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ABSTRACT Marine herbivorous fish that feed primarily on macroalgae, such as those
from the genus Kyphosus, are essential for maintaining coral health and abundance on
tropical reefs. Here, deep metagenomic sequencing and assembly of gut compartment-
specific samples from three sympatric, macroalgivorous Hawaiian kyphosid species
have been used to connect host gut microbial taxa with predicted protein functional
capacities likely to contribute to efficient macroalgal digestion. Bacterial community
compositions, algal dietary sources, and predicted enzyme functionalities were ana-
lyzed in parallel for 16 metagenomes spanning the mid- and hindgut digestive regions
of wild-caught fishes. Gene colocalization patterns of expanded carbohydrate (CAZy)
and sulfatase (SulfAtlas) digestive enzyme families on assembled contigs were used to
identify likely polysaccharide utilization locus associations and to visualize potential co-
operative networks of extracellularly exported proteins targeting complex sulfated
polysaccharides. These insights into the gut microbiota of herbivorous marine fish and
their functional capabilities improve our understanding of the enzymes and microor-
ganisms involved in digesting complex macroalgal sulfated polysaccharides.

IMPORTANCE This work connects specific uncultured bacterial taxa with distinct poly-
saccharide digestion capabilities lacking in their marine vertebrate hosts, providing
fresh insights into poorly understood processes for deconstructing complex sulfated
polysaccharides and potential evolutionary mechanisms for microbial acquisition of
expanded macroalgal utilization gene functions. Several thousand new marine-specific
candidate enzyme sequences for polysaccharide utilization have been identified. These
data provide foundational resources for future investigations into suppression of coral
reef macroalgal overgrowth, fish host physiology, the use of macroalgal feedstocks in
terrestrial and aquaculture animal feeds, and the bioconversion of macroalgae biomass
into value-added commercial fuel and chemical products.

KEYWORDS fish gut microbiome, polysaccharide utilization, sulfatase, macroalgal
digestion, kyphosid

The feeding activity of herbivorous fish on tropical coral reefs profoundly affects coral
abundance and stress recovery by suppressing competing macroalgae (1–3). Reef

fish that consume macroalgae are often modeled by species from the genus Kyphosus,
which have elongated digestive tracts divided into multiple sections harboring distinct
microbial taxa (4–6). Like other marine herbivores, distal hindgut regions of these fish
contain abundant fermentative bacteria capable of digesting complex carbohydrates
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(7–12). Although dietary preferences are known to vary among kyphosid species and
ontogenic stages of individual animals, macroalgae are believed to be the primary adult
food source, based on visual observation of stomach contents (13, 14). However, the
full range of potential dietary diversity among individual animals over time has not yet
been established using molecular methods.

The red and brown macroalgae consumed by kyphosid fish contain large quantities
of highly sulfated polysaccharides, including structural carrageenans, porphyrans, and
fucoidans (reviewed in references 15 and 16). As a result, free sulfate concentrations in
fish hindgut environments can reach or exceed levels of 100 mM (17). Bacterial isolates
capable of deconstructing sulfated macroalgal polysaccharides have been cultured from
epiphytic adherents to algal surfaces (18–24), detritovores in seawater and marine sedi-
ments (25–28), and host-associated gut bacteria from sea urchins (29), sea cucumbers
(30), marine snails (31), and surgeonfishes (32), as well as macroalga-consuming humans
(33). However, only one cultured isolate, from the Bacillota family Erysipelotrichaceae, is
currently available from the digestive systems of macroalgivorous fish (34).

16S rRNA-based molecular methods have identified a number of bacterial species in
hindgut compartments of kyphosid fish (35, 36) that are taxonomically related to those
present in plant-digesting terrestrial herbivores, including Alistipes-related Bacteroidota,
Clostridia-related Bacillota, and Desulfovibrio-related Deltaproteobacteria. Although numer-
ous cultured isolates, genomes, and metagenome-assembled genomes (MAGs) have been
obtained for these taxa in terrestrial animals (37, 38), few laboratory cultures, complete
genomes, or high-quality MAGs are currently available for their relatives within herbivo-
rous fish gut microbiota (34, 36). As a result, strain-specific functional adaptations that
might account for their success in marine hosts with macroalgal diets have not yet been
established.

The diverse galactose, mannose, xylose, fucose, rhamnose, arabinose, and uronic acid
subunits of macroalgal polysaccharides occur in a wide variety of different ratios, sulfa-
tion states, and branching patterns (39–41). Processing these complex carbohydrates
into simpler sugars for incorporation into central metabolic pathways requires sulfate re-
moval either before, concurrently with, or after glycosidic bond cleavage (31, 42, 43),
but determining precise hydrolysis mechanisms can be difficult for substrates requiring
coordinated action by multiple different enzymes. Enzyme characterization ambiguities
can also arise in cases of natural substrate promiscuity, potentially confounding experi-
mental determinations based on simplified oligosaccharide model compounds instead
of full-length polymers (44). Additional challenges arise in trying to predict functional
specificities from genomic, metagenomic, and/or transcriptomic sequence data for pro-
tein families with few experimentally characterized examples.

