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ABSTRACT
Immunotherapy strategies aim to mobilize immune 
defenses against tumor cells by targeting mainly T cells. 
Co‐inhibitory receptors or immune checkpoints (ICPs) 
(such as PD-1 and CTLA4) can limit T cell receptor (TCR) 
signal propagation in T cells. Antibody-based blocking of 
immune checkpoints (immune checkpoint inhibitors, ICIs) 
enable escape from ICP inhibition of TCR signaling. ICI 
therapies have significantly impacted the prognosis and 
survival of patients with cancer. However, many patients 
remain refractory to these treatments. Thus, alternative 
approaches for cancer immunotherapy are needed. In 
addition to membrane‐associated inhibitory molecules, a 
growing number of intracellular molecules may also serve 
to downregulate signaling cascades triggered by TCR 
engagement. These molecules are known as intracellular 
immune checkpoints (iICPs). Blocking the expression or the 
activity of these intracellular negative signaling molecules 
is a novel field of action to boost T cell-mediated antitumor 
responses. This area is rapidly expanding. Indeed, more 
than 30 different potential iICPs have been identified. 
Over the past 5 years, several phase I/II clinical trials 
targeting iICPs in T cells have been registered. In this 
study, we summarize recent preclinical and clinical data 
demonstrating that immunotherapies targeting T cell 
iICPs can mediate regression of solid tumors including 
(membrane associated) immune‐checkpoint inhibitor 
refractory cancers. Finally, we discuss how these iICPs 
are targeted and controlled. Thereby, iICP inhibition is a 
promising strategy opening new avenues for future cancer 
immunotherapy treatments.

INTRODUCTION
T cells play a central role in cancer immuno-
surveillance and eradication.1 The generation 
of effective tumor-directed T cell responses 
requires many steps such as (1) the activation 
of effector T cell function, (2) formation of 
effector memory T cells, and (3) activation 
of an intrinsic capacity to expand and infil-
trate solid tumors while remaining functional 
despite the tumor microenvironment (TME). 
Across these steps, one of the fundamental 
adaptable biological programs supporting T 
cells is the molecular machinery responsible 
for antigen receptor signaling.2 Intracellular 

signals encoded by T cell receptor (TCR) 
engagement can quantitatively discriminate 
between antigens of differing affinities. As a 
counterpart to these positive signaling path-
ways, negative signaling loops are critical to 
maintain a T cell activation threshold.3

Our understanding of the balance between 
stimulatory and inhibitory signals necessary 
for effective immune responses is constantly 
evolving and could be used to develop immu-
notherapy strategies. Indeed, the dynamic 
interplay between inhibitory and stimula-
tory signals on T cells modulates the degree 
of immune activation to allow tolerance to 
self-antigens (inhibitory) while mounting an 
adaptive immune response to foreign anti-
gens (stimulatory).4 An essential mechanism 
of inhibitory stimuli coming from immune 
checkpoints (ICPs) expressed at the surface 
of T cells (such as PD-1/PD-L1 pathway 
and CTLA4) is to control the inflammatory 
response and to protect normal cells from 
T cell–mediated cytotoxicity after their acti-
vation. T cell exhaustion is mediated by the 
upregulation of ICPs.5 By blocking the check-
point engagement, immune checkpoint 
inhibitors (ICIs) prevent T cell exhaustion.5 6 
These ICIs are currently used to treat cancer. 
Like ICPs, some intracellular proteins are 
involved in negative feedback loops down-
stream the TCR. Recently, they have been 
considered as potent targets in the context of 
cancer immunotherapies.

Recently, our team and others demon-
strated the capacity to target TCR signaling 
inhibitory intracellular proteins (intracellular 
immune checkpoints (iICPs)) to enhance T 
cell–based immunotherapies.7–10 Here, we 
highlight numerous negative feedback mech-
anisms of TCR signaling with a potential to 
improve cytotoxic T cell function during 
immunotherapy. Some strategies to block 
these iICPs in clinical development as cancer 
immunotherapies. Indeed, the regulatory 
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mechanisms of TCR-mediated signaling vary in different 
T cell maturation or differentiation states, as well as differ-
ences between conventional TCR and chimeric antigen 
receptor (CAR)-T cell signalosomes.11 The complexity 
of these regulatory loops of TCR activation needs to be 
carefully studied when considering possible therapeutic 
approaches.

Due to their intracellular localization, targeting iICPs 
remains challenging. Nonetheless, pharmacological 
approaches based on systemic administration of small 
molecules have already been reported12 (ie, clinical 
trials NCT04521413, NCT04649385, NCT05128487, 
NCT05159700, NCT05233436, NCT05370755, 
NCT05107674, NCT05107739, NCT05662397, 
NCT05315167). The recent development of PROTACs 
(Proteolysis Targeting Chimeras) has expanded the 
toolbox of chemicals available,10 especially when consid-
ering targeting ‘undruggable’ proteins, that is, without 
enzymatic activities. Indeed, in vitro gene editing coupled 
with adoptive cell therapy allows T-cell-specific dele-
tion of iICPs in clinically relevant settings (ie, clinical 
trials NCT04426669, NCT05566223). Hopefully, future 
improvements in gene therapies, particularly in delivery, 

will enable in vivo gene modification.13 Therefore, combi-
nation of both fundamental knowledge of TCR signaling 
regulation and cutting-edge technologies may open a 
new era in immunotherapy.

