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Abstract

Purpose: Optimizing 3D k-space sampling trajectories is important for efficient MRI yet 

presents a challenging computational problem. This work proposes a generalized framework for 

optimizing 3D non-Cartesian sampling patterns via data-driven optimization.

Methods: We built a differentiable simulation model to enable gradient-based methods for 

sampling trajectory optimization. The algorithm can simultaneously optimize multiple properties 

of sampling patterns, including image quality, hardware constraints (maximum slew rate 

and gradient strength), reduced peripheral nerve stimulation (PNS), and parameter-weighted 

contrast. The proposed method can either optimize the gradient waveform (spline-based freeform 

optimization) or optimize properties of given sampling trajectories (such as the rotation angle of 

radial trajectories). Notably, the method can optimize sampling trajectories synergistically with 

either model-based or learning-based reconstruction methods. We proposed several strategies to 

alleviate the severe non-convexity and huge computation demand posed by the large scale. The 

corresponding code is available as an open-source toolbox.

Results: We applied the optimized trajectory to multiple applications including structural and 

functional imaging. In the simulation studies, the image quality of a 3D kooshball trajectory was 

improved from 0.29 to 0.22 (NRMSE) with SNOPY optimization. In the prospective studies, by 

optimizing the rotation angles of a stack-of-stars (SOS) trajectory, SNOPY reduced the NRMSE 

of reconstructed images from 1.19 to 0.97 compared to the best empirical method (RSOS-GR). 

Optimizing the gradient waveform of a rotational EPI trajectory improved participants’ rating of 

the PNS from ‘strong’ to ‘mild.’

Conclusion: SNOPY provides an efficient data-driven and optimization-based method to tailor 

non-Cartesian sampling trajectories.
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1 | INTRODUCTION

Most magnetic resonance imaging systems sample data in the frequency domain (k-space) 

following prescribed sampling trajectories. Efficient sampling strategies can accelerate 

acquisition and improve image quality. Many well-designed sampling strategies and their 

variants, such as spiral, radial, CAIPIRINHA, and PROPELLER1,2,3,4, have enabled 

MRI’s application to many areas5,6,7,8. Sampling patterns in k-space are either located 

on the Cartesian raster or arbitrary locations (non-Cartesian sampling). This paper focuses 

on optimizing 3D non-Cartesian trajectories and introduces a generalized gradient-based 

optimization method for automatic trajectory design or tailoring.

The design of sampling patterns usually considers certain properties of k-space signals. For 

instance, the variable density (VD) spiral trajectory9 samples more densely in the central 

k-space where more energy is located. For higher spatial frequency regions, the VD spiral 

trajectory uses larger gradient strengths and slew rates to cover k-space as quickly as 

possible. Compared to 2D sampling, designing 3D sampling analytically is more challenging 

for several reasons. The number of parameters increases in 3D, and the parameter selection 

is more difficult due to the larger search space. For example, a 3D radial trajectory with 

10000 spokes has 20000 degrees of freedom, while its 2D multi-slice counterpart with 

200 spokes per slice has only 200 degrees of freedom. Additionally, analytical designs 

usually are based on the Shannon-Nyquist relationship10,11,12 that might not fully consider 

properties of sensitivity maps and non-linear reconstruction methods. For 3D sampling 

patterns with high undersampling (acceleration) ratios, there are limited analytical tools for 

designing sampling patterns with an anisotropic FOV and resolution. The peripheral nerve 

stimulation (PNS) effect13 is also more severe in 3D imaging because of the additional 

spatial encoding gradient, further complicating manual designs. For these reasons, automatic 

designs of 3D sampling trajectories are crucial for efficient acquisition.

Many 3D sampling approaches exist. The ‘stack-of-2D’ strategy stacks 2D sampling 

patterns in the slice direction6,12. This approach is easier to implement and enables slice-

by-slice 2D reconstruction. Another design applies Cartesian sampling in the frequency-

encoding direction and non-Cartesian sampling in the phase-encoding direction14,15. 

However, these approaches do not fully explore the design space in three dimensions and 

may not perform as well as true 3D sampling trajectories16.

Recently, 3D SPARKLING16 proposes to optimize 3D sampling trajectories based on 

the goal of conforming to a given density while distributing samples as uniformly as 

possible17. That method demonstrated improved image quality compared to the ‘stack-

of-2D-SPARKLING’ approach. In both 2D and 3D, the SPARKLING approach uses a 

pre-specified sampling density in k-space that is typically an isotropic radial function. This 

density function cannot readily capture distinct energy distributions of different imaging 

protocols, therefore adaptive density functions were recently proposed18. In SPARKLING, 

the PNS effects are not controlled explicitly, and the user may need to lower the slew rate 

to reduce PNS. SPARKLING optimizes the location of every sampling point, or the gradient 

waveform (freeform optimization), and cannot optimize parameters of existing sampling 

patterns.
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In addition to analytical methods, learning-based methods have been investigated for 

designing trajectories. Since different anatomies have distinct energy distributions in 

the frequency domain, an algorithm may learn to optimize sampling trajectories from 

training datasets. Several studies have shown that different anatomies produce distinct 

optimized sampling patterns, and these optimized sampling trajectories can improve image 

quality19,20,21,22,23,24,25,26,27. Some methods can optimize sampling trajectories with respect 

to specific reconstruction algorithms to further enhance reconstruction image quality14,28. 

