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Abstract Maize (Zea mays) is a leading cereal crop in
the world. The maize kernel is the storage organ and the
harvest portion of this crop and is closely related to its
yield and quality. The development of maize kernel is
initiated by the double fertilization event, leading to the
formation of a diploid embryo and a triploid endosperm.
The embryo and endosperm are then undergone inde-
pendent developmental programs, resulting in a mature
maize kernel which is comprised of a persistent endo-
sperm, a large embryo, and a maternal pericarp. Due to
the well-characterized morphogenesis and powerful ge-
netics, maize kernel has long been an excellent model
for the study of cereal kernel development. In recent
years, with the release of the maize reference genome
and the development of new genomic technologies,
there has been an explosive expansion of new knowl-
edge for maize kernel development. In this review, we
overviewed recent progress in the study of maize kernel
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development, with an emphasis on genetic mapping of
kernel traits, transcriptome analysis during kernel devel-
opment, functional gene cloning of kernel mutants, and
genetic engineering of kernel traits.
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Introduction

Maize (Zea mays) is one of the world’s leading cereal
crops along with rice and wheat, serving as a staple food,
animal feed, and industrial raw materials (Troyer 2006).
Since 2001, maize has become the highest tonnage crop
worldwide, with the total production surpassing that of
rice and wheat (UN/FAQO, 2002). In 2018, the production
of maize is about 1147 M tons, while 782 M and 734 M
tons that of rice and wheat in the world (http://www.fao.
org). Maize kernels, like in other cereal crops, are storage
organ that contains essential components for plant growth
and reproduction. The kernel is comprised of three
distinct compartments contributing to overall energy
density, including a persistent endosperm (83%), a large
embryo (11%), and a maternal pericarp (6%). The kernel
contains about 72% starch, 10% protein, 4% lipid, and
micronutrients such as vitamins and minerals (Nuss and
Tanumihardjo 2010). Maize provides an estimated 15%
of the world’s protein and 20% of the world’s calories
(Council 1988; Shiferaw et al. 2011), indicating its status
as a paramount crop in the context of global nutrition.
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The maize kernel development is initiated by the
double fertilization event, leading to the formation of a
diploid embryo and a triploid endosperm (Russell 1992).
Early embryo development is marked by three major
events corresponding to the acquisition of apicobasal
polarity, the differentiation of epidermis, and the forma-
tion of the shoot and root meristem (Goldberg et al.
1994). Then, the embryo enters a maturation phase
(Dumas and Rogowsky 2008). The development of en-
dosperm starts with the fertilized central cells (Olsen
2001), followed by cellularization and differentiation into
four main cell types, including basal endosperm transfer
layer (BETL), aleurone layer (AL), starchy endosperm
(SE), and embryo-surrounding region (ESR) (Consonni
et al. 2005). During endosperm differentiation, mitotic
cell proliferation and endoreduplication occur in endo-
sperm cells, following by maturation (cell death, dorman-
cy, and desiccation) (Sabelli and Larkins 2009). Although
embryo and endosperm are clonally and functionally
separated, genetic analyses reveal that they interact ex-
tensively throughout their development (Scanlon and
Takacs 2009). With its well-characterized morphogenesis
and powerful genetics, the maize kernel offers an exqui-
site experimental system.

The investigation of maize kemel development has a
long history, starting with mutant collections in the early
1900s (Demerec 1923; Wentz 1930; Jones 1920;
Mangelsdorf 1923). With the development of chemical
mutagens, such as ethyl methane sulfona (EMS), mutagen-
esis via pollen greatly expanded the collections of maize
kernel mutants (Neuffer and Coe 1978). Over 100 defective
kemel (dek) mutants were reported with genetic, morpho-
logical, lethality, and embryo rescue studies (Neuffer and
Sheridan 1980). These mutation loci are located throughout
the maize chromosomes, and most of these mutants are
lethal due to the failure of germination. A recent collection
of EMS-mutagenized lines, which covered more than 80%
of the annotated protein-coding genes in the maize genome,
was generated and sequenced (Lu et al. 2018). It greatly
expanded EMS induced mutant collections for potential
functional analysis of genes and desirable allelic variants
associated with maize kernel development.

Apart from chemically induced mutations, DNA trans-
posons, such as Ac/Ds (McClintock 1948), En/Spm
(McClintock 1953; Pereira et al. 1986), and Mutator
(Robertson 1978), were also commonly used for mutagen-
esis in maize. The Mutator system, with the advantage of a
high mutation efficiency and no apparent insertion site bias
(Bennetzen 1996; Walbot 2000), has been widely used for
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the construction of genome-wide mutation libraries in
maize (May et al. 2003; McCarty et al. 2005; Liang et al.
2019; Settles et al. 2007; Clark and Sheridan 1991;
Sheridan and Clark 1993b; Scanlon et al. 1994; Marcon
et al. 2020). Regional transposon mutation systems were
also developed using Ac/Ds system, based on its preferen-
tial local transposition property (Cowperthwaite et al.
2002; Vollbrecht et al. 2010). Using active Robertson’s
Mutator maize stocks (Robertson 1978), 51 embryo-
specific (emb) mutants (Clark and Sheridan 1991;
Sheridan and Clark 1993a) and 63 kernel mutants were
reported (Scanlon et al. 1994). Several sequence-indexed
Mutator-induced libraries, such as UniformMu (McCarty
et al. 2005), ChinaMu (Liang et al. 2019), and BonnMu
(Marcon et al. 2020), and Photosynthetic Mutant Library
(PML) (http://pml.uoregon.edu/photosyntheticml.html)
implemented a novel strategy for hamnessing the power of
high-copy transposons for functional analysis of maize
genome. These libraries tagged more than 50% of the
annotated maize genes, providing important resources for
further genetic, biochemical, and molecular analysis of
genes affecting kernel development.

Maize has been a leading system for molecular clon-
ing of functional genes in plants. Among the earliest list
of genetic loci in maize, storage protein genes (Geraghty
etal. 1981; Burr et al. 1982; Pedersen et al. 1982), starch
biosynthesis genes (Shure et al. 1983), and pigment
biosynthesis genes (Fedoroff et al. 1984; O’Reilly
et al. 1985) were the first batches to be molecularly
cloned. With well-characterized endogenous transposon
systems and the advent of transposon tagging (Wienand
et al. 1982), maize led the way in gene isolation for
several years. Dozens of genes affecting kernel devel-
opment have been cloned from mutants isolated from
different resources. For example, the first molecularly
identified transcription factor (TF), OPAQUE2 (02),
was isolated by transposon tagging in 1987 (Schmidt
et al. 1987). With the release of the maize reference
genome (Schnable et al. 2009), as well as the success
using a variety of gene cloning methods, such as posi-
tional cloning (Bortiri et al. 2006; Gallavotti and
Whipple 2015), bulked-segregant analysis (BSA)
(Klein et al. 2018; Dong et al. 2019; Michelmore et al.
1991), and transcription profiling (Jansen and Nap
2001; Cheung and Spielman 2002; Swanson-Wagner
et al. 2006; Stupar and Springer 2006; Pea et al. 2008),
the gene cloning in maize achieved a great leap in recent
year. To date, a great number of maize kernel mutant
genes have been cloned (Table 1), representing one of
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Table 1 List of cloned genes essential for maize kernel development

Mutant Gene name B73 v4 ID Functional annotation References
phenotype
dek Dekl Zm00001d028818 Animal calpains homolog, (Lid et al. 2002; Becraft
plant signal transduction et al. 2002)
Dek2 Zm00001d034882 PPR protein, RNA splicing (Qi et al. 2017b)
Dek5 Zm00001d039612 Bacterial TamB homolog, (Zhang et al. 2019a)
chloroplast envelope biogenesis
Dekl10 Zm00001d053802 PPR protein, RNA editing (Qi et al. 2017a)
Dekl5 Zm00001d052197 SCC4, chromosome segregation (He et al. 2019)
Dekl19 Zm00001d038257 PPR protein, unknown function (Dong et al. 2019)
Dek33 Zm00001d016475 Pyrimidine reductase, riboflavin biosynthesis (Dai et al. 2019)
Dek35 Zm00001d033749 PPR protein, RNA splicing (Chen et al. 2017b)
Dek36 Zm00001d013136 PPR protein, RNA editing (Wang et al. 2017)
Dek37 Zm00001d003543 PPR protein, RNA splicing (Dai et al. 2018)
Dek38 Zm00001d014595 TTI2 cochaperone, male (Garcia et al. 2017)
reproductive cell development
Dek39 Zm00001d047013 PPR protein, RNA editing (Li et al. 2018c)
Dek40 Zm00001d011478 PBAC4 chaperone, 20S CP biogenesis (Wang et al. 2019a)
Dek41/Dek43 Zm00001d021053 PPR protein, RNA splicing (Ren et al. 2020; Zhu et al.
2019)
Dek42/Rbm48 Zm00001d054077 RNA-binding protein, U12-type (Bai et al. 2019; Zuo et al.
intron splicing 2019)
Dek44 Zm00001d052865 Mitochondrial ribosomal protein L9, (Qietal. 2019)
respiratory genes expression
Dek45 Zm00001d023331 PPR protein, RNA editing (Ren et al. 2019a)
Dek46 Zm00001d043107 PPR protein, RNA editing (Xu et al. 2020)
Dek53 Zm00001d041326 PPR protein, RNA editing (Dai et al. 2020)
Dek605 Zm00001d016798 PPR protein, RNA editing (Fan et al. 2020)
Dek*/ZmReas] ~ Zm00001d038475 AAA-ATPase60S, ribosome exporting (Qietal. 2016)
smk Smikl Zm00001d007100 PPR protein, RNA editing (Li et al. 2014b)
Smk2 Zm00001d053981 Glutaminase, Vitamin B6 Biosynthesis (Yang et al. 2017b)
Smk3 Zm00001d041537 Mitochondrial transcription (Pan et al. 2019a)
termination factor, RNA splicing
Smik4 Zm00001d049196 PPR protein, RNA editing (Wang et al. 2019b)
Smk6 Zm00001d025446 PPR protein, RNA editing (Ding et al. 2019)
Smk7 Zm00001d035960 Subunit of RNA polymerase II1, (Zhao et al. 2020)
expression of tRNAs and 5S rRNA
Smk9 Zm00001d000137 PPR protein, RNA splicing (Pan et al. 2019b)
MPPR6 Zm00001d034111 PPR protein, translation (Manavski et al. 2012)
Ppr78 Zm00001d034428 PPR protein, RNA stabilization (Zhang et al. 2017c)
emp Emp2 Zm00001d005675 HEAT SHOCK BINDING PROTEINI, (Fu et al. 2002)
Heat Shock Response
Emp4 Zm00001d033869 PPR protein, expression (Gutierrez-Marcos et al.
of mitochondrial transcripts 2007)
Emp5 Zm00001d042039 PPR protein, RNA editing (Liu et al. 2013)
Emp6 Zm00001d005959 Plant organelle RNA recognition (Chettoor et al. 2015)
protein, BETL cell differentiation
Emp7 Zm00001d008298 PPR protein, RNA editing (Sun et al. 2015a)
Emp8 Zm00001d049796 PPR protein, RNA splicing (Sun et al. 2018)
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Table 1 (continued)