TCR SIGNALING MODULES
The TCR determines lymphocyte T activation, differentia-
tion and fate.2 TCR signaling is characterized by a complex 
structure of protein-protein interactions which define the 
response of T cells by acquisition of phenotypic, genomic 
and functional modifications. TCR signaling response is 
defined as a two-step process represented by two modules 
of protein associations: initiation and amplification of the 
TCR encoding signals (figure 1).

The goal of the first step is to transform the interac-
tion of the TCR with antigenic peptide-major histocom-
patibility complex (pMHC) into an intracellular signal14 
(figure 1, box 1). Therefore, this step is responsible for 
signal initiation. The membrane-embedded TCR/CD3 
complex plays a critical role in this process. It consists 
of TCR α and β subunits which have variable and 
constant immunoglobulin (Ig)-like domains enabling 

Figure 1  TCR signaling modules. (A) TCR signaling scheme. The first module (1) is responsible for transformation of the 
interaction of TCR with antigenic peptide associated with MHC class molecule into an intracellular signal. The second module 
amplifies this signal (2) and further diversifies it (-a–e). Both TCR-CD3 complex (δ, ε, γ, ζ subunits) and CD28 receptor are initially 
tyrosine-phosphorylated by SFK. (B) TCR signaling inhibiting proteins (iICPs). Numerous negative feedback proteins of TCR 
signaling were recently discovered. Here, these potential iICPs are classified in order of their clinical approval stage. The color 
of each iICP backing corresponds to the TCR signaling module where this protein represses the TCR signal. iICP, intracellular 
immune checkpoint; MHC, major histocompatibility complex; SFK, Src-family protein tyrosine kinases; TCR, T-cell receptor.
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antigenic peptide recognition. These α and β subunits 
are non-covalently associated with CD3γ CD3δ and two 
CD3ε molecules and one signaling domain: an immune 
receptor tyrosine-based activation motif (ITAM). The 
CD3ζ homodimer completes the TCR complex with six 
more ITAMs.15 On TCR engagement, a spatial modifica-
tion of the TCR complex occurs, allowing the partially 
phosphorylated Src-family protein tyrosine kinases (SFK) 
to gain access to ITAMs.16 17 The phosphorylation of 
ITAMs (pITAM) by SFK family members Lck or Fyn allows 
the binding of the ZAP-70 SH2-tandem domain.18 ZAP-70 
is subsequently phosphorylated by Lck, dissociates from 
TCR complex and transfers the signal to a second step of 
the TCR signaling response.19

The aim of the second step is signal amplification and 
diversification (figure 1, box 2). The key protein at this 
step is the membrane adaptor LAT. ZAP-70 phosphor-
ylates LAT, leading to the recruitment of numerous 
adaptor proteins and the formation of the LAT signalo-
some.20 More than 200 proteins are participating in this 
signalosome such as SLP76, PLCγ1, VAV1, ITK, RAC1, 
SOS, PI3K, GRB2 and others.21 Their interactions amplify 
the initial TCR signal and determine further cell reactivity 
on TCR engagement. Interestingly, proteins are not the 
only actors of TCR signaling as phospholipids also play 
a critical role in T cell activation.22 PI3K phosphorylates 
phosphatidylinositol 4,5 bisphosphate (PIP2) to generate 
phosphatidylinositol 3,4,5 trisphosphate (PIP3) which 
recruits several proteins to the plasma membrane such as 
ITK that favors PLCγ1 recruitment to LAT signalosome.23 
PLCγ1 is responsible for PIP2 hydrolysis into secondary 
activating molecules inositol 1,4,5 trisphosphate (IP3) 
and diacylglycerol (DAG).22 At this step, the TCR encoded 
signal is divided into several major signaling pathways. 
PIP3 recruits PDK1 to the plasma membrane. This acti-
vates the AKT-mTOR pathway responsible for metabo-
lism, differentiation and cell survival (figure 1, box 2a).24 
DAG activates PKC and BCL10-CARMA1-MALT1 (CBM) 
complex that leads to NF-κB nuclear translocation 
(figure 1, box 2b). In parallel, DAG activates RASGRP that 
drives RAS-MAPK/ERK pathway (figure 1, box 2c). Both 
of these pathways are accountable for activation, prolif-
eration, migration and cytotoxicity.25–27 IP3 also binds 
to its receptor in the endoplasmic reticulum that causes 
the release of Ca2+ from the endoplasmic reticulum and 
transcriptional factor NFAT activation (figure 1, box 2d). 
This latter pathway is responsible for T cell metabolism 
reorganization and cytokine production machinery.28 
Finally, activation of GADS, SLP-76 and VAV1 triggers 
RAC1 GTPase activation. This allow cytoskeletal reorga-
nization for proper immune synapse formation (figure 1, 
box 2e).29 Some major contributions of CD28 co-stim-
ulation in TCR signaling networks should be equally 
noted. Indeed, CD28 can bind directly to PI3K by a well-
characterized YMNM binding motif in its cytoplasmic 
domain30 and will be involved in the AKT-mTOR pathway 
(box 2a). Moreover, the GRB2/GADS adaptor proteins 
bind also directly to the CD28 cytoplasmic tail, bridging 

CD28 to PKC/CBM complex via RLTPR protein.31 This 
link between CD28 and the GRB2/GADS could also 
boost some TCR-induced signals (box 2b–e). Beyond this 
positive signal display, negative feedback mechanisms are 
set up to establish TCR signal termination.