Several recent studies also applied learning-based approaches to 3D non-Cartesian trajectory 

design. J-MoDL14 proposes to learn sampling patterns and model-based deep learning 

reconstruction algorithms jointly. J-MoDL optimizes the sampling locations in the phase-

encoding direction, to avoid the computation cost of non-uniform Fourier transform. 

PILOT/3D-FLAT22,29 jointly optimizes freeform 3D non-Cartesian trajectories and a 

reconstruction neural network with gradient-based methods. These studies use the standard 

auto-differentiation approach to calculate the gradient used in optimization, which can be 

inaccurate and lead to sub-optimal optimization results28.

This work extends our previous methods20,28 and introduces a generalized Stochastic 

optimization framework for 3D NOn-Cartesian samPling trajectorY (SNOPY). The 

proposed method can automatically tailor given trajectories and learn k-space features 

from training datasets. We present several optimization objectives, including image 

quality, hardware constraints, PNS effect suppression and image contrast. Users can 

simultaneously optimize one or multiple characteristics of a given sampling trajectory. 

Similar to previous learning-based methods14,20,21,22, the sampling trajectory can be jointly 

optimized with trainable reconstruction algorithms to improve image quality. The joint 

optimization approach can thus exploit the synergy between acquisition and reconstruction, 

and learn optimized trajectories specific for different anatomies and reconstruction 

methods14,20,28,30,31. The algorithm can optimize various properties of a sampling trajectory, 

such as readout waveforms, or rotation angles of readout shots, making it more practical 

and applicable. We also introduced several techniques to improve efficiency, enabling large-

scale 3D trajectory optimization. We tested the proposed methods with multiple imaging 

applications, including structural and functional imaging. These applications benefited from 

the SNOPY-optimized sampling trajectories in both simulation and prospective studies.

2 | THEORY

This section describes the proposed gradient-based methods for trajectory optimization. We 

use the concept of differentiable programming to compute the descent gradient with respect 

to sampling trajectories required in the gradient-based methods. The sampling trajectory and 

reconstruction parameters are differentiable parameters, whose gradients can be computed 

by auto-differentiation. To learn or update these parameters, one may apply (stochastic) 

gradient descent algorithms. Fig. 1 illustrates the basic idea. The sampling trajectories can 

be optimized in conjunction with the parameters of learnable reconstruction algorithms so 

that the learned sampling trajectories and reconstruction methods are in synergy and produce 

high-quality images. The SNOPY algorithm combines several optimization objectives to 

ensure that the optimized sampling trajectories have desired properties. Sec. 2.1 delineates 

these objective functions. Sec. 2.3 shows that the proposed method is applicable to multiple 
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scenarios with different parameterization strategies. For non-Cartesian sampling, the system 

model usually involves non-uniform fast Fourier transforms (NUFFT). Sec. 2.4 briefly 

describes an efficient and accurate way to calculate the gradient involving NUFFTs. Sec. 

2.5 suggests several engineering approaches to make this large-scale optimization problem 

solvable and efficient.

2.1 | Optimization objectives

This section outlines the optimization objectives in SNOPY. As SNOPY is a stochastic 

gradient descent-like algorithm, the objective function, or loss function, is by default defined 

on a mini-batch of data. The final loss function can be a linear combination of following loss 

terms to ensure the optimized trajectory possesses multiple required properties.

2.1.1 | Image quality—For many MRI applications, efficient acquisition and 

reconstruction aim to produce high-quality images. Consequently, the learning objective 

should encourage images reconstructed from sampled k-space signals to match the reference 

images. We formulate this similarity objective as the following image quality training loss:

ℒrecon = ℓ fθ, c A ω c x + ε − x . (1)

Here, ω c ∈ ℝNfe × Ns × Nd denotes the trajectory to be optimized, with Ns shots, Nfe

sampling points in each shot, and Nd image dimensions. For 3D MRI, Nd = 3. ε is simulated 

complex Gaussian noise. A ω  is the forward system matrix for sampling trajectory ω c 32. 

c denotes the parameterization coefficients of sampling trajectories ω, which is introduced 

in Sec. 2.3. In this study, A also incorporated multi-coil sensitivity information33. x denotes 

the reference image from the training set X, which is typically reconstructed from fully-

sampled signals. In addition to contrast-weighted imaging, if the training dataset X includes 

quantitative parameter maps, one may also simulate x using the Bloch equation, and A
can subsequently consider imaging physics such as relaxation. fθ, ω ⋅  is the reconstruction 

algorithm to be delineated in Sec. 2.2. θ denotes the reconstruction algorithm’s parameters. 