Bacterial genes encoding cooperative functional activities are often located in close
genomic proximity to each other, providing opportunities for coordinated regulation.
Well-studied glycohydrolase gene clusters known as polysaccharide utilization loci (PUL)
and carbohydrate-active enzyme gene clusters (CGCs), may also include sulfatases, sugar
binding proteins, transporters, and regulatory elements (45, 46). PUL and CGCs can be
characterized bioinformatically by sequence comparison to the CAZy database of carbo-
hydrate-active enzymes (47), and the associated PUL database (48), using either bacterial
isolate genomes or culture-independent metagenomes (23). A large database of sulfatase
sequences is also available (49), but its protein family classifications are based on broad
evolutionary relatedness, rather than experimentally determined substrate specificities.

The breakdown of naturally occurring sulfated polysaccharides via exported extracel-
lular enzymes is known to occur in cultured bacteria isolated from macroalgal surfaces
(50), but the extent to which these observations can be applied to the microbiomes of
macroalga-eating vertebrates is unknown. A better understanding of enzyme candidate
diversity, species of origin, and subcellular localization can lead to practical applications
in aquaculture and animal husbandry: for example, by enhancing digestibility of macro-
algal feed sources through probiotic supplements (51–56) and/or reducing ruminant
methane contributions to global warming by adding small amounts of seaweed to their
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diets (57). This information would also be useful in identifying key organisms and
enzyme variants for biotechnological processing of marine algal feedstocks for the pro-
duction of value-added products such as biofuels (58), as well as pharmaceutical pro-
duction of biologically active glycan compounds such as fucoidans, with medicinally
valuable anti-inflammatory, anticancer, antiviral, antioxidation, anticoagulant, antith-
rombotic, and antiangiogenic effects (43, 59).

The current study uses metagenomic analysis to survey microbially encoded pro-
teins related to macroalgal digestion in the gut microbiota of three sympatric Hawaiian
reef fishes, Kyphosus vaigiensis, Kyphosus cinerascens, and Kyphosus hawaiiensis (60, 61).
Networks of expanded CAZyme and sulfatase protein families occurring in close ge-
nomic proximity have been used to obtain insights into the diversity, taxonomic distri-
bution, and operon context of microbial enzymes enabling these fish to digest a broad
variety of diverse macroalgal polysaccharides.

RESULTS
Taxonomic composition of metagenomic samples. The 16 fish gut metagenomic

samples assembled using metaSPAdes yielded a total of 1.478 Tbp of assembled nucle-
otides in contigs of .2 kb, encoding 1,432,202 predicted proteins (see Table S1B in the
supplemental material). Microbial community compositions of these samples were
assessed using unassembled reads with Kraken2, enabling relative abundance esti-
mates for eukaryotic, archaeal, and viral taxa as well as bacteria.

High-level taxonomic classifications for individual samples (Fig. 1) were generally con-
sistent with 16S rRNA gene abundances reported from the same kyphosid fish samples
(35), although some additional variability was observed between individual fishes that
had previously been masked by averaging. Bacteroidota and Bacillota were highly abun-
dant in all hindgut samples, with Alpha-, Beta-, and Deltaproteobacteria, Spirochaetota,
Verrucomicrobiota, and Archaea distributed at lower abundances across all gut regions.
Interfish differences were observed for Gammaproteobacteria, dominating midgut sam-
ples from K. vaigiensis and K. hawaiiensis but not K. cinerascens, and Eukaryota, present at
much higher abundances in fish 8 (juvenile K. vaigiensis).

Taxonomic associations of fish gut-associated bacterial clades were further explored
using predicted protein sequences of the single-copy DNA-directed RNA polymerase
subunit beta (rpoB) gene on assembled contigs. An amino acid sequence tree (Fig. 2)
shows the largest numbers of rpoB genes recovered were taxonomically classified as
Bacillota (50), followed by Bacteroidota (39), Gammaproteobacteria (19), Spirochaetota
(7), Deltaproteobacteria (6), Verrucomicrobiota (5), Alphaproteobacteria (4), and
Melainabacteria (1). No rpoB sequences were detected for Archaea, consistent with
the low coverage of this taxonomic group observed in unassembled reads.
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FIG 1 Relative abundance of fish gut-associated microbial taxa. Relative abundances are based on
Kraken2 analysis of unassembled Illumina NovaSeq reads. Sample ID numbers indicate fish numbers
(Table S1), followed by gut region code, in progressively distal order. Abbreviations: GI, midgut; HG,
hindgut.
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The closest database relatives to kyphosid metagenome rpoB genes suggest that
transient ingested environmental bacteria may be more abundant in midgut samples,
with hindgut regions containing higher numbers of sequences more closely related to
persistent taxa from gastrointestinal compartments in other animal hosts (Table S2).
Predicted fish hindgut RpoB proteins from Bacteroidota, Bacillota, Deltaproteobacteria,
and Alphaproteobacteria clades most closely matched sequences from terrestrial rumi-
nant MAGs, rather than marine environmental or bacterial isolate genomes. In contrast,
midgut-associated Gammaproteobacteria RpoB protein sequences most closely resembled
marine environmental Vibrionaceae, including one shallow-branching clade matching
Vibrio campbellii at 95.8% amino acid identity (WP_005433641.1). Surprisingly, no matches
were found for previously described macroalga-degrading Gammaproteobacteria from the
Alteromonadaceae and Flavobacteriaceae families, such as Paraglaciecola agarilytica (23) or
Formosa agariphila (22).