FROM NEGATIVE FEEDBACK LOOPS IN TCR SIGNALING TO 
BONA FIDE IICPS
Negative feedback loops are present to regulate each 
signaling activation module, thus dampening TCR-
induced signal transduction. In the late 1990s, studies 
on TCR signalosome revealed proteins involved in nega-
tive feedback control of TCR signaling, as discussed 
elsewhere.3 32 The potential to target iICPs emerged 
after clinical limitations of other cancer immunothera-
pies such as CAR-T therapies or ICIs, mostly because of 
intrinsic CD8+ T cell activation suppression due to expo-
sure to numerous immunosuppressive factors of TME 
(TGFβ, IDO, PGE2, adenosine, ICPs, etc) at the same 
time.33–35 Targeting these multiple factors by distinct 
methods could be a complex task. Moreover, these immu-
nosuppressive factors partially act through upregulation 
of negative signaling protein expression. Therefore, 
targeting the expression or function of these negative 
feedback proteins could be a promising method of T 
cell activation improvement. Preclinical assays on iICPs 
reviewed below provided encouraging results to improve 
T cell-based immunotherapies. Targeting of iICPs was 
facilitated by the rapid progress in cell genetic engi-
neering that occurred this last decade, notably with the 
availability of CRISPR-Cas9 technology. Thus, a new era 
is enabled in immunotherapy targeting not only extracel-
lular ICPs but also intracellular molecules—iICPs. This 
new strategy will complement and can be used in combi-
nation with current immunotherapy approaches.

In the following section, we will outline the concept of 
iICP targeting in cancer immunotherapy. Currently, four 
of these proteins are targeted in clinical trials and many 
others are in under preclinical development.

IICPS IN CLINICAL TRIALS
Different inhibitory feedback loops control the two afore-
mentioned steps of TCR signaling response. Among the 
proteins reaching clinical trials at phase I, SHP2 targets 
the initiation step, and three others—CBL-b, CISH, and 
HPK1—are involved in signal amplification and diversifi-
cation control.

Modulation of an inhibiting protein may raise safety 
concerns, particularly with respect to the development 
of autoimmunity. In the past, before extracellular ICI 
(CTLA-4, PD-1) blockers came into the clinic, major 
concerns were raised regarding immune-related adverse 
events (irAEs).36 These are generally of low intensity, 
manageable and reversible.37 The example of PD-1 and 
CTLA-4 and the accumulation of data from preclinical 
and clinical work will be very beneficial for the future 
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development of iICP targeting. The development of 
preclinical mouse models and genetic depletion of iICPs 
in mice certainly helps to appreciate the potential develop-
ment of autoimmune diseases. This is a crucial step before 
reaching the clinical steps. However, this is important 
to keep in mind that PD-1 and CTLA-4 knockout (KO) 
mouse models have shown some important signs of auto-
immune diseases.38–40 Indeed, new retrospective studies 
involving extracellular ICI show that irAEs may also be 
associated with a favorable outcome.41 42 Autoimmunity 
must therefore be carefully considered for each new 
targeted molecule and in particular iICPs but past expe-
rience shows that this does not preclude effective anti-
tumor therapy.

SHP-2
Src homology region 2 (SH2) domain containing tyrosine 
phosphatase-SHP-2 (PTPN11) was shown to be impli-
cated in PD-1-dependent restriction of proximal TCR 
signaling (figure 2A).43 Hence, similar to ICI antibodies, 
SHP-2 deletion may relieve TCR signaling inhibition 
directly at intracellular level. However, SHP-2 deletion 
was not sufficient to improve clearance of immunogenic 
tumors even in combination with anti-PD-1 treatment, 
suggesting an alternative mechanism of PD-1-dependent 
TCR signal restriction.44 It was demonstrated that another 
Src homology region 2 domain containing tyrosine 
phosphatase SHP-1 (vide infra) is also recruited to PD-1 
cytoplasmic tail acting in TCR signaling repression.45 
Moreover, in the absence of SHP-2, PD-1 recruits SHP-1 
to remain functional, suggesting overlapping functions 
of these proteins.46 Therefore, blocking both SHP-1 and 
SHP-2 is necessary for TCR signaling improvement. The 
combination strategy of anti-PD-1 antibody administra-
tion with a pharmacological inhibitor of SHP-2 is under-
going clinical trials (figure 2B).

CBL-B
Cbl-b is a member of Casitas B-lymphoma (CBL) family. 
CBL proteins possess RING finger catalytic domains 
responsible for protein ubiquitination with sequential 
degradation of target proteins. CBL proteins lead to the 
degradation of multiple targets, thus downregulating the 
TCR signaling cascade.47 48 Cbl-b targets the regulatory 
subunit p85 of PI3K, interfering with its ability to activate 
different signaling pathways (figure 2A).49 50 It was shown 
that Cbl-b represses PTEN inactivation by NEDD4, there-
fore reducing PI3K activity.51 Cbl-b participates in the 
regulation of co-stimulatory signal from CD28 or inhib-
itory receptors CTLA-4 and PD-1.52–55 The loss of Cbl-b 
on TCR triggering increased Akt/Erk phosphorylation, 
proliferation, activation, cytokine production (IFNγ, 
TNFα, IL-2) and cytolytic capacity (Granzyme B).9 54 56–59 
TCR-induced proliferation is exacerbated in T cells from 
children with homogeneous mutations in CBLB gene.60 
Cbl-b-deficient mice rejected spontaneous tumor develop-
ment and adoptive CD8+ T cell transfer from these mice 
improved control of established or spontaneous tumors 