Mutant Gene name B73 v4 ID Functional annotation References
phenotype
Emp9 Zm00001d022480 PPR protein, RNA editing (Yang et al. 2017a)
Empl0 Zm00001d033992 PPR protein, RNA splicing (Cai et al. 2017)
Empll Zm00001d052450 PPR protein, RNA splicing (Ren et al. 2017)
Empl2 Zm00001d002098 PPR protein, RNA splicing (Sun et al. 2019)
Empl6 Zm00001d011559 PPR protein, RNA splicing (Xiu et al. 2016)
Empl8 Zm00001d034253 PPR protein, RNA editing (Li et al. 2019b)
Emp21 Zm00001d033495 PPR protein, RNA editing (Wang et al. 2019¢)
Emp32 Zm00001d040363 PPR protein, RNA splicing (Yang et al. 2020c)
Emp602 Zm00001d028046 PPR protein, RNA splicing (Ren et al. 2019b)
Ppri4 Zm00001d002157 PPR protein, RNA splicing (Wang et al. 2020)
Ppri8 Zm00001d007927 PPR protein, RNA splicing (Liu et al. 2020c)
Ppr27 Zm00001d029061 RNA editing, multiple sites (Liu et al. 2020d)
Ppri0l Zm00001d010942 PPR protein, RNA splicing (Yang et al. 2020a)
Ppr231 Zm00001d018219 PPR protein, RNA splicing (Yang et al. 2020a)
Ppr-smr Zm00001d002345 PPR protein, RNA splicing (Chen et al. 2019)
emb Emb-7L Zm00001d021871 Plastid PPR protein, RNA splicing (Yuan et al. 2019)
Emb12 Zm00001d018366 Plastid initiation factor 3, (Shen et al. 2013)
plastid protein synthesis
Embli4 Zm00001d054079 Plastid-targeted cGTPase, (Li et al. 2015b)
30S ribosome formation
Emb16/Whyl Zm00001d036148 WHIRLY1 (WHY1), genome (Zhang et al. 2013)
stability and ribosome formation
Leml Zm00001d034192 Plastid 30S ribosomal protein S9 (PRPS9) (Ma and Dooner 2004)
PPR8522 Zm00001d034962 Plastid PPR protein, chloroplast transcription (Sosso et al. 2012a)
ZmPRPL35-1 Zm00001d046555 L35 of the large subunit of plastid ribosomes (Magnard et al. 2004)
opaque/floury DeB30 N/A 19-kD alpha-zein protein (Kim et al. 2004)
Fll Zm00001d003398 Endoplasmic reticulum protein, (Holding et al. 2007)
zein protein body formation
Fi2 Zm00001d049243 22-kD alpha-zein protein (Coleman et al. 1995)
Fi3 Zm00001d009292 PLATZ TF, tRNA and 5S rRNA transcription (Li et al. 2017b)
Fli4 Zm00001d048851 z1A 19-kD alpha-zein, protein body assembly (Wang et al. 2014a)
Mc Zm00001d005793 16-kDa gamma-zein protein (Kim et al. 2006)
ol Zm00001d052110 Myosin XI protein, endoplasmic (Wang et al. 2012)
reticulum motility and protein body formation
02 Zm00001d018971 bZIP TF, regulator of diverse (Schmidt et al. 1987)
processes in endosperm
05 Zm00001d020537 Monogalactosyldiacylglycerol (Myers et al. 2011)
synthase MGD1, galactolipids abundance
O6/Prol Zm00001d010056 Al-Pyrroline-5- carboxylate (Wang et al. 2014b)
synthetase, biosynthesis of proline
o7 Zm00001d026649 Acyl-activating enzyme, (Wang et al. 2011;
storage protein synthesis Miclaus et al. 2011)
010 Zm00001d033654 Cereal-specific PB protein, (Yao et al. 2016)
distribution of zeins
011/ZmZHOU  Zm00001d003677 bHLH TF, regulator of endosperm (Feng et al. 2018)
development and nutrient metabolism
Pbf1 Zm00001d005100 Dof TF, regulator of storage (Vicente-Carbajosa et al.

@ Springer

protein accumulation

1997)



Mol Breeding (2021) 41: 2

Page 5 0f33 2

Table 1 (continued)

Mutant Gene name B73 v4 ID Functional annotation References
phenotype
Ocdl Zm00001d008739 Oxalyl-CoA Decarboxylase 1, (Yang et al. 2018)
catalyzes oxalyl-CoA into
formyl-CoA and CO2
Os1/Shail Zm00001d002661 RWP-RK domain TF, regulator (Song et al. 2019; Mimura
of nutrient allocation et al. 2018)
and embryonic patterning
Pdkl Zm00001d038163 Pyruvate phosphate dikinase (PPDK), (Lappe et al. 2018)
energy charge and storage
protein gene expression
Pdk2 Zm00001d010321 Pyruvate phosphate dikinase (PPDK), (Lappe et al. 2018)
energy charge and storage
protein gene expression
ZmNACI128 Zm00001d040189 NAC TF, starch and zein accumulation (Zhang et al. 2019d)
ZmNACI130 Zm00001d008403 NAC TF, starch and zein accumulation (Zhang et al. 2019d)
shrunken Ael Zm00001d016684 Starch branching enzyme IIB, starch biosynthesis (Fisher et al. 1996; Kim
(Starch et al. 1998)
related B2 Zm00001d050032 ADP-glucose pyrophosphorylase (Preiss et al. 1990)
genes) (AGPase), starch biosynthesis
Sel Zm00001d007657 FANTASTIC FOUR (FAF) (Zhang et al. 2019c¢)
domain protein, starch biosynthesis
Shi Zm00001d045042 Sucrose synthase, starch biosynthesis (Chourey and Nelson
1976)
Sh2 Zm00001d044129 Large subunit of AGPase, starch biosynthesis (Bhave et al. 1990)
Sul Zm00001d049753 Isoamylase-type DBE, starch biosynthesis (James et al. 1995)
Wxl Zm00001d045462 Granule-bound starch synthase, starch biosynthesis (Shure et al. 1983)
Others Bigel Zm00001d012883 MATE transporter (Suzuki et al. 2015)
Crd Zm00001d023425 TNFR-like receptor kinase, BETL differentiation (Becraft et al. 1996)
del8 Zm00001d023718 Yuccal, IAA biosynthesis (Bernardi et al. 2012)
hdal01 Zm00001d053595 Histone deacetylase (Rossi et al. 2007)
Mnl Zm00001d003776 Cell Wall Invertase CWI-2, BETL differentiation (Cheng et al. 1996)
MRP-1 Zm00001d010889 Myb-related protein-1, regulator (Goémez et al. 2002)
of the differentiation of transfer cells
Nikd1 Zm00001d002654 INDETERMINATE DOMAIN (Gontarek et al. 2016)
(IDD) TF, regulator of endosperm development
Nkd?2 Zm00001d026113 INDETERMINATE DOMAIN (Gontarek et al. 2016)
(IDD) TF, regulator of endosperm development
Ppr20 Zm00001d039548 PPR protein, RNA splicing (Yang et al. 2020b)
Ppr2263 Zm00001d045089 PPR protein, RNA editing (Sosso et al. 2012b)
gKW9 Zm00001d048451 PPR protein, RNA editing (Huang et al. 2020)
qVE5/ZmPORB2 Zm00001d013937 Chloroplast protochlorophyllide (Zhan et al. 2019)
oxidoreductase, chlorophyll metabolism
RBR1 Zm00001d007407 Retinoblastoma-related (RBR) (Sabelli et al. 2005;
genes, inhibit the cell cycle Sabelli et al. 2009)
RBR3 Zm00001d031678 Retinoblastoma-related (RBR) genes, (Sabelli et al. 2005;
inhibit the cell cycle Sabelli et al. 2009)
Rgh3 Zm00001d016836 U2AF(35) Related Protein, U2-, (Fouquet et al. 2011;
and U12-type intron splicing Gault et al. 2017)
Sall Zm00001d046599 Human Chmp1l homolog, BETL differentiation (Shen et al. 2003)
SWEET4c Zm00001d015912  Sucrose-transporting homologs, hexose transport (Sosso et al. 2015)
thkl Zm00001d027278 NOT1 subunit of the CCR4-NOT complex, cell division, (Wu et al. 2020)

signaling, differentiation and metabolism
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Table 1 (continued)

