason and Mullet, 1990).

CCR1, STZ, SAMT, COR6.6/KIN2, and AD06C08/ unknown have similar expression profiles in sos1, sos2, and sos3, implicating these as transcriptional outputs requiring all components of the SOS pathway. CCR1 encodes a Gly-rich RNA-binding protein implicated in posttranscriptional regulation. CCR1 and CCR2 comprise a two-gene family, and their expression is regulated by a diurnal circadian clock (Carpenter et al., 1994; Heintzen et al., 1997; Kreps and Simon, 1997). CCR1 or CCR2 expression negatively regulates either gene and this feedback loop presumably facilitates diurnal oscillation controlled by the master circadian clock (Heintzen et al., 1997). CCR1 and CCR2 steady-state mRNA levels are induced by cold but CCR1 transcript is negatively regulated by ABA and dehydration, whereas CCR2 expression is induced by dehydration (Carpenter et al., 1994). CCR1 transcript abundance was downregulated in sos3 indicating that the SOS pathway is at least another negative regulator that controls CCR1 expression downstream of the circadian rhythm clock (Heintzen et al., 1997; Kreps and Simon, 1997). These results indicate that control of circadian oscillations may be required during the salt stress response.

COR6.6//KIN2 and SAMT are both implicated in plant stress responses. COR6.6/KIN2 is linked in tandem to its homolog KIN1 (95% nucleotide sequence identity in the coding region) and both encode hydrophilic peptides that are boiling soluble but of unknown function (Thomashow, 1999). KIN1 and 2 transcript abundance is cold and ABA induced (Kurkela and Franck, 1990; Kurkela and Borg-Franck, 1992; Thomashow, 1999) but KIN2 and not KIN1 expression is modulated positively by drought and salt (Kurkela and Borg-Franck, 1992). SAMT catalyzes the formation of methylsalicylate from salicylic acid using S-adenosyl-L-Met as the methyl donor (Ross et al., 1999). The volatile ester is implicated as a pollinator attractant and a signal in plant defense mediated by salicylic acid (Ross et al., 1999; Dudareva et al., 2000).

Figure 2. Comparative expression of genes dependent on the SOS pathway in wild type (Col-0 and *gll*) and *sos1*, *sos2*, and *sos3*. Illustrated is the northern blot of steady-state mRNA levels of *COR6.6/KIN2*, *SAMT*, *CCR1*, and VSP2 in plants without (0 h) or 160 mM NaCl (24 h). Ethidium bromide staining was used to monitor RNA loading.

DISCUSSION

Many salt-regulated genes are responsive also to other biotic or abiotic perturbations, indicating that these stresses have common etiologies, e.g. water deficit, and cold are both osmotic stresses, occur simultaneous in the environment or elicit similar pathologies (Bohnert et al., 1995; Shinozaki and Yamaguchi-Shinozaki, 1997; Zhu et al., 1997; Hasegawa et al., 2000b). Furthermore, osmotic and ionic stresses induce secondary cellular perturbations that arise from ROS, elicitors from degradation of cell wall and plasma membrane macromolecules, or wounding, which initiate signal transduction pathways that modulate other plant defensive processes (Hasegawa et al., 2000b). In fact, many of the proteins encoded by the 84 salt-responsive genes identified in this study can be categorized as functional outputs from these different signal cascades (Table II). Most of these genes were not known previously to be modulated as a part of the Arabidopsis salt response. It is interesting that even after subtractive hybridization only approximately 13% of the ESTs (84/614) were unique and detected salt-regulated transcripts.

Six of 89 genes examined were differentially responsive to NaCl in wild type and *sos3*, implicating the SOS pathway in their transcriptional regulation. *AD06C08*/unknown and *VSP2* are induced and *CCR1*, *STZ*, *SAMT*, and *COR6.6/KIN2* are controlled negatively by SOS3. *CCR1* expression was lower in wild type after NaCl treatment, whereas the message abundance of the others was salt induced. From these results, a model for the SOS pathway regulation of these genes is illustrated in Figure 3 (Zhu, 2000). Salt regulated expression of *VSP2* is the same in wild type and *sos1* defining this gene as a transcriptional output from the SOS pathway that does not require *SOS1*. This supports the premise that SOS3 and SOS2 are signal intermediates and SOS1 is an effector of Na⁺ homeostasis (Shi et al., 2000). However, salt regulation of *AD06C08*/unknown, *CCR1*, *STZ*, *SAMT*, and *COR6.6/KIN2* is dependent on *SOS2* and *SOS1*, perhaps implicating a signaling function for SOS1. Genes encoding an enzyme catalyzing the penultimate step in Pro biosynthesis (*P5CS*) and a putative transcription factor (*AtMYB*) are hyper-induced by