from numerous cancer models.9 54 56–59 61 Moreover, both 
Cbl-b KO CD4+ and CD8+ T cells showed improved resis-
tance to Tregs and TGF-β.57 58 61 Cbl-b was shown to be 
upregulated in exhausted CD8+ tumor-infiltrated lympho-
cytes (TILs) and ex vivo abrogation of Cbl-b expression by 
CRISPR-Cas9 improved cytotoxicity of these cells.9 On in 
vitro TCR activation, naïve Cbl-b-deficient CD8+ T cells do 
not require CD28 co-stimulation to be fully activated.57 
Finally, CRISPR-Cas9 depletion of Cbl-b in mouse CAR-T 
cells promotes tumor regression and makes CAR-T cells 
resistant to exhaustion.9 Therefore, Cbl-b depletion seems 
to be a potent tool to improve CD8+ T cell–based immu-
notherapies. Moreover, small molecule inhibitors of Cbl-b 
activity are under development.62 63 Several clinical trials 
on Cbl-b inhibition in T cells are ongoing (figure 2B).

CISH
A SOCS (Suppressor Of Cytokine Signaling) family 
protein member negatively regulates CD8+ T cell signaling 
(figure  2A).64 Indeed, CD8+ T lymphocytes from Cish-
deficient mice had improved proliferation, Ca2+ and 
IL-2) on TCR engagement. These cells had increased 
expression of effector function associated genes (Il2, Prf1, 
GrzmB, Eomes, Tbx21, c-Myc and Bcl2l). Moreover, ACT of 
Cish KO CD8+ T cells enhanced control of tumor progres-
sion in tumor-bearing mice.7 Clinical trials targeting 
CISH by CRISPR-Cas9 in TILs prior to ACT are ongoing 
(figure 2B).

HPK1
Hematopoietic progenitor kinase 1 (HPK1), encoded by 
the MAP4K1 gene, is a protein kinase identified as a key 
regulator of TCR signaling. HPK1 is activated by TCR 
complex on TCR stimulation.65 66 HPK1 associates and 
phosphorylates SLP-76 at the LAT signalosome. Phos-
phorylated SLP-76 subsequently binds with GADS and 
14-3-3 protein.67 68 This latter association destabilizes the 
interaction of SLP-76 with LAT signalosome triggering 
SLP-76 degradation (figure 2A).68 69 This SLP-76 degrada-
tion negatively impacts MAPK-ERK pathway signaling.65 70 
HPK1 overexpression in a Jurkat T cell line resulted in 
a MAPK-ERK pathway dampening and suppressing AP-1-
dependent gene transcription, notably IL2.65 HPK1 KO 
and KD in mice resulted in increased T cell proliferation, 
activation and cytokine secretion, thus granting them the 
capacity to control tumor growth.71–74 Interestingly, HPK1 
expression correlates with T cell exhaustion.10 Further-
more, mouse and human CD8+ and CAR-T cells lacking 
HPK1 expression showed improved degranulation activity 
(CD107a), cytokine production and reduced expression 
of exhaustion markers (PD1, TIM3, LAG3).10 Adoptive 
cell transfer of mouse and human HPK1 KO CAR-T cells 
showed improved control of tumor growth in murine 
xenograft models.10 Ultimately, these data suggest that 
HPK1 is a crucial regulator of T cell activation of naïve 
and memory T cells. Numerous small molecule inhibitors 
of HPK1 are undergoing cancer immunotherapy clinical 
trials12 (figure 2B).
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Figure 2  iICPs in clinical trials. (A) iICPs participating in clinical trials have different action modes. PD-1 engagement activates 
SHP-2 and leads to repression of proximal signaling events. CBL-B and CISH ubiquitinate their respective targets: regulatory 
unit of PI3K and PLCγ1, leading to their inactivation. Finally, HPK1 phosphorylates SLP76 that recruits 14-3-3 proteins, following 
SLP-76 dissociation from LAT signalosome and leading to SLP-76 proteolysis. (B) These iICPs are involved in several clinical 
trials for cancer treatments. iICP, intracellular immune checkpoint.
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Targeting iICPs carries a risk of autoimmunity induc-
tion. Indeed, aberrant expression of some iICPs led to 
autoimmunity development in humans.75–77 Invalidation 
of iICP expression in mice made animals more suscep-
tible to autoimmune disorders.70 78–85 Moreover, ACT of 
Cish-deficient CD8+ T cells provoke ocular toxicities in 
mice.7 However, not all iICPs were implicated in auto-
immunity development. Notably, CAR-T cells lacking 
PTPN2 expression showed improved tumor site homing 
in preclinical models, therefore decreasing the risk of off-
target effects and morbidity.86 DRAK2 KO mice showed 
resistance to autoimmune encephalomyelitis induction 
despite improved TCR-dependent T cell activation.87 
Nevertheless, autoimmunity and toxicity evaluation 
remain a priority for clinical approval of iICP invalida-
tion for cancer immunotherapy enhancement. After all, 
such therapies need the development of new strategies of 
autoimmunity management, allowing reduced toxicities 
and off-target effects. Besides, tumor-specific targeting 
improvements might be a key for clinical application of 
these therapies in the near future.