Fish gut RpoB proteins from relatively novel taxa included Verrucomicrobiota sequences
most closely related to marine bacteria of the Kiritimatiellaceae family (Kiritimatiella glycovor-
ans [76% identity]) and alga-associated bacteria from genus Lentimonas (WP_162027363.1
[63% identity]), as well as a Spirochaetota clade distantly related to mammalian pathogen
Brevinema andersonii (SFB68422.1 [84% identity]). Brevinema-related taxa have also been
observed in 16S rRNA gene amplification studies of trout (62), tilapia (63), salmon (64), sea-
horses (65), and kyphosids (35), as well as environmental metagenomes from sulfidic arte-
sian boreholes (66).

Macroalgal components of fish diets. Eukaryotic components of fish gut samples
were initially assessed based on the presence of 18S rRNA markers in assembled
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metagenomic contigs, but this method proved relatively insensitive, detecting only highly
abundant taxa. 18S rRNA sequences assembled from metagenomic data were limited to
those of kyphosid fish hosts, along with single-celled protozoa (Trichomonadea, Entamoeba,
Giardia, and Plasmodium) and multicellular worm taxa (Enenterum, Acanthocephalus,
Enoplus, and Opisthadena) often associated with fish pathology (Table S3).

Eukaryotic components of gut samples were subsequently analyzed using Kraken2
classifications of unassembled metagenomic reads. Despite relatively low levels of red,
brown, and green algal sequences in total metagenomic DNA, the use of very-large-
input data sets (millions of reads for most samples) enabled sensitive quantification of
their relative abundances. This methodology was helpful in avoiding potential issues
associated with variability in 18S rRNA gene copy numbers, incomplete metagenomic
assembly, and potential degradative fragmentation of nucleotide sequences. Even
though the reference sequence library used by Kraken2 does not include exact
matches for every possible environmental species of interest, solid taxonomic assign-
ments can be made at broader granularities based on closest available relatives (67).

A summary of phylum-level algal matches (Fig. 3) shows that metagenomic reads
from red (Rhodophyta) and green (Chlorophyta) algal lineages were more abundant
than those from brown algae (Phaeophyceae) in all cases, except the most proximal
gut sample from fish 7 (F7GI2). Brown algal abundance declined sharply in more distal
gut sections of this fish, consistent with consumption of a meal composed primarily of
brown algae during a single, relatively brief time period. Finer-grained examinations
revealed that algal sequences from the phylum Phaeophyceae in all fish samples were
dominated by matches to the order Ectocarpales (.70% overall), with relatively few
examples from Sphacelariales, Dictyotales, Fucales, and Laminariales (Table S4A).

Red algal matches encompassed a much broader range of taxonomic diversity,
including not only macroalgae from the orders Ceramiales, Gracilariales, Gigartinales, and
Bangiales, but also sequences most closely related to unicellular forms classified as
Cyanidales and Porphyridiales (Table S4B). The most prominent green algal sequences
matched unicellular, filamentous, and colonial classes Chlorophyceae, Trebouxiophyceae,
and Mamiellophyceae, with much lower representation of parenchymatous lineages
from class Ulvophyceae (Table S4C). These results are consistent with prior observations
of both kyphosids and other marine reef fish consuming not only macroalgae, but also
uncharacterized microalgal assemblages described as “turf algae” and “epilithic algal ma-
trix” (13, 68, 69).
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Macroalgal polysaccharide hydrolysis. Functional annotations of predicted kypho-
sid fish gut microbiome proteins (see Data Set S1 in the supplemental material) were
consistent with general metabolic characteristics of microbial taxa related to those
observed in Fig. 1, as well as those recently described in Kyphosus sydneyanus (36, 70).
Although relative abundances of predicted protein functions in metagenomic assem-
blies do not necessarily correspond with biological activity, expanded numbers of
metagenomically predicted genes from specific protein families can indicate potential
adaptive capacity.

High levels of structural microheterogeneity in naturally occurring marine macroal-
gal polysaccharides (15) might be expected to promote expansion and diversification
of microbial enzyme families involved in their hydrolysis. To distinguish between ma-
rine macroalga-specific enzymes and more general carbohydrate digestion activities
common to saccharolytic bacteria from nonalgivorous hosts with high-carbohydrate
diets, predicted protein annotations for kyphosid fish gut metagenomes were com-
pared to a set of 391 MAGs from terrestrial ruminant digestive systems (38). The most
frequently encountered nonhypothetical gene function descriptions in adult kyphosid
fish metagenomes were arylsulfatases (1.9% of all predicted proteins). In contrast, aryl-
sulfatases comprised only 0.13% of annotated proteins in MAGs from terrestrial rumi-
nants with no dietary exposure to macroalgal polysaccharides. (Data Set S1).