Figure 3. Illustrated is a model depicting the SOS pathway regulation of salt responsive genes. Hypersaline conditions activate the SOS (SOS3 \rightarrow SOS2 \rightarrow SOS1) signal pathway (Zhu, 2000) and transcript abundance of *AD0608* (unknown), *VSP2* (vegetative storage protein 2, *AD05E05*), *SAMT* (S-adenosyl-L-Met:salicylic acid carboxyl meth-yltransferase, *AD05B11*), *COR6.6/KIN2* (cold regulated 6.6/inducible 2, *AD03D05* [*COR6.6/KIN2*], and *STZ* [salt tolerance zinc finger], Lippuner et al., 1996) increase and of CCR1 (circadian rhythm-RNA binding1, *AD05C10*) decreases in Arabidopsis seed-lings. Positive (\downarrow) or negative (\bot) regulation by the SOS pathway is indicated.

salt in *sos1* compared with wild type (Liu and Zhu, 1997). Furthermore, some transport proteins include sensor domains or function in association with sensors (Ozcan et al., 1998; Heinisch et al., 1999; Sabirov et al., 1999) as could the putative Na^+/H^+ antiporter SOS1 (Shi et al., 2000).

The experimental evidence presented here indicates that the SOS pathway controls expression of only a few salt stress-specific tolerance determinant genes among the numerous genes (six of 89 in this study) that are regulated in the plant response to NaCl treatment (Zhu et al., 1997). This is similar to the paradigm that has been established recently for the salt stress response of the unicellular eukaryote yeast (Saccharomyces cerevisiae). Genome-wide array analysis determined that osmotic upshock causes a rapid and multi-fold increase in mRNA of between 186 and 1,359 genes and reduced transcript abundance of more than 100 genes depending on the severity of osmotic shock, the osmotic agent (NaCl or sorbitol), and time after treatment (Posas et al., 2000; Rep et al., 2000; J. Yale and H.J. Bohnert, unpublished data). Salt-induced expression of most is either partially or completely controlled by the high osmolarity glycerol and mitogen-activated protein kinase pathway. The yeast calcineurin pathway is analogous to the Arabidopsis SOS pathway, controls ion homeostasis and is essential for salt tolerance in yeast (Mendoza et al., 1994, 1996), and affects expression of many fewer osmotic responsive genes (T.K. Matsumoto, unpublished data). Like the SOS pathway, calcineurin regulates expression of genes that encode salt tolerance effectors such as Na⁺ efflux transporters (Mendoza et al., 1994; Shi et al., 2000; Matusmoto et al., unpublished data).

It is conceivable that signal transduction through the SOS pathway that mediates salt tolerance may have a substantial component that involves posttranscriptional activation of salt tolerance effectors, particularly over the time span (minimum of 4 h) of the salt treatment used in experiments reported here. Plant survival in severe stress likely requires very immediate cellular responses, whereas transcriptional regulation may be sufficient for stress recovery and adaptation. Notwithstanding, salt induces transcriptional activation of genes in yeast within minutes (Posas et al., 2000; Rep et al., 2000). Genes that are transiently induced or weakly expressed further complicate inference of function from expression profile analysis. The majority of yeast genes induced by mild salt shock exhibit transient expression (Posas et al., 2000). Determinant gene transcript abundance differences in wild type and sos3 may be insufficient for the resolution limits of the subtraction protocols, yet are biologically meaningful to salt stress adaptation.

It is interesting that the SOS pathway negatively controls the expression of four salt-regulated genes (*SAMT*, *COR* 6.6/*KIN2*, *STZ*, and *CCR1*), three (*SAMT*,

C0R6.6/KIN2, and STZ) of which are induced by NaCl treatment. So, salt tolerance determinants include genes that must be repressed, at least temporally, during the plant stress response. Negatively regulated genes may include those that contribute to growth arrest necessary during the period of adjustment or ameliorate other etiologies that occur coincidentally with salt in the native environment of the organism. CCR1 and COR6.6/KIN2 are cold induced, whereas SAMT is implicated in plant defense against pathogens indicating their principal function is not in salt adaptation. Together, this suggests that a function of the SOS pathway is to discriminate against the myriad of stress signals that are elicited by salt and to focus the capacity of the plant to cope with the principal etiology; in this instance, ion dis-equilibrium. Furthermore, the SOS pathway may coordinate temporal gene expression to focus the availability of effectors, as required, during stress perception, amelioration, or adaptation. Confirmation that the genes identified in this study encode tolerance determinants awaits molecular genetic confirmation by lossor gain-of-function experimentation.