Although, we present here iICPs as powerful tools to 
improve antitumor cytotoxic function of T or CAR-T 
cells, other applications may be envisioned. Notably, their 
overexpression, potentially, allowing control of CAR-T 
therapy side effects such as cytokine release syndrome. 
Indeed, overexpression of Csk (iICP for Lck and Fyn-
dependent signal initiation) in TCR-T engineered human 
T cells undermines TCR signaling and might be used as a 
safeguard to prevent excessive activation of immune cells 
during ACT.88

OTHER TCR IICPS WITH COMPLETED PRECLINICAL TRIALS
Recently, other TCR iICPs showed promising results and 
improved T-cell-based immunotherapies in animal tumor 
models bringing their targeting close to clinic. Below are 
listed proteins involved in negative signals downstream 
TCR triggering and where mouse models are used to 
highlight the potential iICP status of these molecules. 
Due to their mechanism of action, these proteins could be 
divided into different groups: lipid kinases, protein phos-
phatases, ubiquitin ligases, deubiquitination enzymes 
(DUBs), hydrolases and scaffold proteins.

Lipid kinases
DGKα and ζ (diacylglycerol kinases)
DGKs are enzymes that phosphorylate DAG, a second 
messenger molecule in TCR signaling generated by 
activated PLCγ1.89 This interrupts DAG association to 
RasGRPs, inducing RAS/MAPK pathway blockade and 
attenuates TCR signaling.90–92 DGKζ KO CD8+ mice had 
significantly improved resistance to tumor growth, asso-
ciated with increased CD8+ T cell infiltration. Moreover, 
mice receiving an ACT of naïve or primed DGKζ CD8+ T 
cells exhibited improved in vivo antitumor responses.90 93 
DGK KO or pharmacological inhibition improved CAR-T 
cell cytotoxicity against tumors both in mouse models and 

in human CAR-T cells.8 93 94 CRISPR inactivation of two 
isoforms of DGK in CAR-T cells synergistically improved 
in vivo tumor clearance, cytokine production, prolifera-
tion and reprogrammed CAR-T cells to effector memory 
phenotype.8

Protein phosphatases
Non-receptor protein tyrosine phosphatases (PTPN)
Among this large PTPN family, at least three members 
could be considered involved in negative feedback loops 
downstream TCR signaling and were previously tested in 
the context of anticancer activity in preclinical models: 
PTPN2, PTPN6 and PTPN22. PTPN2, also known as 
TC-PTP, is a PTP mainly expressed in hematopoietic cells 
and involved in T cell signaling.95 PTPN2 directly dephos-
phorylates Lck and Fyn (SFK members) kinases both in 
CD4+ and CD8+ T cells establishing a threshold for TCR 
triggering.96 PTPN2 deletion in mouse T cells prevents 
tumor formation in a p53+/- mouse model.86 PTPN2 KO 
T cells had enhanced T cell–mediated immunosurveil-
lance, increased effector memory T cell numbers, tumor 
infiltration and produced more cytokines.86 PTPN2 
deletion in mouse CAR-T cells lead to effector memory 
phenotype (CD44+CD62LNEG) and increased expres-
sion of IFNγ, TNFα and Granzyme B making them less 
prone to exhaustion. CAR-T cells lacking PTPN2 were 
more efficient in eradicating solid tumors in mice.86 
Moreover, small molecule inhibitor of PTPN2 improved 
mouse CAR-T cell cytotoxicity as well as it was the case 
for human CAR-T cells in vitro.86 97 PTPN6 is also well 
known as SHP-1 (Src homology 2 domain-containing 
protein tyrosine phosphatase 1). The specific deletion of 
the phosphatase SHP-1 in naïve CD8+ T cells enhances 
their proliferation potential, cytolysis capacity in vivo 
and improved IFNγ, TNFα, IL-2 production.98 99 ACT of 
these cells augmented mice survival in disseminated FBL 
leukemia model.100 However, no difference was found in 
tumor progression in solid tumor model of melanoma. 
Intriguingly, implementation of PD-1 blockade demon-
strated that SHP-1 KO CD8+ T cells were more responsive 
to anti-PD-1 and had improved control of melanoma B16-
F10 cell growth.101 Moreover, SHP-1 (and partially SHP-2) 
pharmacological inhibition improved cytotoxic capacity 
of human primary CD8+ T cells against tumor.102 As 
SHP-1 is the closest homolog of SHP-2 and can play some 
similar functions in T cells,46 it would be of interest to 
test a potent dual SHP-1/-2 inhibitor in these preclinical 
models. PTPN22 can also dephosphorylate SFK members 
at their activation sites inhibiting TCR signaling initia-
tion.103 104 In ACT experiments, it was demonstrated that 
primed CD8+ PTPN22 KO mouse T cells controlled better 
tumor growth, produced more cytokines and were highly 
resistant to immunosuppressive effects of TGFβ.105–107

DUSP2 (dual specificity phosphatase 2)
DUSP family member DUSP2 (PAC1) is upregulated 
in exhausted tumor-infiltrated T lymphocytes. Indeed, 
DUSP2 KO mouse CD8+ TILs showed less exhaustion 
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markers (PD-1, TIM-3, LAG3), improved IFNγ, TNFα, 
Granzyme B production, tumor growth control and had 
enhanced survival.108 Other DUSP family members (such 
as DUSP14, DUSP22) could be also involved in the inhib-
itory feedback control of the signals encoded by the TCR 
triggering. However, their iICP capacities are not docu-
mented by mouse tumor models.

