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Quantitative approaches to guide epilepsy 
surgery from intracranial EEG
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Over the past 10 years, the drive to improve outcomes from epilepsy surgery has stimulated widespread interest in 
methods to quantitatively guide epilepsy surgery from intracranial EEG (iEEG). Many patients fail to achieve seizure 
freedom, in part due to the challenges in subjective iEEG interpretation. To address this clinical need, quantitative 
iEEG analytics have been developed using a variety of approaches, spanning studies of seizures, interictal periods, 
and their transitions, and encompass a range of techniques including electrographic signal analysis, dynamical sys
tems modeling, machine learning and graph theory. Unfortunately, many methods fail to generalize to new data and 
are sensitive to differences in pathology and electrode placement.
Here, we critically review selected literature on computational methods of identifying the epileptogenic zone from 
iEEG. We highlight shared methodological challenges common to many studies in this field and propose ways that 
they can be addressed. One fundamental common pitfall is a lack of open-source, high-quality data, which we spe
cifically address by sharing a centralized high-quality, well-annotated, multicentre dataset consisting of >100 pa
tients to support larger and more rigorous studies. Ultimately, we provide a road map to help these tools reach 
clinical trials and hope to improve the lives of future patients.
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Epilepsy surgery and traditional 
localization of the epileptogenic zone
Clinicians plan epilepsy surgery by localizing the regions which 
causally generate seizures known as the epileptogenic zone (EZ), 
a process which often involves using intracranial EEG (iEEG)1

(Fig. 1A) to record seizures directly over a 1–2 week period. Teams 
of epileptologists analyse the temporal, spatial, and spectral char
acteristics of these events to select the areas from which they 
most likely originate. The insights from iEEG are then combined 
with findings from the patient’s history, seizure semiology, scalp 
EEG, neuropsychological testing, as well as structural and function
al neuroimaging to determine the ultimate surgical strategy.

The primary method of EZ identification from iEEG is the quali
tative recognition of specific seizure onset patterns that indicate a 
well-localized onset.4,5 Common patterns include (i) low voltage 
fast activity; (ii) ‘DC shift’ or ‘diffuse electrodecremental event’; 
(iii) preictal rhythmic spiking of low frequency and high amplitude; 
and (iv) bursts of polyspikes or spike-and-wave activity (Fig. 1A). 
Such onset patterns are known to vary by anatomical location 
and aetiology of epilepsy,4 which aids clinicians in their approach 
to localization. Occasionally, typical onset patterns are not ob
served and instead poorly localized, lower frequency or ‘propa
gated’ patterns are seen, leaving clinicians to wonder if the 
implant has somehow missed the region driving seizures, or if 
the EZ is ‘distributed’,2,3 and better treated with broader neuromo
dulation than focal intervention (Fig. 1B).

Traditional methods of EZ localization lead the majority of pa
tients to become seizure free. However, even when clinicians feel 
that epileptogenic networks have been well defined, many patients 
relapse after surgery.6,7 These poor outcomes may reflect inherent 
challenges in qualitative iEEG interpretation, limited spatial sam
pling, as well as our incomplete understanding of how seizures 
arise from brain networks in epilepsy. Furthermore, concerns about 
financial cost, potential neurologic morbidity, and the dependence 
on referral to a limited number of highly experienced clinicians re
strict the access of epilepsy surgery to a small fraction of potential 
candidates.8-10 Overall, there is a substantial need to leverage quan
titative tools to improve surgical decision making while reducing 
cost and morbidity and increasing access.

In this article, we briefly review prior efforts to build quantita
tive tools intended to guide iEEG evaluation, identify barriers and 
potential solutions to clinical translation, and publicly release a 
large, multicentre dataset to accelerate research and clinical trans
lation. Intracranial EEG, including microelectrode arrays have also 
provided substantial progress towards seizure prediction11-14 unco
vering the mechanisms underlying seizure generation15-17; how
ever, an in-depth review of these topics is beyond our current 
scope. Here, we focus on the potential of quantitative iEEG as a 
tool for precision medicine in epilepsy.

Quantitative localization of the 
epileptogenic zone
Interictal methods

Methods of identifying epileptogenic surgical targets using interic
tal data could significantly reduce the need for long hospital stays 
waiting for unpredictable seizures to occur and increase the diag
nostic yield for the patients who do not have seizures while im
planted with iEEG. Many promising methods have been 

developed, including those studying high-frequency oscillations 
(HFOs; Fig. 2B), interictal spikes,18-26 resting-state signal analysis, 
and functional connectivity.