MATERIALS AND METHODS

Plant Material

Arabidopsis (ecotype Columbia-0 gl1) and sos1, sos2, and sos3 were wild-type and salt-hypersensitive genotypes, respectively (provided by Dr. Jian-Kang Zhu, University of Arizona). Seeds were surface disinfected and stratified for 2 d at 4°C. Seeds were germinated in liquid medium (Murashige and Skoog salts [Murashige and Skoog, 1962] and 3% [w/v] Suc [pH 5.8]) in 250-mL flasks on a gyratory shaker (80–100 rpm) under low-intensity Cool White fluorescent illumination (light/dark:16/8 h daily) at 22°C to 24°C. After 14 d, seedlings were transferred to fresh medium without or with 160 mM NaCl for the time interval indicated. Seedlings were harvested, frozen in liquid nitrogen, and stored at -80°C.

Construction of Subtraction Libraries

Total RNA was isolated as described by Gong et al. (1997). mRNA was isolated using the $Poly(A)^+$ RNA purification kit (CLONTECH, Palo Alto, CA). The PCR-Select cDNA subtraction kit (K1804-1, CLONTECH) was used to obtain subtracted cDNA libraries.

Subtraction of cDNAs Obtained from mRNA of Salt-Treated sos3 and gl1

Subtractive hybridization was used to identify cDNAs corresponding to salt regulated genes differentially expressed in *sos3*. Both forward and reverse subtractive hybridizations were performed with salt-treated (160 mm NaCl, 4 h) seedlings. The forward subtraction used tester cDNA obtained from mRNA of *gl1* and driver cDNA from *sos3*. In the reverse subtraction, the tester cDNA was ob-

tained from *sos3* and driver cDNA from *gl1*. Driver cDNAs are the reference and are targets for elimination during subtraction leaving unique tester cDNAs. Forward and reverse subtractive hybridization was meant to identify salt-responsive genes that are specifically regulated in *sos3*.

Subtraction of cDNAs Obtained from *gl1* after Treatment without or with NaCl

This subtraction was intended for identification of genes differentially regulated by salt in gl1. The forward subtraction tester cDNA was obtained from mRNA of gl1 seedlings 4 h after transfer to medium with 160 mM NaCl and driver cDNA from gl1 plants grown in medium without salt. In the reverse subtraction, tester and driver cDNA was obtained from gl1 grown without and with 160 mM NaCl, respectively.

The subtracted libraries were subjected to two rounds of PCR amplification, the second using nested primers for adaptors 1 and 2R (CLONTECH). The PCR products were ligated into pT-Adv (CLONTECH), and transformed into *Escherichia coli*. The white colonies were isolated and inserts amplified by PCR.

Enrichment of Unique Salt-Regulated cDNAs in the Subtraction Library

A modification of the differential subtraction chain method (Luo et al., 1999) was used to enrich the subtracted library for unique salt-regulated cDNAs. The driver for this subtraction (driver 2) is a mixture of second PCR product from reverse subtraction (100 μ L; tester DNA:gl1 without salt, driver DNA:gl1 with salt) and PCR products amplified from highly repetitive salt-induced cDNAs isolated from previous rounds of screening (0.5 μ L of each). To remove adaptor sequences from driver 2, the mixture was digested at the restriction sites of adaptors 1 (SmaI and RsaI) and 2R (EagI and RsaI) by consecutive restriction digestion using SmaI, and then EagI + RsaI. The digested DNA was extracted with phenol and phenol/chloroform, and then precipitated with ethanol. The precipitate was redissolved in 100 μ L of water and passed through the Microcon YM-30 column (Amicon, Beverly, MA) to separate the DNA from Adaptor fragments. Driver 2 DNA was recovered in 20 μ L of water and used as driver in the following PCR subtraction. About 10 times excess amount of driver 2 DNA (2 μ L) was mixed with 1μ L of forward subtraction library (driver and tester = gl1 grown without and with 160 mM NaCl, respectively) in hybridization buffer {5 mM HEPES [4-(2hydroxyethyl)-1-piperazineethanesulfonic acid]-HCl (pH 8.3), 12 mм NaCl, and 0.05 mм EDTA} in a total volume of 12 μ L. The hybridization solution was denatured at 94°C for 5 min, and incubated at 72°C for 12 h.