It can be kernel weights in a convolutional neural network (CNN), or the regularizer 

coefficient in a model-based reconstruction method. The similarity term ℓ ⋅  can be ℓ1

norm, ℓ2 norm, or a combination of both. There are also other ways to measure the 

distance between x and fθ, ω A ω x + ε , such as the structural similarity index (SSIM34). 

For simplicity, this work used a linear combination of ℓ1 norm and square-of-ℓ2 norm, which 

is a common practice in deep learning-based image reconstruction35.

2.1.2 | Hardware limits—The gradient system of MR scanners has physical constraints, 

namely maximum gradient strength and slew rate. Ideally, we would like to enforce a set of 

constraints of the form

gi j, : 2 ≤ gmax, gi = D1ω : , i, : / γΔt ∈ ℝ Nfe − 1 × Nd,

for every shot i = 1, … , Ns and time sample j = 1, … , Nfe, where gi denotes the gradient 

strength of the i shot and gmax denotes the desired gradient upper bound. One may use a 
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Euclidean norm along the spatial axis so that any rotation of the sampling trajectory still 

obeys the constraint. Applying the penalty to each individual gradient axis is also feasible. 

A similar constraint is enforced on the Euclidean norm of the slew rate si = D2ω : , i, : / γΔt2 , 

where D1 and D2 denote first-order and second-order finite difference operators applied along 

the readout dimension. Δt denotes the raster time interval and γ denotes the gyromagnetic 

ratio.

To make the optimization more practical, we follow previous studies20,22, and formulate the 

hardware constraint as a soft penalty term:

ℒg = ∑
i = 1

Ns

∑
j = 1

Nfe − 1
ϕgmax gi j, : 2 (2)

ℒs = ∑
i = 1

Ns

∑
j = 1

Nfe − 2
ϕsmax si j, : 2 . (3)

Here ϕ is a penalty function, and we use a simple soft-thresholding function 

ϕλ x = max x − λ, 0 , because it is sub-differentiable and easy to implement. It is possible 

to use more sophisticated functions. Since ϕ here is a soft penalty and the optimization 

results may exceed the threshold, smax and gmax can be slightly lower than the scanner’s actual 

physical limits to ensure that the optimization results are feasible on the scanner. Applying 

a sanity check before sequence programming is also useful. In addition to the soft-penalty 

approach, recent studies36 also used projection-based methods.

2.1.3 | Suppression of PNS effect—The additional gradient axis in 3D imaging can 

result in stronger peripheral nerve stimulation (PNS) effects compared to 2D imaging. To 

quantify possible PNS effects of candidate gradient waveforms, SNOPY uses a convolution 

model described in Ref. 37:

Rid t = 1
smin

∫
0

t
sid θ c

(c + t − θ)2dθ, (4)

where Rid denotes the PNS effect of the gradient waveform from the ith shot and the dth 

dimension. sid is the slew rate of the ith shot in the dth dimension. c (chronaxie) and smin

(minimum stimulation slew rate) are scanner-specific parameters.

Likewise, we discretize the convolution model and use a soft penalty term as the following 

loss function:
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pid j = ∑
k = 1

j sid k cΔt
smin(c + jΔt − kΔt)2 ,

ℒpns = ∑
i = 1

Ns

∑
j = 1

Nfe

ϕpmax ∑
d = 1

Nd

pid[j]2
1
2

.
(5)

Again, ϕ denotes the soft-thresholding function, with PNS threshold pmax (usually ≤ 80%37). 

This model combines the 3 spatial axes via the sum-of-squares manner and does not 

consider anisotropic characteristics of PNS38. The implementation may use an FFT (with 

zero padding) for efficient convolution.

2.1.4. | Image contrast—In many applications, the optimized sampling trajectory 

should maintain certain parameter-weighted contrasts. For example, ideally the (gradient) 

echo time (TE) should be identical for each shot. Again, we replace this hard constraint with 

an echo time penalty. Other parameters, like repetition time (TR) and inversion time (TI), 

can be predetermined in the RF pulse design. Specifically, the corresponding loss function 

encourages the sampling trajectory to cross the k-space center at certain time points:

ℒc = ∑
i, j, d ∈ C

ϕ0 ω i, j, d , (6)

where c is a collection of gradient time points that are constrained to cross the k-space zero 

point. ϕ is still a soft-thresholding function, with threshold 0.

The total loss function is a linear combination of the above terms

ℒ = λreconℒrecon + λgℒg + λsℒs + λpnsℒpns + λcℒc .

Note that not every term is required. For example, experiment 3.2.2 only used the ℒrecon. Sec. 