Mutant Gene name B73 v4 ID Functional annotation References
phenotype
Ubll Zm00001d017432 U6 biogenesis-like 1, pre-mRNA splicing (Lietal. 2017a)
Urb2 Zm00001d028096 Urb2 domain-containing protein, pre-ribosomal RNA (Wang et al. 2018b)
processing
Vks1 Zm00001d018624 ZmKINT11, regulates mitosis and cytokinesis (Huang et al. 2019b)
Ysi2 Zm00001d017427 Metal-nicotianamine (NA) transporter, Fe distribution (Zang et al. 2020)
ZmAFLI1 Zm00001d021790 B3 domain TF, kernel filling (Grimault et al. 2015)
ZmAFL2 Zm00001d011712 B3 domain TF, kernel filling (Grimault et al. 2015)
Vpl Zm00001d042396 B3 domain TF, regulator of AL development and (McCarty et al. 1989;
embryo-endosperm protein reallocation Zheng et al. 2019)
ZmAFL4 Zm00001d001838 B3 domain TF, kernel filling (Grimault et al. 2015)
ZmAFLS5 Zm00001d034965 B3 domain TF, kernel filling (Grimault et al. 2015)
ZmAFL6 Zm00001d052750 B3 domain TF, kernel filling (Grimault et al. 2015)
Mdh4 Zm00001d032695 Cytosolic malate dehydrogenase, (Chen et al. 2020b)
catalyzes the conversion from OAA to malate
ZmDof3 Zm00001d035651 Dof TF, starch accumulation and aleurone development (Qi et al. 2017¢)
ZmGE2 Zm00001d029526 Cytochrome p450 protein, embryo to endosperm ratio (EER)  (Zhang et al. 2012)
Zmsmu2 Zm00001d023239 RNA-splicing factor, protein synthesis and RNA processing (Chung et al. 2007)
ZmSMR4 Zm00001d047159 CKI, regulates the transition between (Li et al. 2019a)
the mitotic cycle and endoreduplication
ZmTarl Zm00001d037498 ZmTA-Relatedl, IAA biosynthesis (Chourey et al. 2010)
ZmPINla Zm00001d044812 PIN-FORMED (PIN) family protein, auxin transport (Carraro et al. 2006;
Forestan et al. 2010)
ZmPINIb Zm00001d018024 PIN-FORMED (PIN) family protein, auxin transport (Carraro et al. 2006;
Forestan et al. 2010)
ZmPINIc Zm00001d052269 PIN-FORMED (PIN) family protein, auxin transport (Carraro et al. 2006;
Forestan et al. 2010)
ZmVPS29 Zm00001d053371 Retromer complex component, kernel morphology (Chen et al. 2020a)

the largest mutant categories with cloned genes in
maize. These mutants can be classified into several
major kernel mutant types according to their mu-
tant phenotypes. For example, the defective kernel
(dek) mutants refer to those with affected develop-
ment in both embryo and endosperm (Neuffer and
Sheridan 1980), the empty pericarp (emp) mutants
refer to those with empty pericarp or papery kernel
(Scanlon et al. 1994), and the embryo specific
(emb) mutants refer to those with morphogenic
effects specific to the embryo (Clark and
Sheridan 1991), etc. The cloning and functional
analysis of numerous kernel development related
genes greatly expanded our understanding of the
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molecular mechanisms during maize kernel
development.

Together with recent advancements in high infor-
mative genetic mapping technology, such as GWAS,
natural genetic variations related to maize kernel
traits had been analyzed and captured (Xiao et al.
2017; Yan et al. 2011; Mir et al. 2019). The quick
development of high-throughput sequencing tech-
nologies, such as RNA-seq, provided massive gene
expression profiles during maize kernel develop-
ment. Here, we provide an overview of recent prog-
ress in maize kernel development, with an emphasis
on genetic mapping of kernel traits, transcriptome
analysis during kernel development, functional gene
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identification of kernel mutants, and genetic engi-
neering of kernel traits.

Genetic mapping of maize kernel traits

In crops, many quantitative agronomical traits, such as
grain yield and plant architecture, are governed by
quantitative trait loci (QTL). Genetic mapping and mo-
lecular characterization of these functional loci facilitate
molecular marker assisted breeding in crop improve-
ment. Linkage mapping is a well-established tool for
studying the genetic basis of quantitative traits in plants.
During the last three decades, numerous studies were
conducted and thousands of QTLs associated with var-
ious traits have been identified using molecular markers
in maize (reviewed in Xiao et al. 2017; Yan et al. 2011;
Mir et al. 2019).

Of particular interests, hundreds of QTLs regulating
kernel-related traits, such as kernel weight and kernel
size, were identified under multiple kernel developmen-
tal stages and environments (Zhang et al. 2014; Zhang
etal. 2016; Hao etal. 2019; Li et al. 2013b; Raihan et al.
2016; Yang et al. 2019; Peng et al. 2011; Jiang et al.
2015; Martinez et al. 2016; Chen et al. 2016a, b; Liu
et al. 2017; Chen et al. 2017a; Zhang et al. 2017b). For
example, Zhang et al. (2014) collected a total of 54
unconditional main QTLs for five kernel-related traits,
including kernel weight (KW), volume (KV), length
(KL), thickness (KT), and width (KWI) from an immor-
talized F2 (IF2) maize population. Using conditional
mapping analysis, they found that KWI and KV had
the strongest influence on KW at the individual QTL
level, followed by KT and KL; KV was mostly strongly
influenced by KT, followed by KWI and KL. Chen et al.
(2016a) identified 56 main-effect QTLs for yield per
plant (YPP), seven ear-related traits, and seven kernel-
related traits, based on the genetic linkage map con-
structed using 2091 bins as markers. In particular,
GRMZM2G168229, which encodes an SBP-box do-
main protein, was identified as the candidate gene for
gKRN4-3 involving in the patterning of kernel row
number (Chen et al. 2016a). Liu et al. (2017) identified
a total of 729 QTLs regarding KL, KWI, KT, hundred
KW, and kernel test weight in 10 recombinant inbred
line populations. They identified 30 candidate genes that
are orthologs of 18 rice genes associated with kernel size
and weight, and confirmed the effects of five genes on
maize kernel size/weight in an independent association

mapping panel with 540 lines by candidate gene asso-
ciation analysis (Liu et al. 2017). For example, overex-
pression of ZmINCWI, an ortholog of the rice seed
weight gene GRAIN INCOMPLETE FILLINGI
(GIF1), can rescue the reduced weight of the
Arabidopsis homozygous mutant line in AfcwINV2
(Arabidopsis ortholog of ZmINCWI), suggesting that
these genes are conserved in both monocots and dicots.

These QTLs potentially contain major genes associ-
ated with the kernel development process and can be
used to improve kernel yield and quality through
marker-assisted selection. However, only few kernel-
related QTLs have been cloned and characterized so
far. For example, with the advantage of the reference
genome of small-kernel inbred line, BARELY ANY
MERISTEM1d (ZmBAM1d) was identified as the QTL
responsible for kernel weight variation in maize (Yang
et al. 2019). Other studies reported the cloning and
characterization of previously identified major QTLs,
qKM4.08 (Li et al. 2013b), gVE5 (Wang et al. 2018b),
and gKW9 (Raihan et al. 2016; Yang et al. 2019),
implementing the list of characterized kernel-related
QTLs in maize (Zhan et al. 2019; Huang et al. 2020;
Chen et al. 2020a). gVES encodes a chloroplast
protochlorophyllide oxidoreductase (ZmPORB?2) that
is involved in chlorophyll metabolism enabling the pro-
duction of phytol (Zhan et al. 2019). Overexpression of
ZmPORB?2 increased tocopherol content in both leaves
and kernels. Interestingly, the tocopherol content was
mainly determined by maternal effect (Zhan et al. 2019).
The kernel size-related QTL gKW9 encodes a
pentatricopeptide repeat (PPR) protein that affects pho-
tosynthesis and grain filling (Huang et al. 2020),
highlighting the importance of optimizing photosynthe-
sis for maize grain yield production. gKM4.08 encodes a
retromer complex component ZmVPS29, overexpres-
sion of which confers a slender kernel morphology and
increases the yield per plant in different maize genetic
backgrounds (Chen et al. 2020a).

Association mapping has recently emerged as a tool
to resolve complex trait variation by exploiting histori-
cal and evolutionary recombination events at the popu-
lation level (Risch and Merikangas 1996; Nordborg and
Tavaré 2002), providing a powerful tool for the dissec-
tion of complex agronomic traits in plants and animals
(Altshuler et al. 2008; Hunter and Crawford 2008; Zhu
et al. 2008; Rafalski 2010). With the development of
next-generation sequencing technologies, and the re-
lease of the maize B73 reference genome (Schnable
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et al. 2009), great progress has been made in QTL
mapping using genome-wide association analysis
(GWAS) in maize. A great number of traits including
molecular and cellular, developmental and agronomic,
yield, and stress resistance have been comprehensively
investigated using association analysis, along with a
number of cloned and candidate genes for correspond-
ing traits (reviewed in Xiao et al. 2017; Yan et al. 2011).
Several studies identified more loci associated with
kernel-related traits using association analysis, revealing
the genetic structure of complex quantitative traits dur-
ing maize kernel development (Li et al. 2013c; Li et al.
2018a; Liu et al. 2020b; Zhang et al. 2020b; Zhang et al.
2017a). For example, kernel components-related traits,
such as oil/fatty acid (Li et al. 2013c) and amylose (Li
et al. 2018a), were identified using 9 million single
nucleotide polymorphisms (SNPs) from 464 inbred
maize lines, and 1.03 million SNPs characterized in
368 maize inbred lines, respectively. Li et al. (2013c)
identified 74 loci significantly associated with kernel oil
concentration and fatty acid composition, and the 26
loci associated with oil concentration could explain up
to 83% of the phenotypic variation using a simple
additive model. Li et al. (2018a) identified 27 associated
loci involving 39 candidate genes that were linked to
amylose content including transcription factors, glyco-
syltransferases, glycosidases, and hydrolases. A recent
study reported the investigation of the genetic basis of
three kernel-related traits, KL, KWI, and KT, in an
association panel and a biparental population (Liu
et al. 2020b). Fifty QTLs controlling these traits were
detected with a total of 73 candidate genes in seven
environments in the intermated B73 x Mol17 (IBM)
Syn10 doubled haploid (DH) population. These studies
provide insights into the mechanism of maize kernel
development and the improvement of molecular
marker-assisted selection for high-yield breeding in
maize.

Transcriptome analysis of developing maize kernels

With the emergence of RNA-seq (Marioni et al. 2008),
many transcriptome profiling studies have been con-
ducted to uncover kernel development in different plant
species, such as Arabidopsis thaliana (Le et al. 2010;
Belmonte et al. 2013) and Oryza sativa (Gao etal. 2013;
Xu et al. 2012). A detailed transcriptome during maize
kernel development can greatly enhance our
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understanding of mechanisms of gene functions and
cellular processes during maize kernel development.