HFOs are transient oscillatory events in the frequency range of 
80 to 500 Hz, often separated into ripples (80–250 Hz) and fast rip
ples (250–500 Hz), that stand out from background activity.18,20,27

It has been reported that high rates of HFOs are present in epileptic 
tissue and that removal of regions with high HFO rates results in 
more favorable outcomes.28-31 However, as HFO analysis has 
moved to automatic detection due to the poor inter-rater reliability 
of visual review,32-35 recent prospective studies36 and 
meta-analyses37,38 have reported little advantage in using HFOs 
for surgical planning. The performance of HFOs in predicting surgi
cal outcome may be biased by several factors. First, HFOs are pre
sent physiologically, and this confounds the distinction of 
pathological HFOs.39-41 Efforts to create an HFO atlas42 and to assess 
HFO rates during cognitive tasks43 may help distinguish pathologic
al tissues. Second, though fast ripples were shown to be more spe
cific to epileptogenic tissues,44 clinical viability may rely on fast 
ripple detection combined with epileptic spikes or post-resection 
recordings.45,46 However, the mechanistic theory that HFOs are 
network-driven phenomena may explain this discrepancy in fast 
ripple specificity.45,47,48

Interictal spikes are brief, abnormal electrical discharges seen 
in epileptic patients during seizure-free intervals. The mechanis
tic relationship between spikes and seizures is still unknown, al
though they are temporally related in many patients49 and both 
are observed to manifest similar multi-day cycles.50 Given that 
spikes occur more frequently than seizures, they have been exten
sively studied for their ability to guide epilepsy surgery. 
Examining their location in frequency in iEEG has revealed that 
their spatial distribution fluctuates over time,26 but that good sur
gical outcome is associated with the resection of regions which 
generate the highest frequency of spikes.51,52 Furthermore, gam
ma activity preceding spikes provides additional sensitivity for 
discharges which mark the EZ.53 However, spikes often arise out
side regions of seizure onset,54 complicating the presumed rela
tionship between spike and seizure generation. These areas 
remain under active investigation, spanning research protocols 
that vary widely across institutions.

With epilepsy increasingly conceptualized as a network dis
order, various network-based measures have been proposed to 
characterize the connectivity patterns in the epileptic brain net
work.55-61 Recent studies suggest that the epileptic network not 
only demonstrates abnormalities during seizures but also at 
rest55,62,63 and information about epileptogenic regions can be 
gleaned from the resting-state network.57,58,64 Several studies 
have demonstrated increased synchronization in seizure-onset re
gions.56,65 and a high influence of epileptogenic regions on the brain 
network during interictal periods.55,57,58,62,64,66 To construct iEEG 
networks, graph-theoretic measures computed from an adjacency 
matrix that represents pairwise dependencies (correlation or co
herence) between iEEG channels56,64,67 are often used. These me
trics are not always easily interpretable as different networks can 
result in identical metrics.68 To overcome this, others have derived 
dynamical models of the iEEG signals,57,58,69 which are designed to 
capture the underlying dynamical properties of the epileptic net
work responsible for seizure generation. A recent study implemen
ted a time-varying autoregressive model to conceptualize source 
and sink nodes (regions) in the epileptic network where the sinks, 
regions being inhibited by sources, are correlated to epileptogenic 
regions during interictal periods.58,70
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Ictal methods

Quantitative evaluation of ictal recordings can provide additional 
localizing value beyond clinician recognition of canonical seizure 
onset patterns. Many such approaches analyse the spectral charac
teristics of seizure onset patterns to determine which channels are 
most critically involved in seizure generation. One method le
verages a wavelet transform (Fig. 2B) of the iEEG signals recorded 
on each individual channel in patients that became seizure free, 
to identify a ‘fingerprint of the epileptogenic zone’.71,72

Approaches from computer vision were used to extract features 
from the time-frequency plot, which were then classified as epi
leptogenic using a support vector machine. Another widely studied, 
non-linear univariate metrics is the epileptogenicity index (EI; 
Fig. 2B),73 which quantifies clinically-observable patterns based 
on both the spectral and temporal delay patterns of iEEG. To com
pute EI, two specific metrics are calculated over a sliding window: 
(i) the ‘ER’, or the signal energy ratio between the beta and gamma 
bands compared to the theta and alpha bands; and (ii) a cumulative 
sum algorithm used over the ‘ER’ signal to determine when it sig
nificantly changes, marking a shift from low frequency to high fre
quency activity. Additionally, cross-frequency coupling has proved 
to be an important characteristic of epileptogenic tissues. For ex
ample, channels within the ictal core contain a high degree of 
phase locking between the high-gamma band and lower 

frequencies.74 Studies have shown that using this method to local
ize epileptogenic networks accurately predicts surgical outcomes 
better than experts marking the seizure onset zone alone.74