5 further discusses how to choose linear weights λs.

2.2 | Reconstruction

In (1), the reconstruction algorithm fθ, ω ⋅  can be various algorithms. Consider a typical cost 

function for regularized MR image reconstruction

x = arg min
x

∥ A ω x − y ∥2
2 + ℛ x . (7)

ℛ x  here can be a Tikhonov regularization v ∥ x ∥2
2 (CG-SENSE39), a sparsity penalty 

v ∥ Tx ∥1 (compressed sensing40, T  is a finite-difference operator), a roughness penalty 

v ∥ Tx ∥2
2 (penalized least squares, PLS), or a neural network (model-based deep learning, 

MoDL41). Sec. 4 shows that different reconstruction algorithms lead to distinct optimized 
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sampling trajectories. In training, y is retrospectively simulated as y = A ω x + ε (following 

(1)). In prospective studies, y is the acquired k-space data.

To get a reconstruction estimation x, one may use iterative reconstruction algorithms. 

Specifically, the algorithm should be step-wise differentiable (or sub-differentiable) to 

enable differentiable programming. The backpropagation uses the chain rule to traverse 

every step of the iterative algorithm to calculate gradients with respect to variables such as 

ω.

2.3 | Parameterization

As is shown in Ref. 20, directly optimizing every k-space sampling location (or equivalently 

every gradient waveform time point) may lead to sub-optimal results. Additionally, in many 

applications, one may need to optimize certain properties of existing sampling patterns, such 

as the rotation angles of a multi-shot spiral trajectory, so that the optimized trajectory can be 

easily integrated into existing workflows. For these needs, we propose two parameterization 

strategies.

The first approach, spline-based freeform optimization, represents the sampling pattern 

using a linear basis, i.e., ω = Bc, where B is a matrix of samples of a basis such as 

quadratic B-spline kernels and c denotes the coefficients to be optimized20,22. This approach 

fully exploits the generality of a gradient system. Using a linear parameterization like 

B-splines reduces degrees of freedom and facilitates applying hardware constraints20,42. 

Additionally, the parameterization can be combined with multi-scale optimization to 

avoid sub-optimal local minima and further improve optimization results17,20,22. However, 

freeformly optimized trajectories could introduce implementation challenges. For example, 

some MRI systems can not store hundreds of different gradient waveforms.

The second approach is to optimize attributes c of existing trajectories, where ω c  is 

a differentiable function of the attributes c. For example, many applications use radial 

trajectories, where the rotation angles can be optimized. Suppose s ∈ ℝ3 × N is one radial 

sampling spoke, and consider an M-shot 3D radial trajectory,

ω = R1 ⋯ RM IM ⊗ s, (8)

where Ri ∈ ℝ3 × 3 denotes a rotation matrix, IM denotes an identity matrix of size M, and ⊗
denotes the Kronecker product. In this case, the list of Ri is the coefficient to be optimized. 

This approach is easier to implement on scanners, and can work with existing workflows.

2.4 | Efficient and accurate Jacobian calculation

In the similarity loss (1), the sampling trajectory is embedded in the forward system 

matrix A. The system matrix for non-Cartesian sampling usually includes NUFFT 

operators32. Updating the sampling trajectory in each optimization step requires the 

Jacobian, or the gradient with respect to the sampling trajectory. The NUFFT operator 

typically involves interpolation in the frequency domain, which is non-differentiable due to 

rounding operations. Several previous works used auto-differentiation (with sub-gradients) 
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to calculate an approximate numerical gradient22,29, but that approach is inaccurate and 

slow28. We derived an efficient and accurate Jacobian approximation method28. For 

example, the efficient Jacobian of a forward system model A is:

∂Ax
∂ω d = − ıdiag A x ⊙ r d , (9)

where d ∈ 1, 2, 3  denotes the spatial dimensions, r d  denotes the Euclidean spatial grid, ⊙
denotes the Hadamard product, and ι is the imaginary unit. Calculating this Jacobian simply 

uses another NUFFT, which is more efficient than the auto-differentiation approach. See 

Ref. 28 for more cases, such as ∂A′Ax
∂ω d  and the detailed derivation.

2.5 | Efficient optimization

2.5.1 | Optimizer—Generally, to optimize the sampling trajectory ω and other 

parameters (such as reconstruction parameters θ) via stochastic gradient descent-like 

methods, each update takes a step (in the simplest form)

θK = θK − 1 − ηθ
∂ℒ
∂θ ωK − 1, θK − 1

ωK = ωK − 1 − ηω
∂ℒ
∂ω ωK − 1, θK − 1 ,

where ℒ is the loss function described in Section 2.1 and where ηθ and ηω denote step-size 

parameters.