The first transcriptome profiling investigation of
maize kernel development was conducted on 9 DAP
embryo and endosperm (Lu et al. 2013). The RNA-seq
generated about 11 million paired-end reads from both
the endosperm and the embryo. About 50.7% (8556 of
16,878) of multiexonic genes were found to be alterna-
tively spliced, among which some transcript isoforms
were specifically expressed either in the endosperm or in
the embryo. In addition, many metabolic activities were
specifically assigned to the endosperm or the embryo,
and a number of TFs and imprinting genes were found
to be specifically expressed in the endosperm or the
embryo (Lu et al. 2013). A preliminary atlas of temporal
and spatial gene expression patterns for early kernel
development was established using RNA-seq analysis
at five stages of whole kernels (0, 2, 3, 4, and 6 DAP)
and three stages of isolated endosperms (8, 10, and 12
DAP) of the B73 inbred line (Li et al. 2014a). In this
study, the RNA-seq generated nearly 34,000 mRNAs in
the 0—6 DAP kernel and 33,000 mRNAs in endosperm
at 8-12 DAP. A total of 7629 temporally regulated
genes were identified, and several of the temporal pat-
terns correlate with key developmental transitions asso-
ciated with kernel and endosperm development (Li et al.
2014a). This atlas revealed a correlation between the
major temporal programs and specific spatial expression
programs in different compartments or tissue types of
the developing endosperm. In another RNA-seq analy-
sis of maize endosperm development at 5, 10, 15, and 20
DAP (Qu et al. 2016), more than 11,000 alternative
spliced protein-coding genes and 7633 differentially
expressed genes were detected during the four develop-
mental stages. A comprehensive study of gene regula-
tory networks (GRNs) using 78 maize seed tran-
scriptome profiles identified highly interwoven network
communities (Xiong et al. 2017). For example, the
kernel phenotype contributing community is composed
of mostly unknown genes interacting with Opaque?2,
Brittle endosperm1, and Shrunken2. This study predict-
ed important candidate genes in interwoven network
communities that may be crucial to maize kernel devel-
opment. These studies provided comprehensive insights
into the transcriptome dynamics during maize kernel
development.

A comprehensive study of endosperm cell differen-
tiation was conducted in major endosperm cell types
(AL, BETL, ESR, SE, central starchy endosperm
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(CSE), and conducting zone (CZ)), the embryo, and four
maternal compartments (nucellus (NU), placento-
chalazal region (PC), pericarp (PE), and pedicel
(PED)) using a coupled laser-capture microdissection
and RNA-Seq strategy (Zhan et al. 2015). A total of
13,009 compartment-specific genes were identified for
all captured compartments at 8 DAP. Coexpression
modules associated with single or multiple kernel com-
partments were also identified using gene coexpression
network analysis (Zhan et al. 2015). For example, a
detailed analysis of a coexpression module highly cor-
related with the BETL identified a regulatory module
activated by a previously characterized BETL regulator
MRP-1 (Gémez et al. 2002). This study revealed the
diverged gene expression programs between filial and
maternal compartments, as well as an unexpected close
correlation between the embryo and the endosperm.
During early kernel development, the interface between
the endosperm and the embryo is developmentally dy-
namic (Nowack et al. 2010; Bommert and Werr 2001;
Ingram and Gutierrez-Marcos 2015). Indeed, the endo-
sperm adjacent to scutellum (EAS) was recently identi-
fied through RNA-seq analysis, representing a develop-
mentally dynamic interface influenced by the neighbor-
ing growing embryo (Doll et al. 2020). Further pheno-
typic analysis of loss-of-function mutants of genes
enriched in the EAS will elucidate the biological role
of this newly discovered endosperm subdomain.

On the other hand, two high-resolution studies pro-
vided highly valuable temporal transcriptome land-
scapes of maize kernel development (Chen et al. 2014;
Yietal. 2019). Using RNA-seq data generated from 53
samples at an interval of 2 days from 0 to 38 DAP
kernels, Chen et al. (2014) detected a total of 26,105
seed-expressed genes, which includes 1614 TFs and
1258 kernel-specific genes. They clearly classified the
detected genes into 16, 14, and 10 coexpression mod-
ules for the embryo, endosperm, and the whole kernel,
respectively. For example, the coexpression modules
C5 to C8 are the active storage accumulation phase
which exhibits high expression of carbohydrate metab-
olism genes (Chen et al. 2014). This study provides a
valuable resource for the in-depth understanding of the
dynamics of gene expression throughout maize kernel
development. A recent study from the same group re-
ported a high temporal-resolution investigation of
transcriptomes using 31 samples collected at an interval
of 4 or 6 h within the first 6 days of maize kernel
development (Yietal. 2019). In this study, they detected

a total of 22,790 expressed genes in the early stages of
maize kernel development, including 1415 TFs and
1093 kernel-specific genes. In the first 16 h after polli-
nation, coenocyte formation, cellularization, and differ-
entiation stage, 160, 22, 112, and 569 kernel-specific
genes were identified to have predominant expression,
respectively. Using network analysis, they also predict-
ed 31,256 interactions among 1317 TFs and 14,540
genes, uncovering major signaling such as calcium sig-
naling, nucleosome, auxin response, and mitosis path-
ways in early developmental stage.

Gene cloning analysis of maize kernel mutants
PPR genes

A surprising outcome from the gene cloning of maize
kernel mutants is that an overwhelming portion of
cloned genes encodes PPR proteins (Table 2). The
PPR proteins are recognized to be members of the
alpha-solenoid superfamily proteins (Kobe and Kajava
2000; Small and Peeters 2000), which are found in all
eukaryotes and function universally in organellar gene
expression (Barkan and Small 2014). In angiosperms,
the PPR family is one of the largest gene families
accounting for 1-2% of nearly all genomes sequenced
so far (Lurin et al. 2004; Wei and Han 2016; Chen et al.
2018a; Xing et al. 2018; Liu et al. 2016; Chen et al.
2018b; O'Toole et al. 2008). PPR proteins serve as
sequence-specific RNA-binding proteins inside organ-
elles (Barkan et al. 2012; Takenaka et al. 2013; Yagi
et al. 2013; Yin et al. 2013; Cheng et al. 2016), and
function in every step of organellar gene expression,
including RNA stabilization, RNA cleavage, RNA
translation, RNA splicing, and RNA editing (Schmitz-
Linneweber and Small 2008; Fujii and Small 2011;
Shikanai and Fujii 2013; Dahan and Mireau 2013).
The plant PPR family consists of two major subfamilies,
defined as P and PLS (Lurin et al. 2004), which exhibit
diverse repertories of molecular functions, mostly in
mitochondria and chloroplast (Colcombet et al. 2013).
Early studies of PPR mutants characterized a number
of chloroplast-localized PPR genes involved in transla-
tion, RNA stability, and RNA splicing, such as chloro-
plast RNA processing 1 (crpl) (Barkan et al. 1994; Fisk
et al. 1999), ppr2 (Williams and Barkan 2003), ppr4
(Schmitz-Linneweber et al. 2006), ppr5 (Williams-
Carrier et al. 2008; Beick et al. 2008), and ppri0
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Table 2 Mitochondrial PPR proteins characterized in maize

PPR type Gene name Mutant B73 v4 ID Functional annotation References
phenotype
PLS-type Dekl0 dek Zm00001d053802 RNA editing, nad3-61, 62, and cox2-550 (Qi et al. 2017a)
Dek36 dek Zm00001d013136 RNA editing, atp4-59, nad7-383, and ccmFN-302 (Wang et al. 2017)
Dek39 dek Zm00001d047013 RNA editing, nad3-247 and nad3-275 (Li et al. 2018c¢)
Dek45 dek Zm00001d023331 RNA editing, cox3-314, nad2-26, and nad5-1916  (Ren et al. 2019a)
Dek46 dek Zm00001d043107 RNA editing, D5-C22 of nad7 intron 3 and 4 (Xu et al. 2020)
Dek53 dek Zm00001d041326 RNA editing, multiple sites (Dai et al. 2020)
Dek605 dek Zm00001d016798 RNA editing, nad1-608 (Fan et al. 2020)
Emp5 emp Zm00001d042039 RNA editing, multiple sites (Liu et al. 2013)
Emp7 emp Zm00001d008298 RNA editing, ccmFN-1553 (Sun et al. 2015a)
Emp9 emp Zm00001d022480 RNA editing, ccmB-43 and rps4-335 (Yang et al. 2017a)
Empl8 emp Zm00001d034253 RNA editing, atp6-635 and cox2-449 (Li et al. 2019b)
Emp21 emp Zm00001d033495 RNA editing, multiple sites (Wang et al. 2019b)
Ppr27 emp Zm00001d029061 RNA editing, ccmFN-1357, rps3-707, rps12-221,  (Liu et al. 2020d)
rps13-100, 256, 287, nad2-355, and cox2-482
Ppr2263 smk Zm00001d045089 RNA editing, nad5-1550 and cob-908 (Sosso et al. 2012b)
Smkl smk Zm00001d007100 RNA editing, nad7-836 (Li et al. 2014b)
Smk4 smk Zm00001d049196 RNA editing, cox1-1489 (Wang et al. 2019a)
Smk6 smk Zm00001d025446 RNA editing, nad1-740, nad4L-110, nad7-739, (Ding et al. 2019)
and mttB-138,139
P-type Dek2 dek Zm00001d034882 RNA splicing, nadl intron 1 (Qietal. 2017b)
Dek35 dek Zm00001d033749 RNA splicing, nad4 intron 1 (Chen et al. 2017b)
Dek37 dek Zm00001d003543 RNA splicing, nad2 intron 1 (Dai et al. 2018)
Dek41/Dek43  dek Zm00001d021053 RNA splicing, nad4 intron 1 and 3 (Zhu et al. 2019;
Ren et al. 2020)
Emp8 emp Zm00001d049796 RNA splicing, nadl intron 4, nad2 intron 1, (Sun et al. 2018)
and nad4 intron 1
Empl0 emp Zm00001d033992 RNA splicing, nad2 intron 1 (Cai etal. 2017)
Empll emp Zm00001d052450 RNA splicing, nadl intron 1, 2, 3, and 4 (Ren et al. 2017)
Empl2 emp Zm00001d002098 RNA splicing, nad2 intron 1, 2, and 4 (Sun et al. 2019)
Empl6 emp Zm00001d011559 RNA splicing, nad2 intron 4 (Xiu et al. 2016)
Emp32 emp Zm00001d040363 PPR protein, RNA splicing (Yang et al. 2020c)
Emp602 emp Zm00001d028046 RNA splicing, nad4 intron 1 and 3 (Ren et al. 2019b)
MPPR6 smk Zm00001d034111 Translation, rps3 mRNA (Manavski et al. 2012)
Ppri4 emp Zm00001d002157 RNA splicing, nad2 intron 3, (Wang et al. 2020)
nad7 intron 1 and 2
Ppri8 emp Zm00001d007927 RNA splicing, nad4 intronl (Liu et al. 2020c)
Ppr20 dek/smk Zm00001d039548 RNA splicing, nad2 intron3 (Yang et al. 2020b)
Ppr78 smk Zm00001d034428 RNA stabilization, nad5 mature mRNA (Zhang et al. 2017¢)
Ppri101 emp Zm00001d010942 RNA splicing, nad5 introns 1 and 2 (Yang et al. 2020a)
Ppr231 emp Zm00001d018219 RNA splicing, nad5 introns 1, 2, 3, (Yang et al. 2020a)
and nad2 intron 3
Ppr-smrl emp Zm00001d002345 RNA splicing, multiple introns (Chen et al. 2019)
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(Pfalz et al. 2009). Homozygous kernels of these mu-
tants can still germinate and survive as chlorophyll-
deficient seedlings until kernel reserves are exhausted
(Stern et al. 2004). A later study of PPR8522 reported
the first case to associate the loss of a chloroplast-
localized PPR gene with an embryo-lethal phenotype
in maize (Sosso et al. 2012a). PPR8522 is necessary for
the transcription of nearly all plastid-encoded genes, and
the ppr8522 mutation caused an embryo-lethal pheno-
type, however, depending on the genetic background. A
recently characterized PPR protein EMB-7L (Yuan
et al. 2019), provided more evidence that chloroplast-
localized PPR proteins play major roles in plastid trans-
lation, the mutation of which could possibly lead to
embryo lethality.