Connectivity-based, or ‘network’ approaches for analysing ictal 
activity generally estimate connectivity values between channels, 

via either a bivariate, or multivariate statistical approach75

(Fig. 2A). Analysing eigenvector centrality (EC), a measure of a 

node’s influence within a network, (Fig. 2B) of the iEEG correlation 

graph in frequency space shows a network transition from the in

terictal to ictal state.76 A similar analysis correlates the EC with 

the clinically hypothesized epileptogenic regions of a retrospective 

pool of patients.59 Analysing the network during ictal periods may 

also help predict surgical outcomes.77 Assuming the network is es

timated sufficiently, virtual resection in the context of the model 

may help predict surgical outcomes.65,78 In a recent study, analysis 

of time-varying dynamical connectivity enabled computation of 

‘neural fragility’ metric (Fig. 2B) that predicted surgical outcome 

in a large retrospective multicentre cohort of 91 patients.79-81 The 

study showed this by conditioning on the clinically hypothesized 

epileptogenic regions, indirectly suggesting that neural fragility 

could be useful for localization. Interestingly, neural fragility was 

also shown to increase across the course of epileptogenesis in a 

small animal study,82 implying that it provides not only localizing 

but perhaps mechanistic implications towards seizure generation.

Figure 1 Clinical workflow and the need for quantitative methods to localize the EZ. (A) Clinicians often localize the EZ for surgery using iEEG. 
Qualitative recognition of specific seizure onset patterns are primary used, including the identification of (i) low voltage fast activity; (ii) ‘DC shift’; 
(iii) preictal rhythmic spiking; and (iv) bursts of polyspikes or spike-and-wave activity (B) Difficulties in localizing the EZ may arise due to many factors. 
These can include (i) the implant somehow missed the region driving seizures; and (ii) the EZ is not a singular focus per se, but rather, seizures arise from 
a distributed interaction of brain regions in some patients. This is called the distributed epileptic network hypothesis.2,3 Given relevant iEEG and other 
clinical data, a singular focus may present itself as the EZ (red dashed line, adapted from Khambati et al.2 and Revell et al.3 with permission); however, 
other regions across the brain are involved in seizure generation, too. Removal of the primary seizure focus may not result in complete seizure freedom. 
Thus, there is the need for quantitative methods to (i) better localize seizure onset given imperfect implantation schemes; and (ii) quantify if a patient 
may be better treated with broader neuromodulation over focal intervention.



Quantitative epilepsy surgery guidance                                                                                 BRAIN 2023: 146; 2248–2258 | 2251

Stimulation-based mapping

Investigations of the EZ using electrical stimulation (Fig. 2C) have 
undergone a resurgence in the past two decades since the first pio
neering experiments by Penfield, Jasper, Ojemann and others.83-85

Specifically, single pulse electrical stimulation (SPES) has gained 
popularity as a measure of effective connectivity, where brief (150– 
300 µs per phase) pulses evoke responses in local and remote regions 
to indicate a structural or functional connection to the stimulation 
site.86-88 These cortico-cortical evoked potentials (CCEPs) have been 
used to map interregional connectivity in vivo in the language net
work,89 motor cortex,89 limbic network,90 parietal-frontal connec
tions,91 and deep brain structures.87,92 SPES is safe,93 reveals local 
and distant functional networks,89,94,95 and provides complementary 
information when combined with other neuroimaging modalities.96

To delineate seizure networks, differences in features of the CCEP 
waveform have been associated with increased cortical excitabil
ity.90,97,98 The amplitude of the N1 response (typically 10–50 ms post- 
stimulus) is often greater in seizure onset regions and early spread 
regions when compared to healthy tissue,90,97-99 and stimulating 
the seizure onset region produces larger remote responses with in
creased connectivity.99-101 More recently, greater cortico-cortical 
spectral responses and induced high-frequency activity have been 
shown to localize epileptogenic tissue.102-106 Additionally, ‘delayed 
responses’, neuronal activities that resemble spikes or slow waves 
that occur 100 ms to 1 s after stimulation onset, are more frequently 
observed in seizure onset zone regions,107,108 and removal of these 
areas result in improved outcomes.107,109

In contrast to these signal properties, systems-level analysis of 
CCEP data to localize the epileptogenic network has been recently 
proposed.110-113 In a recent study, authors tested the hypothesis 
that dynamical network models derived from CCEPs can reveal epi
leptic network connections and the underlying dynamics of seizure 
generation. Specifically, they posit that brain regions where small 
periodic inputs produce large amplitude oscillations in the intra
cranial EEG correspond to the seizure onset zone. Such responses 

occur when there is a resonant frequency of the brain network, 
and this frequency can be detected by a sharp peak in the frequency 
response curve.113

Several factors that affect the CCEP waveform remain open 
questions, impeding the widespread use of SPES in surgical plan
ning for epilepsy. SPES and CCEPs were first defined with electro
corticography (ECoG) grids, but the increased use of stereo-EEG 
(SEEG) raises questions about optimal stimulation parameters, vol
ume of activated tissue, and artifact considerations.85,114-116 The 
CCEP waveform depends heavily on location of the stimulating 
and response electrodes,66 whether in grey or white matter117,118

or in highly functional regions.119 Larger validation studies answer
ing these questions will ease implementation of stimulation-based 
investigations of seizure networks in the clinical workflow.