The optimization is highly non-convex and may suffer from sub-optimal local minima. We 

used stochastic gradient Langevin dynamics (SGLD)43 as the optimizer to improve results 

and accelerate training. Each update of SGLD injects Gaussian noise into the gradient to 

introduce randomness

θK = θK − 1 − ηθ
∂ℒ

∂θK − 1 + 2ηθN 0, 1

ωK = θK − 1 − ηω
∂ℒ

∂ωK − 1 + 2ηωN 0, 1 .
(10)

Across most experiments, we observed that SGLD led to improved results and faster 

convergence compared with SGD or Adam44. Fig. 2 shows a loss curve of SGLD and 

Adam of experiment 3.2.3.

2.5.2 | Memory saving techniques—Due to the large dimension, the memory cost 

for naive 3D trajectory optimization would be prohibitively intensive. We developed several 

techniques to reduce memory use and accelerate training.

As discussed above, the efficient Jacobian approximation uses only 10% of the memory 

required by the standard auto-differentiation approach28. We also used in-place operations 

in certain reconstruction steps, such as the conjugate gradient (CG) method, because with 
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careful design it will not interrupt auto-differentiation. (See our open-source code* for 

details.) The primary memory bottleneck relates to 3D NUFFT operators. One can pre-

calculate the Toeplitz embedding kernel to save memory and accelerate computation45,46. 

In the training phase, we used NUFFTs with lower accuracy, for instance, with a smaller 

oversampling ratio for gridding28. Table 1 shows the incrementally improved efficiency 

achieved with these techniques. Without the proposed techniques, optimizing 3D trajectories 

would require hundreds of gigabytes of memory, which would be impractical for a single 

node. SNOPY enables solving this otherwise prohibitively large problem on a single GPU.

3 | METHODS

3.1 | Datasets

We used two publicly available datasets; both of them contain 3D multi-coil raw k-space 

data. SKM-TEA47 is a 3D quantitative double-echo steady-state (qDESS48) knee dataset. 

It was acquired by 3T GE MR750 scanners and 15/16-channel receiver coils. SKM-TEA 

includes 155 subjects. We used 132 for training, 10 for validation, and 13 for the test. 

Calgary brain datase49 is a 3D brain T1w MP-RAGE50 k-space dataset. It includes 67 

available subjects, acquired by an MR750 scanner and 12-channel head coils. We used 50 

volumes for training, 6 for validation, and 7 for testing. All sensitivity maps were calculated 

by ESPIRiT51.

3.2 | Simulation experiments

We experimented with multiple scenarios to show the broad applicability of the proposed 

method. All the experiments used a node equipped with an Nvidia Tesla A40 GPU for 

training.

3.2.1 | Optimizing 3D gradient waveform—We optimized the sampling trajectory 

with a 3D radial (‘kooshball’) initialization52,53. As is described in 2.3, the experiment 

optimized the readout waveform of each shot with B-spline parameterization, to reduce the 

number of degrees of freedom and enable multi-scale optimization. The initial 3D radial 

trajectory had a 5.12 ms long readout (raster time = 4 μs) and 1024 shots (8× acceleration), 

using the rotation angle described in Ref. 16. The training used the SKM-TEA dataset. The 

retrospectively cropped FOV was 158×158×51 mm3 with 0.76×0.62×1.6 mm3 simulated 

resolution. The receiver bandwidth was ±125 kHz (dwell time = 4 μs). The training loss was

ℒ = ℒrecon + 103ℒg + 103ℒs + ℒpns .

The gradient strength gmax  and slew rate smax  were 50 mT/m and 150 mT/m/ms (for 

individual axis). The PNS threshold pmax  was 80%. The simulated noise ε was 0. The 

batch size was 3. The learning rate ηω decayed from 10−4 to 0 linearly. For multi-level 

optimization, we used 3 levels (with B-spline kernel widths = 32, 16, and 8), and each level 

used 200 epochs. The total training time was ~240 hrs. The trajectory was optimized with 

* https://github.com/guanhuaw/Bjork 
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respect to several image reconstruction algorithms. We used a regularizer weight v = 10−3

and 30 CG iterations for CG-SENSE and PLS. For learning-based reconstruction, we used 

the MoDL41 network that alternates between a neural network-based denoiser and data 

consistency updates. We used a 3D version of the denoising network54, 20 CG iterations for 

the data consistency update, and 6 outer iterations. Similar to previous investigations14,20, 

SNOPY jointly optimized the neural network’s parameters and the sampling trajectory using 

(10).

3.2.2 | Optimizing rotation angles of stack-of-stars trajectory—This experiment 

optimized the rotation angles of a stack-of-stars trajectory, which is a widely used 

volumetric imaging sequence. The training used the Calgary brain dataset. We used PLS 

as the reconstruction method for simplicity, with v = 10−3 and 30 iterations. The simulated 

noise ε was 0 and the batch size was 12. We used 200 epochs and a learning rate linearly 

decaying from 10−4 to 0. The FOV was retrospectively cropped to 256×218×32 mm3 with 

1 mm3 resolution. We used 40 spokes per kz location (6× acceleration), and 1280 spokes in 

total. The readout length was 3.5 ms. The receiver bandwidth was ± 125 kHz (dwell time 

= 4 μs). The trajectory was a stack of 32 kz planes, hence SNOPY optimized 1280 rotation 

angles in this case.