Ubiquitin ligases
MDM2 (murine double minute 2)
MDM2 is E3 ubiquitin ligase responsible for degradation 
of NFATc2. Naïve CD4+ T cells from MDM2 KO mice 
showed enhanced IL-2 and IFNγ production on TCR 
stimulation. Adoptive CD4+ T cell transfer decreased 
tumor growth in tumor-bearing mice.109

NRDP1
NRDP1 takes part in ZAP-70 ubiquitination.110 This 
promotes the recruitment of STS1 and STS2 phospha-
tases, which leads to ZAP-70 dephosphorylation. On TCR 
stimulation, CD8+ T cells from Nrdp1-deficient mice had 
improved proliferation, increased signaling protein phos-
phorylation (ZAP-70, LAT, PKC, ERK-1/2 and JNK-1/2), 
cytokine production (IFNγ, IL-2), higher expression of 
key transcriptional factors Prf1 (perforin), Gzmb (Gran-
zyme B), T-bet, Eomes, associated with effector func-
tion of CD8+ T lymphocytes. Moreover, Nrdp1-deficient 
primed CD8+ T cells had a better control of syngeneic 
tumor development in a mouse model during adoptive 
cell transfer.110

GRAIL (gene related to anergy in lymphocytes)
Ubiquitin ligase GRAIL directly targets the TCR 
complex leading to TCRβ and CD3ζ subunit degrada-
tion. Mouse Grail-deficient CD4+ T cells had increased 
proliferation, activation, survival and resistance to 
anergy induction on TCR activation.111 GRAIL KO 
mice better controlled tumor growth in an experi-
mental model due to improved CD8+ T lymphocytes 
cytotoxic activity. Notably, CD8+ TILs lacking GRAIL 
had improved IFNγ and Granzyme B production and 
increased expression of IL-21R.112

Peli1 (Pellino E3 ubiquitin protein ligase 1)
E3 ubiquitin ligase Peli1 negatively controls TCR 
signaling by two distinct ways. (1) On TCR stimulation, 
it targets c-Rel protein of NFκB family responsible for T 
cell activation, proliferation and cytokine production by 
ubiquitination leading to degradation.79 (2) After TCR 
engagement, Peli1 mediates ubiquitination of TSC1 
that improves TSC1/TSC2 dimerization. TSC1/TSC2 
dimerization inhibits mTORC1, a protein of PI3K-Akt 
pathways known for its metabolic regulations.113 Recently, 
it was shown that Peli1 KO mice better control tumor 
growth in different tumor models due to higher CD4+ 
and CD8+ T cell tumor infiltration and enhanced cyto-
kine production (IFNγ, granzymes) in these cells.113

Deubiquitination enzymes
A20
The ubiquitin-editing enzyme A20 (also known as tumor 
necrosis factor-α-induced gene 3, TNFAIP3) removes 
ubiquitin chains on activated MALT1 in the CBM complex 
(see box 2b in figure  1). Deubiquitinated MALT1 does 
not interact with IKK stopping NFκB activation on TCR 
stimulation.114 A20 KO CD8+ T cells demonstrate higher 
cytokine production (IFNγ, TNFα, IL-2) and cytotox-
icity (Granzyme B). ACT of in vitro pre-stimulated A20 
KO CD8+ T cells shows a significant reduction of tumor 
growth in mouse melanoma model.115 116

Hydrolases
RASA2 (RAS p21 protein activator 2)
Genome wide CRISPR screen in primary human CD8+ T 
cells reveals that Ras-GTPase RASA2 KO enhances human 
CD8+ T cell proliferation and in vitro anti-cancer func-
tion.117 Recently, RASA2 ablation improved in vivo tumor 
control during adoptive cell transfer of engineered T 
cells in multiple xenograft models.118

Scaffold proteins
Dok (Downstream of kinases) family
Members of Dok (for Downstream of kinases) family proteins 
play a role in negative regulation of TCR signaling.3 119 120 
For instance, Dok1 and Dok2 proteins recruit different 
negative enzymes such as Csk, SHIP-1 or Ras-GAP estab-
lishing a platform for these proteins and recruiting them 
in close proximity to the LAT signalosome. Recently, our 
group demonstrated that Dok-1/2 exert their negative 
role mainly in primed CD8+ T cell showing an improve-
ment of Akt and Erk phosphorylation on TCR engage-
ment. Unexpectedly, Dok-1/2 KO mice did not improve 
tumor cell cytotoxicity in vitro and in vivo, probably due 
to re-wiring of T cells signaling in absence of Dok-1/2.121

LRCH1 (leucine-rich repeats and calponin homology domain 
containing 1)
LRCH1 is a negative regulator of TCR signaling that binds 
directly to LAT, disturbing LAT signalosome leading 
to LAT endocytosis. LRCH1 deficiency improves TCR 
signaling in CD8+ T cells. CD8+ T cells lacking LRCH1 
have increased cytokine production, activation and prolif-
eration on TCR stimulation. ACT of LRCH1 KO CD8+ T 
cells improved tumor control in mice. LRCH1 invalida-
tion by CRISPR-Cas9 in human primary T cells improved 
IFNγ production, proliferation and migration of these 
cells.122