Although the annotations produced by Prokka are not comprehensive (for example,
laminarinases, cellulases, and fucosidases were labeled with only broader, more generic
keywords), these results did confirm enrichment of predicted proteins described as agar-
ases, carrageenases, porphyranases, and arylsulfatases in the fish metagenomes (P ,

0.05). Carrageenases, porphyranases, and agarases were observed at consistently higher
frequencies in hindgut versus midgut samples, compared to more variable compartmen-
tal distributions for alginate lyases and arylsulfatases (see Fig. S1 in the supplemental
material).

Candidate enzymes for macroalgal digestion were subsequently characterized in
more detail by classification according to the CAZy reference database (Fig. 4; Data Set
S2). Quantitative family abundances, normalized for total numbers of predicted pro-
teins from each gut compartment and species sample, were used to identify significant
protein family expansions and diversifications in the context of total available protein
repertoire.

CAZy families targeting red algal agars (GH117 and GH50), porphyrans (GH86), and
carrageenans (GH82 and GH150), green algal ulvans (PL40 and PL38), and nonsulfated
alginates from brown algae (PL6_1) were particularly abundant among fish metage-
nomes. Fish-specific families annotated as chondroitinases (GH88, PL8_1, PL30, and
PL29) and heparin lyases (PL13) are most likely associated with the breakdown of host-
associated extracellular matrix components. Fish metagenomes also contained large
numbers of sequences from families annotated as galactosidases (GH110 and GH165)
and xylanases (GH10), as well as several families annotated as hydrolyzing polysaccha-
rides containing multiple different monomers (GH39, GH136, and PL9_2), but potential
involvement of these families in macroalgal decomposition could not be unambigu-
ously determined. In agreement with annotation keyword results, the great majority of
sequences from CAZy families enriched in kyphosid fish relative to terrestrial ruminants
and described as hydrolyzing sulfated macroalgal polysaccharides were obtained from
hindgut compartments.

CAZy glycoside hydrolase families are based on shared amino acid sequence simi-
larity, protein structural features, and catalytic mechanisms, but often do not distin-
guish between enzymes acting on chemically similar substrates, especially those with
different branching patterns (47, 71, 72). Polyspecific CAZy families are particularly
common among glycohydrolases annotated as having 1,3 b-glucosidase and/or 1,4
b-glucosidase activities, including laminarinases and cellulases (Table S5). Families
GH16_3 and GH16_21, historically described as laminarinases despite having a sub-
stantially broader range of actual substrates (73), were slightly more abundant in fish
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gut than terrestrial ruminant metagenomes, but these differences were not statistically
significant. Other CAZy families annotated as hydrolyzing nonsulfated, glucose-con-
taining polysaccharides (e.g., GH3, GH5, GH8, GH9, and GH64) were more abundant in
metagenomes of terrestrial ruminants than fish. However, model enzymes in these
families hydrolyze not only algal polysaccharides (74), but also nonalgal glycans from
bacterial capsule polysaccharides (75) and the cell walls of plants (76) and fungi (77).
These ambiguities preclude confident substrate predictions for these particular CAZy
families based on sequence data alone.

Two recently described CAZy families (GH107 and GH168) include enzymes experimen-
tally demonstrated to hydrolyze sulfated brown algal fucans (23, 43). Although neither of
these two families was detected in terrestrial ruminant metagenomes, kyphosid fish sam-
ples included several predicted sequences from family GH168 (Fig. 4). Additionally, fucosi-
dase family GH141, present in multiple copies in PUL of known fucan-degrading bacteria
(26), was highly expanded in fish gut metagenomes. In contrast, fucosidases from family
GH29 were abundant in both kyphosid fish and terrestrial ruminant metagenomes, and
family GH95 fucosidases were more abundant in the terrestrial samples, suggesting activ-
ity profiles that are not specific for marine macroalgae.

Bacterial export signal sequences were detected in the majority of sequences from
fish-expanded CAZy families (Fig. 4A). In Gram-positive bacteria such as Bacillota, pro-
teins containing signal sequences are translocated across the cell membrane and
exported to the extracellular environment (78). In Gram-negative bacteria such as
Bacteroidota, signal sequences mediate initial translocation across the inner cytoplas-
mic membrane to the periplasmic space, which may or may not be followed by secre-
tion across the outer membrane (79). Although N-terminal signal sequences could be
missing in some predicted proteins due to incomplete metagenomic assembly, poten-
tial assembly truncation should not adversely affect reliability of the amino acid similar-
ity comparisons presented in Fig. 4C, which show that median percentages of identity
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FIG 4 Polysaccharide hydrolase family enrichment. (A) Text colors denote predicted substrates based on CAZy annotations: red, red algae; brown, brown algae;
green, green algae; purple, nonalgae; gray, ambiguous. Abbreviations: norm, normalized per 1 million predicted metagenomic proteins; HG, hindgut; rum,
ruminant. Full data and significance calculations are provided in Data Set S2. (B) Taxonomic distribution of families enriched in fish relative to terrestrial ruminants,
based on the top BLAST matches to database relatives. (Note that not all candidates had database matches.) (C) Intra-CAZy family diversity within fish gut
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within families GH95 (86%), PL38 (85%) and GH168 (58%) were much lower than those
for other families (95 to 99%). These more heterogeneous CAZy families might need to
be divided into narrower subfamilies as more experimental data become available in
the future.