Since optimizing rotation angles does not impact the gradient strength, slew rate, PNS, and 

image contrast, we only used the reconstruction loss ℒ = ℒrecon. We regarded the method 

(RSOS-GR) proposed in previous works12 as the best empirical scheme. We applied 200 

epochs with a linearly decaying learning rate from 10−3 to 0. The training cost ~20 hrs.

3.2.3 | PNS suppression of 3D rotational EPI trajectory for functional imaging
—The third application optimizes the rotation EPI (REPI) trajectory55, which provides 

an efficient sampling strategy for fMRI. For high resolution (i.e., ≤1 mm), we found 

that subjects may experience strong PNS effects introduced by REPI. This experiment 

aimed to reduce the PNS effect of REPI while preserving the original image contrast. We 

optimized one shot of REPI, being parameterized by B-spline kernels (width=16). The 

optimized readout shot was rotated using the angle scheme similar to Ref. 55 for multi-shot 

acquisition.

We designed the REPI readout for an oscillating stead steady imaging (OSSI) sequence, a 

novel fMRI signal model that can improve the SNR56,57. The FOV was 200×200×12 mm3, 

with 1 mm3 isotropic resolution, TR = 16 ms, and TE = 7.4 ms. The readout length was 10.6 

ms. The receiver bandwidth was ±250 kHz (dwell time = 2 μs). The gradient strength gmax , 

and slew rate smax  constraints were 58 mT/m and 200 mT/m/ms (3 axes combined).

To accelerate training, the loss term here excluded the reconstruction loss ℒrecon:

ℒ = 10−2ℒg + 10−2ℒs + ℒpns + 102ℒc .

The training used 40,000 steps, with the learning rate decaying linearly from 10−4 to 0. The 

training cost ~1 hrs.
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3.3 | In-vivo experiments

We implemented the optimized trajectory prospectively on a GE UHP 3.0T scanner 

equipped with a Nova Medical 32-channel head coil. Participants gave informed consent 

under local IRB approval. Since the cache space in this MR system cannot load hundreds 

of distinct gradient waveforms, the experiment 3.2.1 was not implemented prospectively. 

Readers may refer to the corresponding 2D prospective studies20 for image quality 

improvement and correction of eddy current effects. For experiment 3.2.2, we programmed 

the sampling trajectory with a 3D T1w fat-saturated GRE sequence58, with TR/TE = 14/3.2 

ms and FA = 20°. The experiment included 4 healthy subjects. For experiment 3.2.3, to rate 

the PNS effect, we asked 3 participants to score the nerve stimulation with a 5-point Likert 

scale from ‘mild tingling’ to ‘strong muscular twitch.’

3.4 | Reproducible research

The code is publicly available†. As an accompanying project, MIRTorch‡ facilitates 

applying differentiable programming to MRI sampling and reconstruction.

4 | RESULTS

For the spline-based freeform optimization experiment delineated in 3.2.1, Fig. 3 presents 

an example of the optimized trajectory, along with zoomed-in regions and plots of a single 

shot. Similar to the 2D case20 and SPARKLING16,17, the multi-level B-spline optimization 

generates a swirling trajectory that can cover more k-space in the fixed readout time, 

to reduce large gaps between sampling locations and, consequently, aliasing artifacts. 

Notably, the zoomed-in region highlights that different shots were automatically learned 

not to overlap with each other, which implicitly improved the sampling efficiency17. Fig. 

4 displays point spread functions (PSFs) of trajectories jointly optimized with different 

reconstruction algorithms. To visualize the sampling density in different regions of k-space, 

we convolved the trajectory with a Gaussian kernel, and Fig. 4 shows the density of central 

profiles from different views. Compared with 3D kooshball, the SNOPY optimization 

led to fewer radial patterns in PSFs, corresponding to fewer streak artifacts in Fig. 5. 

Trajectories optimized with different reconstruction algorithms generated different PSFs 

and densities, which agrees with previous studies28,30,31. Table 2 lists the quantitative 

reconstruction quality of different trajectories. The image quality metric is the average 

peak signal-to-noise ratio (PSNR) of the test set. SNOPY led to ~4 dB higher PSNR than 

the kooshball initialization. Fig. 5 includes examples of reconstructed images. Compared 

to kooshball, SNOPY’s reconstructed images have reduced artifacts and blurring. Though 

MoDL (and its variants) are well-performing NN-based reconstruction algorithms according 

to the open fastMRI reconstruction challenge59, many important structures are distorted 

using the kooshball trajectory. Using the SNOPY-optimized trajectory, a simple model-based 

reconstruction (CG-SENSE) can reconstruct such structures. The gradient strength and the 

slew rate of optimized sampling trajectories are exhibited in the supplementary materials. 