After hybridization, the mixture was precipitated with ethanol, and digested with mung bean nuclease (Promega, Madison, WI) to remove adaptor sequence from products of the driver-tester hybridization. Adaptor sequences in tester-tester hybridization products are aligned with matching ends and these are not digested by mung bean nuclease. The mung bean nuclease digested mixture was passed through the Microcon column and purified DNA was rehybridized at 72°C. The mung bean nuclease digestion and DNA purification procedures were repeated. The DNA was amplified by PCR using nested primers for 1 and 2R, 11 cycles. The cloning of PCR products was as described as above.

Dot-Blot Analysis

For dot-blot analysis, cDNA inserts of forward subtraction library clones were individually amplified by PCR and 2 μ L of PCR product was mixed with 2 μ L of 0.6 M NaOH. Two microliters of the mixture was blotted onto each of two duplicate nylon membrane filters. Probes for dot-blot analysis were either forward or reverse subtraction products or cDNA of RNA from plants, as indicated. The products of forward and reverse subtraction were digested with *Sma*I, *Rsa*I, and *Eag*I to remove the adapter sequences and labeled with ³²P using the Ready-To-Go kit (Amersham Pharmacia Biotech, Piscataway, NJ). The labeled forward probes were hybridized to one membrane and the reverse probes to the duplicate.

Template Preparation, DNA Sequencing, and Data Analysis

Plasmid templates were prepared from selected bacterial colonies by 96-well alkaline lysis minipreps according to the manufacturer's instructions (Edge BioSystems, Inc., Gaithersburg, MD).

DNA sequencing reactions were conducted using DyeDeoxy "Terminator PRISM" mix (Perkin-Elmer-ABI, Foster City, CA) according to the manufacturer's instructions in a multiplate thin-wall 96-well microplate on an MJ Research PTC-100-96 (MJ Research, Watertown, MA) programmable thermal controller using the following profile: 96°C for 30 s, 45°C for 15 s, and 60°C for 4 min for 49 cycles. Unincorporated dye terminators were removed by passing reactions over a 96-well gel filtration block (Edge BioSystems). Recovered sequencing reaction products were analyzed on either an ABI 373A-XL Stretch or an ABI 3700 capillary array automated DNA sequencing system (Perkin-Elmer Applied BioSystems). Raw sequence data was analyzed using PHRED (Ewing and Green, 1998; Ewing et al., 1998) and Cross match to removal vector sequences. Additional vector sequence removal and editing was done manually using FACTURA software (Perkin-Elmer Applied BioSystems). Polished EST sequence files were assembled into singleton and contig files using PHRAP (P. Green, unpublished data). EST identities were determined by sequence comparison to the nonredundant GenBank database using BLASTN (BLAST 2.0) using default parameters (Altschul et al., 1997). In instances where an unannotated match was obtained, BLASTX searchers were conducted and sequence homology information was used to assign putative identities. All EST sequences reported here have been deposited in dbEST and can be browsed and retrieved from the NCBI website (http://www.ncbi.nlm.nih.gov) under accession numbers BE844684 through BE845405.

Gong et al.