Unknown mechanism
TNF receptor-associated factor 6
TRAF6 is an adaptor protein that mediates numerous 
protein-protein interactions and a RING E3 ubiquitin 
ligase. TRAF6 negatively regulates PI3K signaling.84 On 
the contrary, TRAF6 is important in CBM (Carma1-
Bcl10-MALT1) complex formation necessary for IKK 
activation and nuclear translocation of NFκB.123 Lack of 
NFκB results in impaired maturation and activation of 
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regulatory T cells (Treg), known for their immunosup-
pression in tumor sites.124 Treatment of tumor-bearing 
mice with TRAF6 interaction peptide inhibitor improved 
cytokine production in TILs, restrained tumor develop-
ment in mice, that was associated with restricted Treg 
migration into tumors.125

OTHER PERSPECTIVE FOR CLINICAL APPLICATION OF IICPS
We review here more than 30 TCR signaling inhibitory 
intracellular proteins. The vast majority of them were discov-
ered in the last 5 years and remain under intense investiga-
tions prior to validation in preclinical tumor models. The 
summary of these proteins could be found in table 1. The 

mouse tumor models used here highlight the possibility to 
target genetically the potential iICP gene expression in TILs 
or CAR-T cells for developing clinical trials (see discussion 
below). However, a pharmacological iICP inhibition could 
also be taken into account. Some syngeneic mouse models 
could be used to evaluate a broad impact of these inhibitors, 
as it was shown for MDM2 inhibitors which promoted the 
recognition of tumor cells by T cells.126 127

DISCUSSION
The development of gene engineering and synthetic 
biology extend greatly the possibilities of cancer immu-
notherapies. Indeed, immunotherapies are based on 
the fundamental immunology knowledge and technical 

Table 1  Other perspective for clinical application of iICPs

Protein Targeted protein Mechanism of targeting Preclinical trials References

A20 MALT1 Deubiquitination Yes 115 116

CMIP LCK, FYN Not determined No 155

Csk LCK, FYN Phosphorylation No 156 157

CYLD TAK1 Deubiquitination No 80

DELTEX1 PLCγ1, PKC, MEKK Ubiquitination No 83 158

DGK DAG Phosphorylation Yes 8

DOK family LCK, PI3K, RAS Sequestration Yes 121

DRAK2 Not determined Phosphorylation No 87

DUSP2 ERK Dephosphorylation Yes 108

Fam49B RAC1 Sequestration No 159

GAB2/3 PI3K-AKT Sequestration No 160

GRAIL TCRβ, CD3ζ Ubiquitination Yes 112

GRAP ERK Sequestration No 161

LAX/ALX NFAT Sequestration No 162

LRCH1 LAT Sequestration Yes 122

MDM2 NFAT Ubiquitination Yes 109

NEDD4 Family PLCγ1, PKC Ubiquitination No 163

NRDP1 ZAP-70 Ubiquitination Yes 110

NTAL GRB2 Sequestration No 164

PAG CSK Sequestration No 85

Peli1 c-REL, TSC1 Ubiquitination Yes 113

PTEN PI3K Dephosphorylation No 165

PTPN2 LCK, FYN Dephosphorylation Yes 86 97

PTPN22 FYN, LYN Dephosphorylation Yes 105–107

RASA2 RAS Hydrolysis Yes 118

RASA3 RAP1 Hydrolysis No 166

SHIP-1 PI3K Dephosphorylation No 167 168

SHP-1 LCK, ZAP-70, PI3K Dephosphorylation Yes 98–100

SIT ZAP-70, LAT, PLCγ1, AKT Dephosphorylation No 169

SOCS family LCK, PI3K Ubiquitination No 170 171

TIPE2 IKK, MEKK Phosphorylation No 172

TRAF6 PI3K Not determined Yes 125

TULA family ZAP-70 Dephosphorylation No 173 174

iICP, intracellular immune checkpoint.
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possibilities. Gene modification tools such as TALEN 
or CRISPR-Cas9 and their validation in clinical trials 
extended our clinical interest beyond the cell surface. 
Genetically modified cells have been approved recently 
for clinical use. Consecutively, it opened new avenues to 
engineer more extensively T cells, reaching previously 
inaccessible targets such as iICPs. Currently, numerous 
tools to modulate iICPs expression or activity are avail-
able (figure  3): small molecules able to inhibit the 
activity of iICPs, methods of in vivo targeted proteolysis 
of iICPs (PROTAC), in vitro gene silencing by interfer-
ence (siRNA, ASO, CRISPR interference) and gene 
editing (CRISPR-Cas9, TALEN). These methods could 
be realized in different vector and non-vector-based 
delivery approaches. These technologies are constantly 
improving, thus expanding the toolbox to develop new 
strategies for immunotherapies.

Modern T cell–based immunotherapeutic approaches 
use different tumor-specific antigen receptors such as 
conventional TCRs (TILs), engineered TCRs (TCR-T), 
chimeric antigen receptor (CAR) or brand new T cell 
receptor fusion constructs (TRuC), that combine TCR 
and CAR by expression of one of TCR chains fused to 
scFv fragment.128–132 However, each antigen receptor 
type differs from others in antigen sensitivity, triggering 
mechanisms, immune synapse formation and signaling 

pathways. All these mechanisms need further investiga-
tions as adequate understanding of antigenic receptor 
signaling in each case could improve clinical outcome in 
patients. Recently, several data compared the first clini-
cally validated artificial antigenic receptor, CAR, with 
conventional TCR signaling.11 133 Actually, CAR and TCR 
use similar signal transduction molecular pathways but 
the magnitude and kinetics of phosphorylation events 
are different.134 135 In this context, it is also important 
to know if these iICPs are able to control the encoding 
signals downstream of CAR. Some of these proteins, 
involved in negative feedback loops downstream the TCR 
signaling, have been challenged in different kinds of 
CARs. Indeed, targeting PTPN2, DGK, HPK1, and Cbl-b 
is also efficient in the context of CAR-T cells.8–10 86 More-
over, CAR structure might impact signalosome formation 
as 4-1BB-CAR recruit Themis-SHP1 complex, but it is not 
the case for CD28-CAR.136 On the contrary, PD-1-SHP2 
has greater suppressor effect in CD28-CAR.137 Therefore, 
the construction of T cell antigenic receptor is crucial 
for signaling and subsequent biological effect, and this 
should be considered for improvement of T cell activa-
tion via targeting of TCR signaling inhibitory loops.