Mutations in mitochondrial PPR proteins are com-
monly associated with severe defects in kernel develop-
ment in maize, possibly due to the disruption of respi-
ration. The first functionally characterized maize mito-
chondrial PPR protein was EMP4, which was shown to
be necessary for endosperm development (Gutierrez-
Marcos et al. 2007). However, neither its mode of action
nor its molecular target(s) is known. A study of ppr2263
kernel mutant provided the first phenotypic and molec-
ular characterization in maize, in which PPR2263 was
shown to be required for RNA editing at mitochondrial
nad5-1550 and cob-908 sites, mitochondrial complex
IIT assembly, and kernel development (Sosso et al.
2012b). In recent years, the number of characterized
mitochondrial PPR proteins is expanding, with func-
tions in almost every step of organellar gene expression,
such as RNA splicing, RNA editing, RNA stabilization,
and translation (Fig. 1). A summary of the detailed
molecular functions of cloned mitochondrial PPR genes
from maize kernel mutants is provided in Table 2.

As we shall see, most reported mitochondrial PPR
proteins typically function as site-specificity RNA splic-
ing factors (P-type) or RNA editing factors (PLS-type),
and each of these proteins is required for splicing or
editing of only a small number of sites. The mutation of
splicing factors of group II introns usually causes im-
paired assembly and activity of mitochondrial com-
plexes, which results in defective mitochondrial func-
tion and morphology, leading to severe kernel pheno-
types, such as dek and emp. For example, the maize
Dek35 encodes a P-type PPR protein that is required for
cis-spicing of mitochondrial nad4 intron 1 (Chen et al.
2017b). The dek35 mutation caused a deficiency in the
complex I assembly and NADH dehydrogenase

activity, producing lethal-kernel with a developmental
deficiency (Chen et al. 2017b). Loss of function of
maize P-type PPR protein EMP8 resulted in defects in
cis-splicing of nadl intron 4, nad4 intron 1, and nad?2
intron 1, leading to severely arrested kernel develop-
ment (Sun et al. 2018). However, recent studies of
SMR-subgroup PPR-SMRI1 revealed exceptions that
the ppr-smrl mutation affected RNA splicing of many
mitochondrial group II introns (Chen et al. 2019). PPR-
SMRI is an SMR domain-containing P-type PPR pro-
tein, which is required for the splicing of 16 introns,
accounting for nearly 75% of mitochondrial group II
introns in maize. The failed splicing of these introns
causes a deficiency of these proteins, leading to severe
kernel phenotype in ppr-smrl mutants (Chen et al.
2019). It is still unknown why PPR-SMRI facilities
splicing of a surprisingly large number of group II
introns. The protein-protein interactions between the
PPR-SMR1 and Zm-mCSF1 (Chen et al. 2019), as well
as between the PPR-SMR1 and PPR14 (Wang et al.
2020) provided clues that these PPR proteins might be
involved in the formation of large and dynamic splicing
complexes.

PLS-type PPR proteins typically function as site-
specific factors in RNA editing. In maize mitochondria,
similar to P-type splicing factors, defects in PLS-type
editing factors normally result in impaired mitochondri-
al function and severe kernel phenotype. The first char-
acterized maize organellar RNA editing factor PPR2263
encoding a DYW domain-containing PPR protein that is
required for RNA editing at nad5-1550 and cob-908
sites (Sosso et al. 2012b). The ppr2263 mutation caused
reduced embryo and endosperm growth, resulting in
small but viable kernels. Maize dek!0 is a classic kernel
mutant producing small kernels with delayed develop-
ment (Qi et al. 2017a). Dekl0 encodes an E-subgroup
PPR protein required for RNA editing at nad3-61, nad3-
62, and cox2-550 sites. Loss of dekl0 function caused
reduced assembly of complex IV and activity of NADH
dehydrogenase, leading to small and shrunken kernels
(Qi et al. 2017a). However, a recent study of maize
EMP21, a DYW-subgroup PPR protein, showed the
exception that loss of emp2/ function affected RNA
editing at 81 mitochondrial C targets, results in inhibited
embryogenesis and delayed endosperm development
(Wang et al. 2019c). Another interesting example is
maize Dek53, which encodes an E-subgroup short PLS
region-containing PPR protein (Dai et al. 2020). The
mutation of dek53 affected RNA editing at over 60
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Fig. 1 Maize mitochondrial PPR proteins are important for kernel
development. PPR proteins and other organellar editing/splicing
factors are encoded in the nucleus, translated in the cytosol, and
translocated into each organelle. Loss-of-function of mitochondri-
al PPR proteins usually causes impaired mitochondrial function
and morphology, leading to defective maize kernel development
with dek, emp, or smk kernel phenotypes. The dek phenotype
refers to those with affected development in both embryo and
endosperm, the emp phenotype refers to those with empty pericarp
or papery kernel, and the smk phenotype refers to those with
smaller kernels and delayed kernel development compared to the

mitochondrial C targets, resulted in the aborted assem-
bly of mitochondrial complex III and lethal kernels (Dai
et al. 2020). It was hypothesized that unique binding to
specific nucleotides would not be sufficient with only
seven repeats units in DEKS53 to convey a tight connec-
tion within the transcriptome of the 569-kb large maize
mitochondrial genome (Clifton et al. 2004). Alternative-
ly, different genetic backgrounds might be responsible
for the variation of editing extent at some sites
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functions. The question marks indicate that no corresponding
PPR proteins have been reported to be involved in splicing or
editing of these specific mitochondrial group II introns or tran-
scripts in maize. The asterisks mark PPR protein with multiple
splicing or editing targets in maize mitochondrion

(Kempken et al. 1995; Bentolila et al. 2005; Chu and
Wei 2020).

It is intriguing that many of these reported PPR
proteins have interactions with other splicing or editing
factors, leading to the speculation that these proteins
might function in plant organellar “group II intron
spliceosome” (de Longevialle et al. 2010) or “RNA
editosome” (Takenaka 2014). Indeed, PPR14 interacts
with PPR-SMR1 and Zm-mCSF1 to mediate intron
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splicing of several mitochondrial group II introns in
maize (Chen et al. 2019; Wang et al. 2020), suggesting
that PPR14, PPR-SMR1, and Zm-mCSF1 may form a
protein complex. In maize chloroplasts, CAF1 and
CAF?2 are two closely related proteins that function in
concert with CRS2 to facility the splicing of group II
introns (Ostheimer et al. 2006; Ostheimer et al. 2003).
Several studies provided pieces of evidence that splicing
factors could co-regulate the splicing of one or more
specific introns by forming potential complexes (de
Longevialle et al. 2010). In the case of cis-splicing event
of mitochondrial nad? intron 1, five PPR proteins have
been reported to be involved, including EMP10 (Cai
etal. 2017), DEK37 (Dai et al. 2018), EMPS8 (Sun et al.
2018), EMP12 (Sun et al. 2019), and PPR-SMR1 (Chen
et al. 2019). In Arabidopsis, several splicing factors,
including MTSF1 (Haili et al. 2013), mCSF1
(Zmudjak et al. 2013), PMH2 (Ko&hler et al. 2010),
nMATI1 (Keren et al. 2012), and ODB1 (Samach et al.
2011), also participate in the splicing of nad?2 intron 1. It
is still unclear why the splicing of one specific intron
needs several co-factors. It would be interesting to ad-
dress whether the splicing of this specific intron was
mediated by a splicing complex in mitochondria, as a
high molecular weight ribonucleoprotein apparatus par-
ticipating in psaA mRNA splicing has been identified in
chloroplasts (Reifschneider et al. 2016).

The involvement of coordinated factors in organellar
RNA editing has been studied in some detail (Sun et al.
2016), as the composition of a biochemically active
editing complex has been determined in the chloroplast
(Sandoval et al. 2019; Bentolila et al. 2012; Huang et al.
2019a). For example, RNA editing at ndhA C437 re-
quires several coordinated factors, including RIPs, OZ1,
ORRM1, ISE2, CLB19 and DY W2, which have all been
identified in a ~670 kDa complex in maize chloroplast
extracts (Sandoval et al. 2019), though genetic knockout
data of RIPs, OZ1, ORRMI, and ISE2 were still from
Arabidopsis mutant plants (Bentolila et al. 2012;
Takenaka et al. 2012; Sun et al. 2013; Sun et al. 2015b;
Bobik et al. 2017). Mitochondrial protein components of
maize RNA editosome have also been reported in several
studies, such as DEK53/ZmMORF1/ORRMs (Dai et al.
2020), PPR27/ZmMORF1 (Liu et al. 2020d), and
EMP21/ZmMORFS8 (Wang et al. 2019¢). However, such
composition of a biochemically active editing complex
has not been identified in maize mitochondrial extracts,
and further studies will be needed to determine the exact
composition of mitochondrial editing complex.