Northern-Blot Analysis of Putative Clones

Total RNA was isolated from seedlings and 40 μ g from each sample was separated on 1.2% (w/v) agarose formaldehyde gels and transferred to Hybond-N nylon membranes (Amersham) as previously described (Gong et al., 1997). The cDNA insert of each clone was amplified by PCR using nested primers that hybridize to adaptors 1 and 2R, and purified from agarose gels using the Qiagen Gel Purification kit. The probes for RD22BP1, MYB2, PAL, STZ, and ACP1 were obtained by PCR amplification using cDNA obtained from mRNA of salt-treated gl1 as template; RD22BP1 (AB000875), forward primer: 5'-ATGACGCTGT-TGATGAGGAG-3' and reverse primer: 5'-TTTCGGATT-CTGGGTCTGAG-3' (0.56 kb); MYB2 (D14712), forward primer: 5'-GAAATGGAAGATTACGAGCG-3' and reverse primer: 5'-TTAATTATACGAATACGATGTC-3' (1.0 kb); PAL (L33677), forward primer: 5'-ATGGAGATT-AACG-GGGCACAC-3' and reverse primer: 5'-ACGT-TCACCG-TTGGGACCAG-3' (1.1 kb); STZ (X95573), ORF; and ACP1 (AF009228), forward primer: 5'-CAA-AAGCCATTTTT-CAAATTTCAAACTCAG and reverse primer 5'-GTTTT-CAATGATAGTGAAGAAGAAGATG-TAC-AAC (0.83 kb). The purified PCR products were labeled using ³²P dCTP using the Ready-To-Go kit. Blot-blot hybridization and washes were as described (Gong et al., 1997). The blots were stripped by boiling in 0.5% (w/v) SDS solution for 3 min and were rehybridized with another probe.

ACKNOWLEDGMENTS

The authors would like to thank Sue Ann Hudiburg and Janet Rogers of the Oklahoma State University Recombinant DNA/Protein Resource Facility for providing oligonucleotide synthesis and automated DNA sequencing analysis services.

Received September 29, 2000; returned for revision December 15, 2000; accepted February 9, 2001.

LITERATURE CITED

- Abe H, Yamaguchi-Shinozaki K, Urao T, Iwasaki T, Hosokawa D, Shinozaki K (1997) Role of Arabidopsis MYC and MYB homologs in drought- and abscisic acidregulated gene expression. Plant Cell **9**: 1859–1868
- Altschul SF, Madden TL, Schäffer AA, Zhang J, Zhang Z, Miller W, Lipma DJ (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25: 3389–3402
- **Berger S, Bell E, Sadka A, Mullet JE** (1995) *Arabidopsis thaliana Atvsp* is homologous to soybean *VspA* and *VspB*, genes encoding vegetative storage protein acid phosphatases, and is regulated similarly by methyl jasmonate, wounding, sugars, light and phosphate. Plant Mol Biol **27**: 933–942
- Bohnert HJ, Nelson DE, Jensen RG (1995) Adaptation to environmental stresses. Plant Cell 7: 1099–1111
- Bray EA (1994) Molecular responses to water deficit. Plant Physiol 103: 1035–1040
- Carpenter CD, Kreps JA, Simon AE (1994) Genes encoding glycine-rich *Arabidopsis thaliana* proteins with RNA-

binding motifs are influenced by cold treatment and an endogenous circadian rhythm. Plant Physiol **104**: 1015–25

- Dudareva N, Murfitt LM, Mann CJ, Gorenstein N, Kolosova N, Kish CM, Bonham C, Wood K (2000) Developmental regulation of methyl benzoate biosynthesis and emission in snapdragon flowers. Plant Cell **12**: 949–961
- Ewing B, Green P (1998) Base-calling of automated sequencer traces using *Phred*: II. Error probabilities. Genome Res. 8: 186–194
- **Ewing B, Hillier L, Wendl MC, Green P** (1998) Basecalling of automated sequencer traces using *Phred*: I. Accuracy assessment. Genome Res. 8: 175–185
- **Gong Z, Yamazaki M, Sugiyama M, Tanaka Y, Saito K** (1997) Cloning and molecular analysis of structural genes involved in anthocyanin biosynthesis and expressed in a forma-specific manner in *Perilla frutescens*. Plant Mol Biol **35:** 915–927
- Halfter U, Ishitani M, Zhu J-K (2000) The *Arabidopsis* SOS2 protein kinase physically interacts with and is activated by the calcium-binding protein SOS3. Proc Natl Acad Sci USA 97: 3735–3740
- Hanson AD, Rathinasabapathi B, Rivoal J, Burnet M, Dillon MO, Gage DA (1994) Osmoprotective compounds in the Plumbaginaceae: a natural experiment inmetabolic engineering of stress tolerance. Proc Natl Acad Sci USA 91: 306–310
- Hasegawa PM, Bressan RA, Pardo JM (2000a) The dawn of plant salt tolerance genetics. Trends Plant Sci 5: 317–319
- Hasegawa PM, Bressan RA, Zhu J-K, Bohnert HJ (2000b) Plant cellular and molecular responses to high salinity. Annu Rev Plant Physiol Plant Mol Biol **51**: 463–499
- Heinisch JJ, Lorberg A, Schmitz H-P, Jacoby JJ (1999) The protein kinase C-mediated MAP kinase pathway involved in the maintenance of cellular integrity in *Saccharomyces cerevisiae*. Mol Microbiol **32**: 671–680
- Heintzen C, Nater M, Apel K, Staiger D (1997) *AtGRP7*, a nuclear RNA-binding protein as a component of a circadian-regulated negative feedback loop in *Arabidopsis thaliana*. Proc Natl Acad Sci USA **94:** 8515–8520
- Hwang I, Goodman H (1995) An *Arabidopsis thaliana* rootspecific kinase homolog is induced by dehydration, ABA and NaCl. Plant J 8: 37–43
- **Ingram J, Bartels D** (1996) The molecular basis of dehydration tolerance in plants. Annu Rev Plant Physiol Plant Mol Biol **47:** 377–403
- Ishitani M, Xiong L, Stevenson B, Zhu J-K (1997) Genetic analysis of osmotic and cold stress signal transduction in Arabidopsis: interactions and convergence of abscisic acid-dependent and abscisic acid-independent pathways. Plant Cell 9: 1935–1949
- Kasuga M, Liu Q, Miura S, Yamaguchi-Shinozaki K, Shinozaki K (1999) Improving plant drought, salt and freezing tolerance by gene transfer of a single stress-inducible transcriptional factor. Nature Biotech **17**: 287–291
- Koiwa H, Bressan RA, Hasegawa PM (1997) Regulation of protease inhibitors and plant defense. Trends Plant Sci 2: 379–384
- Kovtun Y, Chiu W-L, Tena G, Sheen J (2000) Functional analysis of oxidative stress-activated mitogen-activated