Taxonomic distributions of fish gut-expanded CAZy enzyme families were estimated by
protein sequence comparisons to classified relatives in GenBank nr (Fig. 4B). Predicted pro-
teins from families GH168, GH165, and PL40, targeting brown and green algal polysaccha-
rides, along with families PL30, PL29 and PL13, most likely digesting host tissues, exclusively
matched database sequences from Bacteroidota-related clades. Predicted carrageenan-
degrading family GH82 enzymes were confined to taxa identified as either Bacteroidota or
Verrucomicrobiota, while other macroalgal-degrading families also contained some matches
to Bacillota and Gammaproteobacteria. Although not all enzyme candidates could be
assigned to a particular bacterial taxon, these results confirm the dominant role of
Bacteroidota as elite complex carbohydrate digesters as previously described in other
environments (80).

Polysaccharide desulfation. Negatively charged sulfate residues in polysaccha-
rides can shield glycosidic bonds from enzymatic cleavage (26), stabilizing carbohy-
drate backbones against degradation and impeding transport of partially degraded
external intermediates into bacterial cells. To identify enzyme families that might help
overcome these barriers for marine-specific macroalgal substrates, all predicted meta-
genomic arylsulfatases were classified according to SulfAtlas database categories (81),
and relative abundances of these sulfatase families were compared between kyphosid
fish and terrestrial ruminant metagenome samples.

Relative abundances of the most highly expanded SulfAtlas families in fish gut metage-
nomes are shown in Fig. 5 and Data Set S2. Low or undetectable levels of these families in
terrestrial herbivores suggest a high degree of marine specificity (Fig. 5A). As in CAZy fami-
lies, the majority of taxonomically classifiable sulfatase sequences were associated with
Bacteroidota, followed distantly by Verrucomicrobiota and Gammaproteobacteria (Fig. 5B).
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FIG 5 (A) SulfAtlas enzyme family enrichment. Abbreviations: avg norm, group average normalized per 1 million predicted metagenomic
proteins; HG, hindgut; rum, ruminant. Full data are provided in Data Set S2. (B) Taxonomic assignments of fish sulfatase class genes
matching GenBank nr sequences with minimum blastp E value scores of ,1e25 and alignments covering .30% of database protein
length; (C) Intra-SulfAtlas family diversity within fish gut metagenomes. Box-whisker plot elements are defined in the legend to Fig. 4C.
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Only one sulfatase family (S1_27) included members classified as Bacillota. All
expanded SulfAtlas families except S1_13, the only group exclusively associated
with Gammaproteobacteria, were highly concentrated in hindgut regions. With the
exception of family S1_46, most fish gut proteins contained export signal sequences.
S1_46 sequences were also unusual in their level of intraclass heterogeneity, with a
median amino acid identity of 72% versus 93 to 100% for other expanded SulfAtlas
families (Fig. 5C).

SulfAtlas families S1_7 and S1_81 have previously been demonstrated to include
endo-4S-k -carrageenan sulfatases (21, 42, 49, 82), while S1_19 family members have
shown activity against both endo-4S-k - and endo-4S-i -carrageenans (21, 83). In this
study, metagenomic frequencies for family S1_19 (n = 273) were considerably higher
than those for S1_7 (n = 87) or S1_81 (n = 32). These results are consistent with expan-
sion of CAZy families targeting more highly sulfated GH82 (i -) and GH150 (l-) carra-
geenases, rather than simpler k -carrageenases. Further research will be required to
determine the role of other, as yet functionally uncharacterized, SulfAtlas families in ac-
commodating sulfated polysaccharide diversity potentially associated with fish micro-
biomes encountering a wide variety of red macroalgal taxa.

Colocalization of sulfatase and polysaccharide degradation enzyme classes.
CAZy and SulfAtlas classified genes occurring in close proximity to each other on the
same contig are potential candidates for colocalization within a common PUL. Although
not all metagenomic contigs are long enough to encompass full-sized PULs, which can
include as many as 25 adjacent genes (48), the median separation distance for the 1,453
unique CAZy/SulfAtlas gene pairs detected in fish gut metagenomes was only 4 genes
apart, with 98% separated by 25 or fewer genes (Fig. S2). In contrast, the median interven-
ing distance for CAZy and SulfAtlas family pairs colocalized on terrestrial ruminant meta-
genomic contigs was 15 genes, with only 62% falling within a 25-gene distance limit.