† https://github.com/guanhuaw/SNOPY 
‡ https://github.com/guanhuaw/MIRTorch 
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SNOPY solves a non-convex problem; therefore, its results depend on the initialization. The 

supplementary materials compare optimization results with different initializations.

For experiment 3.2.2, Fig. 6 shows the PSF of the optimized and RSOS-GR schemes12. For 

the in-plane x − y  PSF, the SNOPY rotation shows noticeably reduced streak-like patterns. 

In the y − z direction, SNOPY optimization leads to a narrower central lobe and suppressed 

aliasing artifacts. The prospective in-vivo experiments also support this theoretical finding. 

In Fig. 6, the example slices (reconstructed by PLS) from prospective studies show that 

SNOPY reduced streaking artifacts. The average PSNR of SNOPY and RSOS-GR for the 

4 participants were 39.23 dB and 37.84 dB, respectively. Supplementary materials show the 

rotation angles before and after SNOPY optimization.

In experiment 3.2.3, we tested three settings: unoptimized REPI, optimized with PNS 

threshold (pmax in (5)) = 80%, and optimized with pmax = 70%. Fig. 7 shows one slice of 

reconstructed images by the CS-SENSE algorithm, as well as the subjective ratings of PNS. 

Though SNOPY suppressed the PNS effect, the image contrast was well preserved by the 

image contrast regularizer (6). Fig. 8 presents one shot before and after the optimization, and 

one plot of simulated PNS effects. The SNOPY optimization effectively reduced subjective 

PNS effects of given REPI readout gradients in both simulation and in-vivo experiments. 

Intuitively, SNOPY smoothed the trajectory to avoid a constantly high slew rate, preventing 

a strong PNS effect.

5 | DISCUSSION

SNOPY presents a novel and intuitive approach to optimizing non-Cartesian sampling 

trajectories. Via differentiable programming, SNOPY enables the application of gradient-

based and data-driven methods to trajectory design. Various applications and in-vivo 

experiments demonstrated the applicability and robustness of SNOPY and its 2D 

predecessor20.

Experiments 3.2.1 and 3.2.2 used SNOPY to tailor sampling trajectories according to 

specific training datasets and reconstruction algorithms, by formulating reconstruction image 

quality as a training loss. One concern was whether the learned trajectories would overfit the 

training dataset. In experiment 3.2.2, the training set used an MP-RAGE sequence, while the 

prospective sequence was an RF-spoiled GRE. Similarly, 2D prospective and retrospective 

experiments20 showed that trajectories learned with particular pulse sequences and hardware 

still improved the image quality of other sequences and hardware, and the NN-based 

reconstruction did not require fine-tuning with respect to prospective experiments. These 

empirical studies suggest that trajectory optimization is robust to moderate distribution 

shifts between training and inference. An intuitive explanation is that SNOPY can 

improve the PSF by reducing aliasing, and such improvements are universally beneficial. 

Future investigations will explore the robustness of SNOPY in more diverse settings, 

such as optimizing trajectories with healthy controls and prospectively testing them with 

pathological participants to examine image quality for pathologies. It will also be desirable 

to test SNOPY with different FOVs, resolutions, and B0 strengths.

Wang et al. Page 12

Magn Reson Med. Author manuscript; available in PMC 2024 August 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Our experiments demonstrated that iterative reconstruction with simple analytical 

regularizers, such as CG-SENSE, can benefit from the SNOPY-optimized sampling 

trajectories. As depicted in Fig. 3, CG-SENSE with SNOPY optimization can successfully 

reconstruct many anatomical structures that were blurred in the MoDL reconstruction 

without SNOPY trajectory. This result is consistent with previous studies28, where 

compressed sensing algorithms with trajectory optimization also outperformed NN-based 

reconstruction. These findings indicate untapped potentials of model-based reconstruction 

by optimizing sampling trajectories.

MRI systems are prone to imperfections such as field inhomogeneity60 and eddy currents61. 

Many correction approaches exist, such as B0-informed reconstruction45 and trajectory 

mapping62,63. SNOPY-optimized trajectories are compatible with existing correction 

methods. For instance, we demonstrated the feasibility of implementing eddy currents 

correction for a 2D freeform optimized trajectory in Ref. 20. Additionally, incorporating 

system imperfections into the forward learning/optimization phase, such as off-resonance 

maps in the system model A (as defined in (1)), may enhance the intrinsic robustness 

of the optimized trajectory. However, this approach requires the distribution of system 

imperfections, which is typically scanner-specific. To address this limitation, we plan 

to investigate prospective simulation approaches in future studies. The model mismatch 

may also happen at the digitization level: the training set typically consists of concrete 

discrete-space images, whereas real objects are continuous. This inverse crime is common 

in learning-based methods and may lead to suboptimal results. Future research should 

investigate strategies for mitigating this issue.