protein kinase cascade in plants. Proc Natl Acad Sci USA 97: 2940–2945

- Kreps JA, Simon AE (1997) Environmental and genetic effects on circadian clock-reggulated gene expression in *Arabidopsis*. Plant Cell 9: 297–304
- Kurkela S, Borg-Franck M (1992) Structure and expression of *KIN2*, one of two cold- and ABA-induced genes of *Arabidopsis thaliana*. Plant Mol Biol **19**: 689–692
- Kurkela S, Franck M (1990) Cloning and characterization of a cold- and ABA-inducible *Arabidopsis* gene. Plant Mol Biol **15:** 137–144
- Lippuner V, Cyert MS, Gasser CS (1996) Two classes of plant cDNAs differentially complement yeast calcineurin mutants and increase salt tolerance of wild-type yeast. J Biol Chem 271: 12859–12866
- Liu J, Ishitani M, Halfter U, Kim C-S, Zhu J-K (2000) The *Arabidopsis thaliana SOS2* gene encodes a protein kinase that is required for salt tolerance. Proc Natl Acad Sci USA **79:** 3730–3734
- Liu J, Zhu J-K (1997) Proline accumulation and salt-stressinduced gene expression in a salt-hypersensitive mutant of *Arabidopsis*. Plant Physiol **114**: 591–596
- Liu J, Zhu J-K (1998) A calcium sensor homolog required for plant salt tolerance. Science 280: 1943–1945
- Luo J-H, Puc JA, Slosberg ED, Yao Y, Bruce JN, Wright TC, Becich MJ, Parsons R (1999) Differential subtraction chain, a method for identifying differences in genomic DNA and mRNA. Nucleic Acids Res 27: 24e
- Mason HS, Mullet JE (1990) Expression of two soybean vegetative storage protein genes during development and in response to water deficit, wounding, and jasmonic acid. Plant Cell **2:** 569–579
- Mendoza I, Quintero FJ, Bressan RA, Hasegawa PM, Pardo JM (1996) Activated calcineurin confers high tolerance to ion stress and alters the budding pattern and cell morphology of yeast cells. J Biol Chem 271: 23061–23067
- Mendoza I, Rubio F, Rodriguez-Navarro A, Pardo JM (1994) The protein phosphatase calcineurin is essential for NaCl tolerance of *Saccharomyces cerevisiae*. J Biol Chem **269**: 8792–8796
- Mikami K, Katagiri T, Iuchi S, Yamaguchi-Shinozaki K, Shinozaki K (1998) A gene encoding phosphatidylinositol-4-phosphate 5-kinase is induced by water stress and abscisic acid in *Arabidopsis thaliana*. Plant J **15**: 563–568
- Mizoguchi T, Irie K, Hirayama T, Hayashida N, Yamaguchi-Shinozaki K, Matsumoto K, Shinozaki K (1996) A gene encoding a mitogen-activated protein kinase kinase kinase is induced simultaneously with genes for a mitogen-activated protein kinase and an S6 ribosomal protein kinase by touch, cold, and water stress in *Arabidopsis thaliana*. Proc Natl Acad Sci USA **84**: 765–769
- **Murashige T, Skoog F** (1962) A revised medium for rapid growth and bioassays with tobacco tissue culture. Physiol Plant **15:** 473–479
- Nelson DE, Shen B, Bohnert HJ (1998) The regulation of cell-specific inositol metabolism and transport in plant salinity tolerance. Plant Cell **10**: 753–764