CAZy-SulfAtlas family pairs identified by proximity screening can be visualized as a
network of nodes, with edges depicting colocalization frequencies (Fig. 6). Similarities
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and differences in potential PUL associations are highlighted by subnetworks, such
as those including only abundant CAZy (Fig. 6B) or SulfAtlas (Fig. 6C) families, as well
as those limited to connections associated with individual enzyme families (Fig. 7
and Fig. 8).

One striking feature of gene colocalization networks was the presence of higher
proximity frequencies between certain enzyme families. These enhanced links sug-
gest potential occurrence within a common PUL that might facilitate coregulation of
gene expression. Both linkage frequencies and the diversity of colocalized nodes var-
ied widely between families. These variations were not necessarily proportional to
overall metagenomic abundance, as illustrated by comparing the colocalization fre-
quency network centered on CAZy family GH50 (94 metagenomic occurrences) with
that of family GH150 (95 metagenomic occurrences) in Fig. 7 and SulfAtlas family
S1_29 (75 metagenomic occurrences) with SulfAtlas family S1_30 (63 metagenomic
occurrences) in Fig. 8.

Network comparisons also show enormous variation in the number of self-loops
formed by neighboring genes from the same class on a single metagenomic contig,
suggesting differences in the expansion of particular families by gene duplication
(summarized in panels B and C of Fig. 9). The most extreme example of gene duplica-
tion was observed in family PL38 glucuronan lyases, where tandem repeats of 7 to 9
closely related sequences predicted to originate from an unknown Spirochaete lineage
were found in assembled contigs from both K. cinerascens and K. hawaiiensis samples.
Although no closely related proteins have been reported in other Spirochaetes, the PUL
Database (48) does contain numerous examples of tandem duplications of PL38 family
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proteins among Bacteroidota genomes, suggesting the possibility of horizontal gene
transfer into a Spirochaete lineage, followed by additional local gene duplications.

Detailed comparisons of colocalized enzyme families can reveal subtle relationships
and provide hints about potential metabolic interactions that might benefit from core-
gulation. As an example, sulfatase families S1_16 and S1_8 were frequently colocalized
on the same contig (Fig. 6C), suggesting potential complementary PUL-linked func-
tions within a single genome. Both families were also frequently paired with polysac-
charide-degrading CAZy families (Fig. 9A) that included those targeting highly sulfated
i -carrageenans (GH82) and l-carrageenans (GH150), as well as exo-a-galactosidase
family GH110, a-1,3-(3, 6)-anhydro-D-galactosidase family GH127, and generalized hex-
osidase family GH2. Links to CAZy families targeting agarases (GH117 and GH50) and
porphyranases (GH16_11) occurred much less frequently.

Nearly all SulfAtlas families expanded in fish gut metagenomes included some
examples of proximity with red algal polysaccharide-hydrolyzing CAZy families, but
some were also located near CAZy families predicted to degrade brown and green
algal and/or host chondroitin substrates (Fig. 9A). SulfAtlas families S1_28 and S1_25
were predominantly linked to CAZy families hydrolyzing brown algal substrates, while
families S1_19, S1_20, S1_27, and S1_30, were more narrowly associated with red
algal-digesting enzyme sequences. Families S1_14 and S1_17 were most often associ-
ated with green algal ulvan lyases. These distinctively different colocalization patterns
suggest promising avenues for future experimental determination of sulfatase family-
specific substrate ranges.

One limitation of metagenomic colocalization analysis is that not all paired enzyme
features are equally informative, particularly those including diverse glycohydrolase
families like GH2. At least a dozen different functional activities have been ascribed to
this CAZy family, targeting not only b-galactosides, but also b-mannosides, b-glucuro-
nosides, and b-galacturonosides. Another constraint is that predicted proteins from
sparsely represented microbial taxa are often encoded on shorter, less completely
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assembled contigs, reducing the amount of available information about potential
neighboring genes. Although this limitation can decrease detection sensitivity for rare
enzyme family pairs, infrequent relationships could also be interpreted as less impor-
tant to overall fish digestive processes than features showing elevated metagenomic
linkage frequencies that potentially contribute more to successful metabolic strategies,
resulting in higher community abundances for the organisms encoding them.

DISCUSSION

Although diet is undoubtedly a key element in determining gut microbial community
composition, discovering and quantifying the full variety of dietary items a wild fish might
have eaten on a particular day are challenging. Stomach contents are homogenized, frag-
mented, and conglomerated into amorphous mixtures, making visual identification diffi-
cult. Epibionts, biofilms, and marine sediments may be ingested unintentionally along
with preferred food items, and relative quantities of the items consumed may vary for
individual fish over time periods considerably briefer than those required for digestive sys-
tem transit. As a result, single postmortem snapshots of stomach contents may fail to cap-
ture or recognize the full range of dietary diversity associated with individual fish.