TFs

TFs play critical roles as key regulators for gene expres-
sion during maize kernel development. The first char-
acterized TF in maize is a bZIP family protein
OPAQUE?2 (02) (Schmidt et al. 1987), regulating genes
in nearly all zein families during endosperm develop-
ment (Schmidt et al. 1990, 1992; Muth et al. 1996). The
02 mutation results in the opaque kernel phenotype with
reduced levels of 22-kD «-zeins and increased lysine
content (Mertz et al. 1964; Schmidt et al. 1987).
Genome-wide identification of O2 regulated targets re-
vealed that O2 regulated a diverse array of biological
processes apart from zein biosynthesis (Frizzi et al.
2010; Hunter et al. 2002; Jia et al. 2013; Li et al.
2015a; Hartings et al. 2011; Zhan et al. 2018). Some
of these diverse roles have been experimentally charac-
terized recently. For example, an SnRK1-ZmRFWD3-
02 signaling axis that transduces source-to-sink signals
and coordinates C and N assimilation was recently
reported in developing maize kernels (Li et al. 2020).
SUS-encoding genes (Sus! and Sus2) can be specifical-
ly recognized and be transactivated by O2, demonstrat-
ing that O2 transcriptionally regulates the metabolic
source entry for protein and starch synthesis during
endosperm filling (Deng et al. 2020). These studies
provide extensive evidence that O2 functions as a cen-
tral player that not only transcriptionally regulates the
expression of most zein genes but also, directly and
indirectly, regulates starch synthesis.

Several studies subsequently indicate that O2 func-
tions in a complex with other regulatory proteins, such
as O2-heterodimerizing proteins (OHPs) (Pysh et al.
1993; Yang et al. 2016; Zhang et al. 2015), Prolamin-
box binding factorl (PBF1) (Vicente-Carbajosa et al.
1997; Zhang et al. 2015), and MADS47 (Qiao et al.
2016). OHP1 and OHP2 are O2-interacting bZIP pro-
teins identified by screening an endosperm cDNA li-
brary with an O2 probe (Pysh et al. 1993). OHP1 and
OHP2 can bind to the O2 target site in the promoters of
22-kD zein genes as a homodimer and as a heterodimer
with O2 (Pysh et al. 1993) and can cotransactivate the
27-kD y-zein promoter through protein-protein interac-
tion with PBF1 (Zhang et al. 2015). OHPs recognize
and transactivate o-zein promoters with much lower
levels than O2 does, and the suppression of OHPs does
not cause a significant reduction in the transcription of
a-zein genes in the presence of O2 (Yang et al. 2016),
indicating that OHPs function as minor TFs in this
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process while O2 is the primary TF. Knockdown of Ohp
expression resulted in dramatically reduced RNA tran-
script and protein levels of 27-kD y-zein, leading to a
vitreous kernel phenotype (Zhang et al. 2015). PBF1 isa
member of the Dof (DNA binding with one finger) class
of plant Cys2-Cys2 zinc-finger DNA binding proteins
that specifically binds to P-box in the promoters of all
zein genes (Vicente-Carbajosa et al. 1997). Knockdown
of Pbf1 expression resulted in opaque kernel phenotype
and dramatically reduced synthesis of the 27-kDa y- and
22-kDa o-zeins (Wu and Messing 2012; Zhang et al.
2015). O2 and PBF1 also affect starch synthesis by
directly regulating Cytoplasmic pyruvate orthophos-
phate dikinasel (cyPpdkl), cyPpdk2, and Starch syn-
thase III, which are critical components in the starch
biosynthetic enzyme complex (Zhang et al. 2016). A
MADS-box protein ZmMADS47 is an O2-interacting
protein that binds the CATGT motif in promoters of «-
zein and 50-kD +y-zein genes. Transactivation of these
promoters by ZmMADSA47 requires the interaction with
02, thereby greatly enhances the transactivation activity
(Qiao et al. 2016). A recent study identified another
endosperm-specific TF, ZmbZIP22, a bZIP-type TF that
binds to ACAGCTCA box in the 27-kD y-zein promot-
er and activated its expression (Li et al. 2018b). The
CRISPR/Cas9-generated zmbzip22 mutants showed sig-
nificantly reduced accumulation of 27-kD +y-zein. Inter-
estingly, ZmbZIP22 physically interacts with PBFI,
OHP1, and OHP2, but not O2 (Li et al. 2018b), indicat-
ing that the expression of the 27-kD y-zein gene is
regulated by a complex mechanism. Two endosperm-
specific NAC TFs, ZmNAC128 and ZmNAC130, are
also involved in the regulation of zein genes (Zhang
et al. 2019d). They specifically activated transcription
of the 16-kDa y-zein gene and Bt2, and lack of them
caused reduced accumulation of protein and starch,
leading to a shrunken kernel phenotype.

FLOURY?3 (FL3) is an endosperm-specific TF regu-
lated by genomic imprinting (Li et al. 2017). The fI3
mutation resulted in a semidominant negative mutant
that exhibits severe defects in the endosperm. FL3 in-
teracts with two critical factors of the RNA polymerase
I, RNA polymerase III subunit 53, and transcription
factor class C 1, to regulate maize endosperm develop-
ment and storage reserve filling (Li et al. 2017). ZmDof3
encodes a plant-specific Dof TF that is essential for
maize endosperm development (Qi et al. 2017¢). Sup-
pression of ZmDof3 resulted in a dek phenotype with
reduced starch content and a partially patchy aleurone
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layer. ZmDOF3 directly regulates starch biosynthesis
genes Dul and Su2, and AL-associated TF Nkdl, to
regulate the signaling system controlling starch accumu-
lation and aleurone development (Qi et al. 2017c¢).
OPAQUEI!1 (011) is an endosperm-specific bHLH
TF that plays central roles in endosperm development
and nutrient metabolism (Feng et al. 2018). The o//
mutation resulted in small and opaque endosperm with
reduced starch and protein accumulation. O11 directly
regulates key TFs in endosperm development and nutri-
ent accumulation, such as NKD2, ZmDOF3, PBF1, and
02. Ol11 interacts with ZmICE1, an ortholog of
Arabidopsis ICE1 functioning in cold tolerance
(Chinnusamy et al. 2003) and endosperm development
(Denay et al. 2014), to co-regulate genes involved in
stress response during endosperm development. In ad-
dition, O11 also regulates genes specifically expressed
in the ESR, such as ZmYoda, indicating that O11 might
be a regulator for ESR development. Characterization of
O11 highlighted an endosperm regulatory network cen-
tered around O11 in endosperm development, nutrient
metabolism and stress responses (Feng et al. 2018).
VIVIPAROUSI (VP1) is a well-documented TF that
is specifically expressed in the AL and the embryo
(McCarty et al. 1989; McCarty et al. 1991). VP1 is an
ortholog of Arabidopsis ABA-INSENSITIVE3 (ABI3)
that plays essential roles in kernel development
(McCarty et al. 1989) and ABA signaling (Suzuki
et al. 2003). Null alleles of vp/ and abi3 resulted in
the loss of ABA sensitivity, leading to vivipary or non-
dormancy in maize (McCarty et al. 1989) and
Arabidopsis (Nambara et al. 1992; Nambara et al.
1994). VP1 mediates trans-repression of o-amylase
expression in the AL, and the vp/ mutation repressed
the germination response in developing mutant kernels
(Hoecker et al. 1995). VP1 can also activate the expres-
sion of C1 (Hattori et al. 1992), a MYB family TF
involved in anthocyanin biosynthesis (Cone et al.
1986; Paz-Ares et al. 1987). As the consequence, the
vpl mutation resulted in suppressed anthocyanin pro-
duction in mutant kernels (McCarty et al. 1989). Inter-
estingly, a recent study provided evidence that VP1 is
also essential for scutellum development and protein
reallocation from the endosperm to embryo (Zheng
et al. 2019). This study used maize zein-RNAi knock-
down mutants as a novel system to study nutrient allo-
cation from the endosperm to embryo. VPI
transactivated many sulfur assimilation- and nutrient
metabolism-associated genes that are differentially
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expressed between wild-type and zein-RNAi knock-
down kernels (Zheng et al. 2019), suggesting a role for
VP1 as a regulator for endosperm-embryo
communication.

The maize naked endosperml (nkdl) nkd2 mutation
produced multiple ALs with partially differentiated cells
(Yi et al. 2015; Becraft and Asuncion-Crabb 2000).
Nkdl and Nkd2 encode the INDETERMINATEI do-
main (IDD) containing TFs that are required for endo-
sperm cell patterning and differentiation, possibly by
regulating genes associated with cell cycle, cell growth,
and division, such as Retinoblastoma-related] and Mi-
totic cyclin 3B-like (Gontarek et al. 2016). nkd kernels
also displayed a propensity for vivipary and
anthocyanin-deficient phenotype, providing additional
clues to how the NKD genes regulate endosperm devel-
opment. Indeed, NKD1 and NKD2 directly activate the
expression of Vpl (Gontarek et al. 2016) and are pre-
dicted to directly activate R/. In addition, NKD1 and
NKD?2 can regulate O2 and PBF, indicating that NKD1
and NKD2 promote strorage protein accumulation dur-
ing endosperm development. These evidences strength-
ened the concept that the aleurone and the starchy en-
dosperm are not separate lineages (Becraft and
Asuncion-Crabb 2000).

A prime example of BETL differentiation is
ZmMRP-1, the so far only BETL-specific TF to be
identified (Gomez et al. 2002). ZmMRP-1 preceded
the formation of transfer cells (Gomez et al. 2002)
and regulated the expression of many BETL genes,
including Maternally expressed genel (MEGI)
(Gutiérrez-Marcos et al. 2004), Transfer cell re-
sponse regulator ZmTCRR-1 (Muiiiz et al. 2006,
2010), and CRP-encoding genes ZmBETLI,
ZmBETL2, ZmBETLY, and ZmBETLI10 (Goémez
et al. 2002, 2009), suggesting that ZmMRP-1 might
be a key player involved in BETL differentiation.
Indeed, the ectopic expression of ZmMRP-1 is suf-
ficient to temporarily transform epidermal cells into
transfer cells, and the expression of ZmMRP-1 is
needed to maintain the BETL cell phenotype
(Gomez et al. 2009). It is proposed that low base
levels of ZmMnl and ZmSWEET4c allow small
amounts of glucose to enter the cell, which in turn
induces ZmMRP-1, which then induces genes neces-
sary for establishing the transfer cell machinery in-
cluding ZmMnl and ZmSWEET4c (Sosso et al.
2015). These properties of ZmMRP-1 had made it
a determinant of BETL development.