- Niu X, Bressan RA, Hasegawa PM, Pardo JM (1995) Ion homeostasis in NaCl stress environments. Plant Physiol 109: 735–742
- Ozcan S, Dover J, Johnston M (1998) Glucose sensing and signalling by two glucose receptors in the yeast *Saccharomyces cerevisiae*. EMBO J **17**: 2566–2573
- Piao HL, Pih KT, Lim JH, Kang SG, Jin JB, Kim SH, Hwang I (1999) An *Arabidopsis GSK3/shaggy-like* gene that complements yeast salt stress-sensitive mutant is induced by NaCl and abscisic acid. Plant Physiol **119**: 1527–1534
- **Posas F, Chambers JR, Heyman JA, Hoeffler JP, Nadal ED, Arino J** (2000) The transcriptional response of yeast to saline stress. J Biol Chem **275**: 17249–17255
- **Rep M, Krantz M, Thevelein JM, Hohmann S** (2000) The transcriptional response of *Saccharomyces cerevisiae* to osmotic shock. J Biol Chem **275:** 8290–8300
- Reymond P, Weber H, Damond M, Farmer EE (2000). Differential gene expression in response to mechanical wounding and insect feeding in Arabidopsis. Plant Cell, 12: 707–719
- **Ross JR, Nam KH, D'Auria JC, Pichersky E** (1999) *S*adenosyl-L-methionine: salicylic acid carboxyl methyltransferase, an enzyme involved in floral scent production and plant defense, represents a new class of plant methyltransferases. Arch Biochem Biophys **367:** 9–16
- Sabirov RZ, Azimov RR, Ando-Akatsuka, Miyoshi T, Okada Y (1999) Na⁺ sensitivity of ROMK1 K⁺ channel: role of the Na⁺/H⁺ antiporter. J Membr Biol **172:** 67–76
- Sanders D (2000) Plant biology: the salty tale of *Arabidopsis*. Curr Biol **10:** R-486–R-488
- **Sheen J** (1996) Ca²⁺-dependent protein kinases and stress signal transduction in plants. Science **274:** 1900–1902
- Shi H, Ishitani M, Kim C, Zhu J-K (2000) The *Arabidopsis thaliana* salt tolerance gene *SOS1* encodes a putative Na⁺/H⁺ antiporter. Proc Natl Acad Sci USA **97:** 6896–6901
- Shinozaki K, Yamaguchi-Shinozaki K (1997) Gene expression and signal transduction in water-stress response. Plant Physiol 115: 327–334
- **Thomashow MF** (1999) Plant cold Acclimation: freezing tolerance genes and regulatory mechanisms. Annu Rev Plant Physiol Plant Mol Biol **50:** 571–599
- **Utsugi S, Sakamoto W, Murata M, Motoyoshi F** (1998) *Arabidopsis thaliana* vegetative storage protein (*VSP*) genes: gene organization and tissue-specific expression. Plant Mol Biol **38:** 565–576
- Winicov I (2000) Alfin1 transcription factor overespression enhances plant root growth under normal and saline conditions and improves salt tolerance in alfalfa. Planta 210: 416–22
- Yoshiba Y, Kiyosue T, Nakashima K, Yamaguchi-Shinozaki K, Shinozaki K (1997) Regulation of levels of proline as an osmolyte in plants under water stress. Plant Cell Physiol 38: 1095–1102
- Zhu J-K (2000) Genetic analysis of plant salt tolerance using *Arabidopsis thaliana*. Plant Physiol **124**: 941–948
- Zhu J-K, Hasegawa PM, Bressan RA (1997) Molecular aspects of osmotic stress in plants. Crit Rev Plant Sci 16: 253–277