The deep metagenomic sequencing methods used in this study have addressed these
issues by quantifying molecular signatures of algal taxa as they passed through the digestive
systems of individual fish, minimizing potential observational bias arising from differences in
the physical sizes and deterioration states of ingested food. Dietary composition, microbial
taxonomy, and predicted enzyme functions were all assessed in parallel for each sample, cir-
cumventing potential inconsistencies due to time-dependent variability in host feeding
behavior. This approach has also provided evidence suggesting progressive replacement of
transient, environmentally sourced microbes such as marine Vibrionaceae in more proximal
gut regions with more persistent host-associated taxa during transit to distal regions.

Although the fish gut samples in this study were taken from luminal rather than
epithelial or mucosal tissue sections, the most abundant Bacteroidota, Bacillota, and
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Deltaproteobacteria species in hindgut regions were more closely related to host-asso-
ciated bacteria from terrestrial vertebrate guts than to those found in any previously
described external marine source, including potential algal food items. These results are
consistent with possible infiltration of incoming gut contents by bacteria from host-asso-
ciated tissue microhabitats that might be physically protected from fecal stream deple-
tion: for example, within mucus layers or crypt structures (84, 85). Multihour transit times
through elongated kyphosid digestive systems (7) would provide ample opportunities
for microbial community remodeling to occur within the gut lumen.

One limitation of the in-depth metagenomic techniques applied in this study is that
only one adult representative was analyzed from each of the three different kyphosid
species. There is no guarantee that identical dietary profiles would be obtained from
other fish of the same species sampled from the same habitat or even the same fish if
captured at different times. However, results spanning multiple gut regions in sympa-
tric individuals consuming similar diets have yielded a consistent, high-level picture
that greatly extends previous analyses based on observations of stomach contents
alone (13, 36). These insights will inform the design of future experiments aimed at
investigating the relationships between diet and microbial compositions within, as
well as between, species and how these relationships might vary between individuals
of different ages and sexes.

The microbiomes of wild-caught individuals from three different sympatric kyphosid
species revealed consistent connections between particular microbial groups and shared
functional capabilities likely to contribute to efficient processing of macroalgal polysac-
charides. These connections were highlighted by both expansion of individual enzyme
families and their co-occurrence in operon context. Consistent availability of especially
diverse red macroalgal dietary items correlated with expanded, marine-specific enzyme
families capable of hydrolyzing their characteristic galactose-rich sulfated polysaccha-
rides. Lower metagenomic frequencies were observed for enzyme families targeting
brown algal fucans and green algal ulvans, complementing molecular evidence suggest-
ing less frequent consumption of foods containing these polysaccharides.

Previously described methods for detecting polysaccharide utilization loci (PUL)
and their operon context rely heavily on sequences from well-characterized taxa (28,
86), potentially limiting discovery of novel examples from uncultured or poorly studied
environmental taxa with atypical PUL architectures. Quantification of metagenomic
enzyme family colocalizations avoids this limitation by identifying statistically verifiable
frequency patterns replicated in multiple independent samples, revealing informative
associations even in cases where only partial PUL are assembled. This technique has
identified relationships among several thousand newly sequenced macroalgal degra-
dation enzyme candidates from kyphosid fish metagenomes, providing valuable tools
for exploring evolutionary mechanisms that may be responsible for acquisition and
expansion of these capabilities among individual microbial taxa.

Frequently observed extracellular export signals in CAZy and SulfAtlas family proteins
enriched in fish relative to terrestrial ruminants, combined with the known complexity
and diversity of naturally occurring macroalgal polysaccharides, suggest potential oppor-
tunities for cooperative activity on recalcitrant substrates. Exported enzyme cooperativity
could include multiple genes originating from the same strain, variants comprising the
pangenomic repertoire of closely related strains, or even panmicrobiome diversity arising
from widely different taxa within the gut microbial community. Future strategies for test-
ing this hypothesis could include reconstruction of metagenome-assembled genomes
(MAGs) from binned metagenomic contigs, transcriptional mapping to determine in vivo
gene expression levels, in vitro substrate hydrolysis measurements using combinations
of purified enzymes obtained by expression cloning, and comparisons of macroalgal
degradation performance by enrichments or defined mixed cultures of live bacteria.

The work presented here extends previous kyphosid microbiome studies (35, 36,
70) by highlighting taxa likely to be most active in digestion of sulfated macroalgal
polysaccharides, identifying potentially extracellularly exported, cooperative networks
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of macroalgal digestion enzymes, and revealing prospective functional properties of previ-
ously uncharacterized sulfatase enzyme families. The discovery of gut compartment-spe-
cific microbial adaptations to a diet rich in sulfated macroalgal polysaccharides improves
our understanding of the enzymes and organisms involved in host utilization of these mol-
ecules, providing foundational resources for future investigations into suppression of coral
reef macroalgal overgrowth, the role of gut microbiota in fish physiology, the use of mac-
roalgal feedstocks and probiotics in aquaculture, the inclusion of seaweed supplements in
terrestrial ruminant feedstocks, and the use of naturally occurring microbial enzymes in
extraction of commercially valuable products from macroalgae.