Embryo-specific (Emb) genes

Embryo is the other important portion of fertilized maize
kernel. Plant embryogenesis is a complex developmen-
tal process characterized by several major events
(Kaplan and Cooke 1997). In maize, a number of
embryo-specific (emb) mutants have been isolated from
different genetic resources, making embryo lethality one
of the most common mutant traits (Neuffer and Sheridan
1980; Clark and Sheridan 1991; Sheridan and Clark
1993c). In emb mutants, the endosperm develops nor-
mally, while the embryo shows severe developmental
aberrations.

The first cloned emb mutant was lethal embryol
(lemlI), which possessed a normally developed endo-
sperm and an aborted embryo at an early developmental
stage (Ma and Dooner 2004). LemI encodes a plastid
ribosomal protein S9 (RPS9), providing evidence that
functional plastids are required for normal maize em-
bryo development (Ma and Dooner 2004). A subse-
quent study of emb8516 showed a very similar kernel
phenotype to lem I, in which the development of mutant
embryos deviates as soon as the transition stage from
that of wild-type sibling (Magnard et al. 2004).
Emb8516 encodes a plastid ribosomal protein L35
(ZmPRPL35-1), which is part of 50S ribosome in plas-
tids. The mutation caused a deficiency of protein syn-
thesis in plastids, thereby the metabolic deficiency of
embryo cells ultimately led to the abortion of the em-
bryo. It is intriguing that several characterized emb
genes, such as Ppr8522 (Sosso et al. 2012a), Embi4
(Li et al. 2015b), Emb12 (Shen et al. 2013), and Emb16
(Zhang et al. 2013), all encode plastid proteins as PPR
protein, cGTPase, translation initiation factor 3, and
DNA/RNA-binding protein WHIRLY1 (WHY1), re-
spectively. Mutations in either gene caused arrested
embryo development at the transition stage, suggesting
that disrupts in plastid function might be linked to
embryo lethality. It is generally not surprising that de-
fects in plastid translation could produce a lethal em-
bryo, as plastids play a fundamental role in the basic
metabolism of plant cells, such as photosynthesis, fatty
acid synthesis, and plant hormone biosynthesis
(Bowsher and Tobin 2001). However, the characteriza-
tion of some plastid PPR proteins such as PPR2 revealed
exceptions, as these ppr mutant kernels displayed ger-
minated embryo (Williams and Barkan 2003; Schmitz-
Linneweber et al. 2006; Beick et al. 2008;
Khrouchtchova et al. 2012). How do plastids affect
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embryogenesis has not been defined in maize, though
genetic suppression might offer an explanation to the
relationship between plastid translation and embryogen-
esis (Zhang et al. 2013).

Numerous efforts have been made on characterizing
emb mutants in Arabidopsis, providing insights into
potential mechanisms of plastid-mediated embryogene-
sis (Meinke 2020). A comprehensive screen for emb
mutants altered in plastid proteins summarized three
major types of plastid-localized proteins appearing to
be most frequently associated with embryo lethality in
Arabidopsis: (1) enzymes required for the biosynthesis
of amino acids, vitamins, nucleotides, and fatty acids;
(2) proteins required for the import, modification, and
localization of essential proteins within the chloroplast;
and (3) proteins required for chloroplast translation
(Bryant et al. 2011). It is likely that disruption of a
plastid protein should result in the lethal embryo if the
function of that protein extends beyond photosynthesis.
However, there is a difference in embryogenesis be-
tween maize and Arabidopsis with respect to the re-
quirement for certain gene functions. Elucidation of this
difference occurred in plastid proteins involved in post-
transcriptional regulation. For example, AtPPR2 (Lu
et al. 2011) and ZmPPR2 (Williams and Barkan 2003)
share over 60% sequence identity at the amino acid level
and are considered to be orthologous. However, the null
mutation of Atppr2 and Zmppr?2 result in totally differ-
ent embryo fate. The mutant alleles of Appr2 caused
lethal embryo (Lu et al. 2011), while Zmppr2 null
mutation did not lead to any defects in embryogenesis
(Williams and Barkan 2003). Another example was
from the studies of AtCAF2 (Asakura and Barkan
2006), ZmCAF2 (Ostheimer et al. 2003), and OsCAF2
(Shen et al. 2020). Loss of caf2 function results in
plastid ribosome deficiency in all three species; howev-
er, embryo lethality only occurs in Arabidopsis. It will
be interesting to have further evidences underline these
striking differences in the developmental significance of
plastid function in different plant species.

Genes related to cell cycle regulation

From about 4 to 20 DAP, the endosperm undergoes a
phase of mitotic cell proliferation, followed by
endoreduplication, during which a dramatic growth of
the endosperm and the accumulation of storage com-
pound emerges (Sabelli and Larkins 2009; Larkins et al.
2001). Factors affecting the cell cycle during endosperm
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development have been studied in maize, especially for
cyclin-dependent kinases (CDKs) and CDK inhibitors.
In eukaryotes, control of cell cycle progression is de-
pendent on conserved molecular machinery consisting
of protein kinases known as CDKs and their regulatory
cyclin subunits (CYCs) (Vandepoele et al. 2002). In
maize, reduced activity of type A CDK (CDKA),
cdc2ZmA, inhibited the progression of
endoreduplication cell cycles (Colasanti et al. 1991;
Leiva-Neto et al. 2004). However, the lower level of
endoreduplication did not affect cell size and only
slightly reduced starch and storage protein accumulation
(Leiva-Neto et al. 2004). CYCB2;2 is a type B2 cyclin
that is sustained accumulated during maize endosperm
development (Sabelli et al. 2014). The kinase activity of
CYCB2;2 was observed in mitotic endosperm but was
not or little observed in the immature ear and
endoreduplicating endosperm, indicating that CYCB2;2
functions primarily during the mitotic cell cycle (Sabelli
et al. 2014). Two CDK inhibitors, KIP-RELATED
PROTEINI1 (KRP1) and KRP2, specifically inhibited
cyclin A1;3- and cyclin D5;1-associated CDK activities
(Coelho et al. 2005). Overexpression of KRP;1 in maize
embryonic calli led to an additional round of DNA
replication without nuclear division. Other CDK inhib-
itors, such as KRP1;1 and KRP4;2, are responsible for
inhibiting kinase activity in CycD2;2-CDK, CycD4;2-
CDK, and CycD5;3-CDK complexes (Godinez-Palma
et al. 2017). A recent study of ZmSMR4, a member of
SIAMESE-RELATED gene family, provided more ev-
idence that CDK inhibitors play a role in plant growth
and responses to abiotic stress (Li et al. 2019a).

Recent studies identified other factors regulating the
cell cycle during maize kernel development (He et al.
2019; Huang et al. 2019b; Zhang et al. 2020a). During
mitosis and meiosis, cohesin complexes maintain sister
chromatid cohesion to ensure proper chromosome seg-
regation (Haering et al. 2002; Nasmyth and Haering
2009). Maize Dekl5 encodes a homolog of SISTER
CHROMATID COHESION PROTEIN 4 (SCC4), a
loader subunit of the cohesin ring. The dek/5 mutation
disrupted the mitotic cell cycle and endoreduplication,
resulting in collapsed endosperm and embryo lethality
(He et al. 2019). Another cohesin complex subunit
structural maintenance of chromosome3 (SMC3) inter-
acts with centromeric histone H3 (CENH3) during mei-
otic prophase I (Zhang et al. 2020a). Loss of Zmsmc3
function caused the premature loss of sister chromatid
cohesion and mis-segregation of chromosomes in
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mitotic spreads (Zhang et al. 2020a). Maize VKSI1 is a
member of kinesin-14 subfamily that is essential for the
migration of free nuclei in the coenocyte, as well as in
mitosis and cytokinesis in early mitotic divisions
(Huang et al. 2019b). The absence of vks/ caused re-
duced cell proliferation, resulting in varied kernel sizes
(Huang et al. 2019b). With the advantage of kernel
mutant libraries and transcriptome studies, more genes
involved in cell cycle regulation might be identified in
future studies, thereby further extending our understand-
ing of the cell cycle regulation during maize kernel
development.

Genes related with ribosome biogenesis and RNA
processing

As a “house-building” function producing all cellular
proteins, ribosome biogenesis is a highly regulated and
coordinated multistep process (Lempidinen and Shore
2009). It requires synthesis, processing, and modifica-
tion of pre-rRNAs, assembly with ribosomal proteins,
and transient interaction of numerous non-ribosomal
factors with the evolving pre-ribosomal particles
(Tschochner and Hurt 2003). A recent study demon-
strated that “ITS1-first” and “5° ETS-first” pathways
coexist to promote the 35S pre-rRNA processing,
highlighting a new 27SA pre-rRNA processing mecha-
nism that is unique to maize and other higher plants (Liu
et al. 2020a). In maize, three protein-coding genes relat-
ed to rRNA and ribosome biosynthesis have been char-
acterized (Gendra et al. 2004; Qi et al. 2016; Wang et al.
2018b). ZmDRHI1 is a DEAE box RNA helicase that
localizes to the nucleolus and interacts with the RNA
binding protein MA6 and FIBRILLARIN (Gendra et al.
2004). MA16, ZmDRHI, and FIBRILLARIN may be
forming part of a nucleolar RNP complex, and/or MA16
is an essential RNP-multifunctional protein component
serving different functions in the cell. Reas] is an AAA-
ATPase that controls 60S ribosome export from the
nucleus to the cytoplasm after ribosome maturation.
The reas! mutation partly repressed the maturation
and export of the 60S ribosomal subunit, resulting in
small kernels with delayed development (Qi et al. 2016).
Maize Unhealthy Ribosome Biogenesis2 (URB2) is an
ortholog of yeast URB2 that is involved in ribosome
biogenesis. The urb2 kernels showed decreased ratios of
60S/40S and 80S/40S and increased ratios of polyribo-
somes, leading to thin kernels with delayed develop-
ment (Wang et al. 2018a).