SNOPY uses a relatively simplified model of PNS. More precise models, such as Ref. 

38, may lead to improved PNS suppression results. SNOPY can also incorporate other 

optimization objectives to encourage properties such as robustness to field inhomogeneity 

and reduction of acoustic noise.

The training process incorporates several loss terms, including image quality, PNS 

suppression, hardware limits, and image contrast. By combining these terms, the 

optimization can lead to trajectories that have multiple desired characteristics. One 

may alter the optimization results by controlling the coefficients. For example, with a 

larger coefficient of the hardware constraint loss, the trajectory will better conform to 

smax and gmax. The supplementary materials contain an example of optimization results 

using different combinations of weights. Setting the weights of several terms can be 

complicated. Empirically, the weight of soft constraints, including hardware (ℒg and 

ℒs), PNS suppression ℒpns , and contrast ℒc  can be tuned to a higher value if the 

optimized trajectory significantly violates these constraints. Additionally, the training losses 

may sometimes contradict each other, and the optimization process would get stuck in 

a local minimum. To address this, several empirical tricks have been employed. Similar 

to SPARKLING17, the constraint on maximum gradient strength can be relaxed using a 

higher receiver bandwidth. Bayesian optimization is another option for finding optimal loss 

weights, but may increase training time. Using SGLD can introduce randomness that helps 
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escape local minima. In spline-based optimization, one can use a larger B-spline kernel 

width in the early stages of a coarse-to-fine search.

Trajectory optimization is a non-convex problem. SNOPY uses several methods, including 

effective Jacobian approximation, parameterization, multi-level optimization, and SGLD, to 

alleviate the non-convexity and achieve better optimization results. These methods were also 

found to be effective in previous studies20,28. Initialization is also important for non-convex 

problems, as demonstrated in the supplementary materials. SNOPY can leverage existing 

knowledge of MR sampling as a benign initialization. For instance, our experiments used the 

widely accepted golden-angle stack-of-stars as optimization bases. The SNOPY algorithm 

can sequentially improve these skillfully designed trajectories to combine the best of both 

stochastic optimization and researchers’ insights.

SNOPY has a wide range of potential applications, including dynamic and quantitative 

imaging, particularly if large-scale quantitative datasets are available. These new 

applications may require task-specific optimization objectives in addition to the ones 

described in Sec. 2.1. In particular, if the reconstruction method is not easily differentiable, 

such as the MR fingerprinting reconstruction based on dictionary matching64, one needs to 

design a surrogate objective for image quality.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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FIGURE 1. 
Diagram of SNOPY. The sampling trajectory (and possibly reconstruction parameters) 

are updated using gradient methods. The training/optimization process uses differentiable 

programming to obtain the gradient necessary for the update.
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FIGURE 2. 
The evaluation loss curve for SGLD and Adam. The training process costs ~1 hrs.

Wang et al. Page 19

Magn Reson Med. Author manuscript; available in PMC 2024 August 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



FIGURE 3. 
The optimized sampling trajectory of experiment 3.2.1. The training process involves the 

SKM-TEA dataset and CG-SENSE reconstruction. The upper row shows a zoomed-in 

region from different viewing perspectives. The lower row displays one shot from different 

perspectives.
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FIGURE 4. 
Visualization of the optimized trajectory in experiment 3.2.1. The upper subfigure 

displays PSFs (log-scaled, single-coil) of trajectories optimized with different reconstruction 

methods. The lower subfigure shows the density of sampling trajectories, obtained by 

convolving the sampling points with a Gaussian kernel. Three rows are central profiles 

from three perspectives.
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FIGURE 5. 
Examples of the reconstructed images for two knee slices in experiment 3.2.1.
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FIGURE 6. 
Prospective results of 3.2.2, optimizing the rotation angles of the stack-of-stars (6× 

acceleration). ‘Best empirical’ uses the design from a previous study12. The upper subfigure 

shows two slices from prospective in-vivo experiments. The reconstruction algorithm was 

PLS. Avg. PSNR is the average PSNR of the 4 subjects compared to the fully sampled 

reference. The lower subfigure shows the log-scaled PSF (single-coil) of two trajectories.
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FIGURE 7. 
Prospective results of 3.2.3. We showed three different trajectories: the unoptimized REPI, 

as well as SNOPY-optimized with PNS thresholds of 80% and 70%. The left subfigure 

shows one slice of reconstructed images. The reconstruction used PLS and 120 shots 

(volume TR = 2s). The right subfigure shows subjective scores of the PNS effect.
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FIGURE 8. 
The first row of plots displays the PNS effect calculated by the convolution model (5) used 

in Experiment 3.2.3. The second row shows the corresponding readout trajectories before 

and after SNOPY optimization.
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