MATERIALS ANDMETHODS
Metagenomic sequencing and assembly. DNA samples were isolated from lumen contents distrib-

uted over gut compartments from three different kyphosid fish species (see Table S1A in the supple-
mental material), using previously described collection and processing procedures (35), in accordance
with IACUC protocol S12219. Approximately 30 million 250-bp paired-end reads were generated per
sample using Illumina NovaSeq 6000 technology. Reads from each individual sample were quality fil-
tered and trimmed using Trimmomatic version 0.36 with the following parameters: adapter-read align-
ment settings 2:30:10, LEADING:10, TRAILING:20, HEADCROP:12, SLIDINGWINDOW:4:15, and MINLEN:200
(87). Trimmed reads from each sample were then assembled separately using metaSPAdes version 3.13
(88) with a minimum contig retention size of 2,000 nucleotides (nt).

Taxonomic classification. Taxonomic assignments were made for unassembled reads with Kraken2
version 2.1.2 (67) using GenBank nr (accessed August 2021) as a custom reference database. Assembled
metagenomic contigs were taxonomically classified using DarkHorse version 2.0_rev09 as previously
described (89). DNA-directed RNA polymerase subunit beta (RpoB) protein sequences were retrieved
from assembled contigs annotated with Prokka as described below. The closest sequenced database rel-
atives were identified by top matches in blastp searches against a combined database including both
GenBank nr entries and predicted proteins from terrestrial ruminant metagenome MAGs (38).

Multiple-sequence alignments of fish gut RpoB sequences of.900 amino acids and their closest data-
base relatives were obtained using MUSCLE version 3.8.31 (90) and used to build phylogenetic trees using
FastTree version 2.1.10 (91). Trees were visualized using the R package ggtree version 3.3.5 (92). Fish micro-
biome 18S rRNA gene sequences were identified by blastn search against the SILVA_138.1_SSURef_NR99
database (93), retaining alignments covering at least.30% of the reference sequence length with E values
of 1e25 or better. These relatively loose parameters were chosen to maximize sensitivity in assigning ap-
proximate taxonomies to both full-length and partial, incomplete metagenomic sequences.

Gene annotation. Assembled metagenomic contigs were annotated with Prokka version 1.14 (94).
Predicted proteins containing microbial extracellular export signals were identified using SignalP version
6.0f (95). Carbohydrate enzyme families were assigned using HMMSEARCH with CAZy version 10 data-
base patterns downloaded from dbCAN2 (96), retaining matches with alignments covering at least 30%
of the protein and E values of 1e215 or better. Sulfatase enzyme categories were determined using the
SulfAtlas hidden Markov model (HMM) subfamily classification tool with database version 2.3 (49).
Assembled nucleotide sequences for 391 terrestrial ruminant MAGs (38) were downloaded from NCBI
BioProject no. PRJEB34458 and annotated using Prokka, SignalP, CAZy, and SulfAtlas, as described
above, to enable direct comparisons with assembled fish gut metagenomes.

The overlap of dominant microbial community taxa observed in the digestive systems of terrestrial
vertebrate herbivores with those of kyphosid marine fish—for example Alistipes-related Bacteroidota,
Clostridia-related Bacillota, and Desulfovibrio-related Deltaproteobacteria (35–38)—provides a context of
evolutionarily shared microbial genomic backgrounds that can be used to facilitate discrimination
between broad enzyme activities involved in digesting polysaccharides common to all Viridiplantae and
those more specific to marine macroalgae. Vertebrate MAGs representing microbiota from domesticated
and wild-caught herbivores were selected as potentially informative comparators based on taxonomic
similarity of their microbial communities, breadth of potential polysaccharide types consumed, and pre-
viously documented similarity in gut transit times (1) and fermentative acetate turnover rates (6).

Metagenomic occurrence frequencies were tallied for CAZy and SulfAtlas database entries and
selected Prokka annotation keywords and then grouped into subsets according to the species of origin
(for fish, K. vaigiensis, K. cinerascens, and K. hawaiiensis; for ruminants, reindeer, red deer, sheep, goat,
cattle, or mixed ruminant assembly) and normalized for total number of predicted protein sequences in
each subset. Normalized values were subjected to 1-tailed, homoscedastic t tests using Microsoft Excel
version 16.54 to evaluate statistical significance (P values) of observed differences between fish and ru-
minant data sets. Enzyme families colocalized on the same metagenomic contig were identified using a
Unix command-line pipeline of custom perl scripts available on GitHub (97). Co-occurrence frequencies
of enzyme pairs obtained using this pipeline were plotted as edge-weighted network diagrams using
Cytoscape version 3.9.1 (98).

Data availability. Sequence reads are available under SRA accession no. SRR19136343 through
SRR19136358, assembled contigs under WGS accession no. JAMHIX000000000 through JAMHIZ000000000
and JAMHJA000000000 through JAMHJM000000000, and predicted protein sequences in Zenodo (https://
zenodo.org) under DOI no. 10.5281/zenodo.6635023 and 10.5281/zenodo.6635166.
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