Two splicing factors, ROUGH ENDOSPERM3
(RGH3) (Fouquet et al. 2011; Gault et al. 2017) and
RNA-binding motif protein 48 (RBM48)/DEK42 (Bai
et al. 2019; Zuo et al. 2019), showed comprehensive
evidence that the splicing of U2- and U12-type introns
is critical for maize kernel development. Rgh3 encodes
the maize U2AF*>-related protein (URP) that is involved
in both U2 and U12 splicing (Fouquet et al. 2011). The
rgh3 mutation resulted in retained or miss-spliced U12-
type introns, leading to a rough, etched, or pitted endo-
sperm surface as well as a reduced kernel size (Gault et al.
2017). RBM4S8, also reported as DEK42 (Zuo et al.
2019), is a U12 splicing factor that functions to promote
cell differentiation and repress cell proliferation. Mature
rbm48 kernels had reduced endosperm size and lethal
embryos (Bai et al. 2019). RBM48 can interact with
RGH3, U2 auxiliary factor (U2AF), and armadillo repeat
containing 7 (ARMCY7), suggesting major and minor
spliceosome factors required for intron recognition form
complexes with RBM48. These studies greatly extended
our understanding of the roles of U2- and U12-type intron
splicing during maize kernel development.

Genes related with metabolism and other functions

Gene cloning of different maize kernel mutants also
revealed functional genes involved in other biological
processes, such as metabolic processes, ion/sugar
transporting, and hormone biosynthesis. Metabolic en-
zymes, such as DEK33 (Dai et al. 2019) and SMK2
(Yang et al. 2017b), are involved in vitamin biosynthe-
sis. Dek33 encodes a pyrimidine reductase in vitamin
B2 biosynthesis, null mutation of dek33 caused aborted
kernel development at the early developmental stage
(Dai et al. 2019). SMK2 is a glutaminase in vitamin
B6 biosynthesis, and the smk2 mutation resulted in
arrested embryo development, but had a reduced role
in endosperm development (Yang et al. 2017b). Muta-
tion in pdg3, the third isozyme of oxPPP enzyme 6-
phosphogluconate dehydrogenase (6PGDH), caused a
rough endosperm kernel phenotype with reduced em-
bryo oil (Spielbauer et al. 2013). ZmOcdl encodes the
oxalyl-CoA decarboxylasel which catalyzes oxalyl-
CoA, the product of O7 (Wang et al. 2011), into
formyl-CoA and CO, for degradation. Mutations in
ocdl caused dramatic alterations in the metabolome in
the endosperm, leading to opaque endosperm phenotype
(Yang et al. 2018). SEED CAROTENOID DEFICIENT
(SCD) encodes an enzyme that converts 2C-methyl-d-
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erytrithol 2,4-cyclodiphosphate to 1-hydroxy-2-methyl-
2-(E)-butenyl 4-diphosphate in the penultimate step of
the methylerythritol phosphate (MEP) pathway in maize
(Zhang et al. 2019b). The scd mutant kernels displayed
pale-yellow phenotype with a reduced level of MEP-
derived isoprenoids (Zhang et al. 2019b). Characteriza-
tion of IAA biosynthesis genes, such as De/8 (Bernardi
et al. 2012; LeClere et al. 2010) and ZmTARI (Chourey
et al. 2010), demonstrated the significance of the large
abundance of IAA in developing maize kernel (Jensen
and Bandurski 1994; LeClere et al. 2008). For example,
the del8 mutation caused a large reduction of free IAA
levels compared with De/8, leading to an approximately
40% reduction of endosperm dry mass (Bernardi et al.
2012).

ZmSWEET4c mediates transepithelial hexose trans-
port across the BETL (Sosso et al. 2015). Mutants of
Zmsweetdc are defective in seed filling, indicating that a
lack of hexose transport at the BETL impairs the further
transfer of sugars imported from the maternal phloem
(Sosso et al. 2015). A plasma membrane localized
metal-nicotianamine (NA) transporter, ZmYSL2, plays
an important role in Fe transport during kernel develop-
ment. The Zmysl2 mutation produced smaller and col-
lapsed kernels (Zang et al. 2020). Maize trans-Golgi
associated gene Big embryo I (Bigel) encodes a MATE
transporter BIGE! that is required for transport of an
intermediate or product associated with the CYP78A
pathway. Loss of BIGEI1 function caused accelerated
leaf and root initiation as well as enlargement of the
embryo scutellum (Suzuki et al. 2015). These studies
greatly improved our understanding of the essential
roles of genes involved in different biological processes
during maize kernel development.

Genetic engineering

With the development of plant transformation technol-
ogies, genetic engineering became a powerful tool for
crop improvement in addition to conventional breeding
methods. Knowledge acquired from the identification of
gene function and biochemical characterization of target
proteins has been successfully applied to enhance the
important agronomic traits in maize kernel (Smidansky
et al. 2002; Smidansky et al. 2003; Hannah et al. 2012).

Modification of starch synthetic pathway in maize ker-
nel is of particular interest, as the starch is the major
component of yield. The synthesis of starch precursor
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(ADP-GlIc) by the ADP-glucose pyrophosphorylase
(AGPase) is a rate-limiting step in starch synthesis.
AGPase is composed of two identical small and two
identical large subunits. The small and large subunits of
AGPase in maize endosperm are encoded by the brittle-
2(bt2) and shrunken-2 (sh2) genes, respectively (Hannah
2007). The loss function of 522 and sh2 would greatly
reduce starch levels in the endosperm. Because of its
allosteric properties and heat-labile characteristics, AGPase
represents a suitable target for genetic manipulation. In
early studies, site-specific mutagenesis by means of disso-
ciation (Ds) transposon was used to generate a series of
Sh2 revertants. Interestingly, a phosphate-insensitive mu-
tation form of SH2 would increase seed weight 11-18%
without impact the percentage of starch (Giroux et al.
1996). Heat-stable variants of AGP were also isolated by
a bacterial expression system, and a single point mutation
of Sh2 (Sh2hs33) was found to have increased heat stabil-
ity through enhanced subunit interactions (Greene and
Hannah 1998).Yield increase with enhanced AGPase
transgenes was reported in different species with the use
of either an engineered maize Sh2 (HS33/Rev6 Sh2) with
enhanced heat stability and reduced orthophosphate inhi-
bition or an enhanced Escherichia coli glgC-16 AGPase
gene (Giroux et al. 1996; Smidansky et al. 2002; Wang
et al. 2007; Smidansky et al. 2003; Lee et al. 2008; Obana
et al. 2006; Sakulsingharoj et al. 2004). Surprisingly, the
yield increase was due to an increased seed number rather
than an increase in seed weight by expression Sh2
(Sh2hs33) driven by a native promoter in maize (Hannah
et al. 2012). The extent of yield increase is also tempera-
ture-dependent. It was proposed that S22 not only played
an important role in the endosperm but also functioned in
maternal tissue to increase the frequency of seed develop-
ment from the ovaries (Hannah et al. 2012). Similar to that
of Sh2, the small subunit of AGPase, bz2, was found to
function in maternal tissue to enhance the kernel set
(Hannah et al. 2017). Nonetheless, it is showed that over-
expression of wide type form of $h2 and b2 could increase
individual maize seed weight and starch content compare
to the control (Li et al. 2011).

Cell wall invertase is another example of genes
which can be genetically engineered to increase maize
kernel size and weight (Li et al. 2013a). It has been
shown that the cell wall invertase gene plays an impor-
tant role during the early grain filling (Wang et al. 2008).
Mnl encodes a cell wall invertase expressed in maize
endosperm, loss function of Mnl1 results in a significant
reduction of seed mass (Cheng et al. 1996). When
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constitutively overexpression cell wall invertase gene
from Arabidopsis, rice or maize, all of them can enforce
the enzyme activities and promote biomass production
up to ~ 145% in the transgenic maize (Li et al. 2013a).
The substantially improved grain yield is due to in-
creased starch content, enlarged kernel size, and en-
hanced kernel number (Li et al. 2013a).

Recently, overexpression of engineered Zmdal and
Zmdarl in transgenic maize was also reported to en-
hance the sugar import into the kernels and show an
improved kernel weight and kernel number (Xie et al.
2018). The ubiquitin receptor DAI/DAIR are negative
regulators in seed size control, and a single base mutant
DAIR**® leads to larger leaves, flowers, and seeds
phenotype in Arabidopsis (Li et al. 2008). ZmDA I and
ZmDARI1 are homologous of AtDAI and AtDARI in
maize. The mutation forms of ZmDAI and ZmDARI
with the same single base change at the conserved sites
(Zmdal and Zmdarl) were transformed into maize sep-
arately. Three years of field trials confirmed that the
overexpression with the mutated Zmdal and Zmdarl
could promote basal endosperm transfer cell layer
(BETL) development and the expression of starch syn-
thase genes. On the contrary, overexpression of wild-
type ZmDAI and ZmDARI transgenic plants showed
slowed growth and decreased yield (Xie et al. 2018).

Conclusion

In recent years, thanks to the rapid development of
omics technologies, significant progress had been
made in the studies of maize kernel development.
Particularly, the impressive high-resolution tran-
scriptome profiles for developing maize kernels laid a
solid foundation for further studies in functional genes
and gene regulatory networks. However, there is still
room for improvement in gene expression analysis in
the spatial dimensions. Although several studies pro-
vided valuable data based on microdissections, tran-
scriptome at higher resolution would depend on single-
cell sequencing technologies in the future. A large
number of cloned maize kernel mutants greatly ex-
panded our knowledge about functional genes and
their regulation during maize kernel development.
Nevertheless, compared to the model species such as
Arabidopsis and rice, there is still a big gap in the
number of functionally characterized genes in maize
kernel development. Related to this, the available

genes that can be effectively used to improving agro-
nomic trait is very limited. In the following years, the
cloning and functional analysis of more genes associ-
ated with maize kernel development is the major task.
With the progress in functional genome studies and
recent breakthroughs in maize stable transformation
and CRISPR-Cas9 technology, modern breeding tech-
nology could further boost the yield and quality of
maize kernels based on synthetic and system biology
strategies.
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