Most of the early studies on T cell signaling were 
performed on T cell lines and primary CD4+ T cells.3 
However, the role of the iICPs should be considered 

Figure 3  iICP targeting. Numerous methods to target iICPs were developed recently for in vitro/ex vivo and in vivo application 
in line with their possible clinical use: adoptive cell transfer (TILs, CAR-T, TCR-T) and systemic therapy. Targeting could 
be performed at different levels of iICP protein expression or activity. It could be done by irreversible gene modification or 
temporary inhibition. It could act on iICP expression, protein function or key interactions with partner proteins. CAR-T, chimeric 
antigen receptor T cell; iICP, intracellular immune checkpoint; TCR, T cell receptor; TIL, tumor-infiltrated lymphocyte.
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in different T cell subsets involved in immunotherapy 
such as exhausted CD8+ T cells inside the tumor or in 
vitro expanded T cells in the context of CAR-T cells 
and ACT. Some differences in TCR signalosome forma-
tion could be suggested among T cell subsets. The first 
evidence of TCR signalosome difference between naïve 
and memory T cells was revealed as memory CD4+ T 
cells had less tyrosine phosphorylated proteins on TCR 
engagement, notably ZAP-70.138 These data suggest that 
there is a rearrangement of TCR signalosome on the 
passage to the memory state, meaning that inhibitory 
mechanisms of TCR signal propagation may have spec-
ificity toward the naïve or memory TCR configuration. 
However, the composition and dynamics of the proximal 
TCR signal transduction protein network seems to be 
largely conserved between human expanded CD4+ and 
CD8+ T cells.139 And for instance, the iICP, HPK1 binds to 
SLP-76 on TCR triggering with similar kinetics in human 
expanded CD4+ and CD8+ T cells.139

ACT therapy for cancer treatment is rapidly expanding 
notably after the clinical acceptance of CAR-T cells. 
Other immune cells with cytotoxic potential are currently 
being tested. This is the case for NK and γδ T cells.140–143 
Recently, the engineering and clinical efficacy of CAR-NK 
or CAR- γδ T cells were demonstrated.144–147 Interestingly, 
it is known that NK and γδ T cells activating receptors 
(NCRs, NKG2D and γδ TCR) share similar signaling acti-
vating machinery as αβ TCR.148 149 Therefore, several 
signaling inhibiting loops are shared and impact the acti-
vation of these cells. Targeting these inhibiting proteins 
may improve ACT using NK and γδ T cells. Notably, 
Cbl-b-deficient NK cells show improved cytotoxicity, anti-
tumor immunity and metastasis control in vivo.150 NK 
cells lacking HPK1 have increased cytotoxicity against 
NK sensitive murine lymphoma cell, YAC-1.72 DOK1 and 
DOK2 are induced on NK activating receptor engage-
ment and their ablation enhanced IFNγ production after 
stimulation.151 Recently, our team showed that CISH 
depletion specifically in NK cells improves NCR signaling, 
proliferation, cytokine production and antitumor activity 
in vitro and in vivo.152 Furthermore, the investigation of 
other inhibitory proteins implications in NK and γδ T cell 
activation may open a large window of opportunities for 
ACT cancer immunotherapy improvements.

In this review, we were focused on iICPs that nega-
tively control TCR signaling. However, T cell activation 
is a complex process including cytokine signaling as 
well. It was demonstrated that some iICPs such as PTPN2 
and CISH might negatively regulate cytokine signaling 
pathway JAK-STAT, therefore contributing to T cell acti-
vation improvement also by this mechanism.153 154

CONCLUSION
Immunotherapies are showing encouraging results in 
disease management for patients with cancer. Histori-
cally, most efforts are focused on targeting molecules 
expressed at the surface of immune cells. As described 

here, there are several promising avenues to target intra-
cellular molecules. We have now entered the era where 
cell therapy and genetic modification of a cell is possible. 
These approaches will complement current immuno-
therapy strategies and can also be used in combination 
with other treatments such as those based on immune 
checkpoint inhibitor, CAR-T cells, targeted therapies 
and more. However, immune cell signaling needs to be 
studied in detail prior to propose these new innovative 
treatments.

Although we focused on targeting iICPs in T cells in this 
review, other cytotoxic cells may be used in the future. 
NK and γδ T cells have different properties in tumor cell 
recognition, alloreactivity or persistence. Interestingly, 
these cytotoxic lymphocytes share some mechanisms of 
signaling and activation with conventional T cells, thus 
targeting aforementioned iICPs may be of interest in 
these cells. Inhibitory proteins mentioned in this review 
and proteins not yet identified or studied in the context of 
TCR signaling have a great potential to improve existing 
cell-based immunotherapies of cancer and are expected 
to upgrade cancer treatments in the near future.
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