In a broader context, electrical stimulation has been used to 
evoke seizures to aid in seizure network inference.113,120,121 There 
are relatively few studies that directly examine the improvement 
in surgical outcome when using clinical information derived from 
stimulation-induced seizures,122 but a general trend towards adop
tion of stimulation-derived investigations of seizure networks pro
vides a unique and timely opportunity for further investigation.113

Challenges and opportunities
In this section, we review a series of challenges that have prevented 
most quantitative methods of localizing the EZ from becoming clin
ical tools which routinely impact clinical practice for patients 
undergoing epilepsy surgery (Fig. 3). For each of these challenges, 
we propose ways of adapting future studies to mitigate their effects 
on results and clinical translatability.

Challenge 1: clinical heterogeneity

One of the primary barriers to deploying quantitative methods to 
guide epilepsy surgery is the vast clinical heterogeneity that exists 

Figure 2 Quantitative methods to localize the EZ. (A) Methods of iEEG analysis range from univariate signal processing analyses of individual channels 
to bivariate analyses on pairs of channels, and to networks in which connectivity between all pairs of channels are assessed and emergent network 
properties are studied. (B) Various methods of quantitative seizure onset zone localization have been studied using both interictal and ictal data (C) 
Stimulation-based mapping is an effective method of probing the dynamics of epileptogenic networks.
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across patients with epilepsy (Fig. 3A). We identify the main 
sources of heterogeneity which may influence network models as 
(i) variability in electrode implantation types and placement, such 
as ECoG and SEEG; (ii) variability in treatment approaches, such 
as resection, ablation, and neurostimulation; (iii) variability in 
types of epilepsy, aetiology and underlying genetic and pathologic
al substrates; and (iv) variation in the methods of assessing clinical 
outcome.

The type of data recorded from ECoG and SEEG are inherently dif
ferent. ECoG records from the surface of the brain capturing grey 
matter often with a uniform spacing between contacts on a grid elec
trode array. SEEG depth electrodes capture white matter in addition 
to grey matter, which differ in both qualitative and quantitative 
properties during interictal and seizure periods. These differences 
in implants are known to impact the utility of network models in 
each type of implant123 and the effects are different across different 
network statistics.124,125 We propose that future studies validate 
their methods using SEEG subjects when possible.

Treatment type is also an important factor because resections 
typically cover a larger (and possibly even different) portion of the 
brain than the clinically hypothesized epileptogenic region. Laser 
ablations target less tissue but are typically only used if clinicians 
have a strong hypothesis for a focal epileptogenic network. 
Finally, implanted neurostimulators do not remove tissue at all, 
but rather stimulate to suppress activity in regions hypothesized 
as epileptogenic or exert functional influence over it (e.g. thalamic 
stimulation).126 Understanding possible treatment and selection 
bias is vital to conducting large, controlled multicentre studies in
volving multiple treatment modalities.127 We propose that future 
efforts control for the type of surgical intervention, and exercise 
caution when cohorts contain both subjects that underwent 

surgery with curative intent (resection, ablation) and those with 
palliative intent (e.g. neurostimulation).

Epilepsy is a clinically heterogeneous disorder which encom
passes a variety of underlying aetiologies, pathologies and anatom
ic distributions. Aetiologies of focal epilepsy include both clearly 
delineated lesions, such as mesial temporal sclerosis, focal cortical 
dysplasias, and cavernomas. Poorly localized or multi-focal pro
cesses can also cause epilepsy, including traumatic brain injury, 
stroke, or infection. As seizure onset patterns differ between differ
ent lesions and aetiologies, even for the same brain region,5 it fol
lows that the mechanisms underlying seizure generation and 
therefore quantitative variability could also differ and affect the ac
curacy of quantitative models. Furthermore, distinct anatomic dis
tributions of hypothesized epileptogenic lesions lead to different 
network sampling and therefore distinct quantitative properties 
evident on iEEG. We suggest that future models document both per
formance on mesial temporal lobe epilepsy and neocortical epi
lepsy where possible.

Finally, there is substantial bias in quantitative iEEG studies as a 
result of different clinical assessments of surgical outcome. Criteria 
for defining which patients achieve ‘good’ versus ‘poor’ outcome 
are not universally accepted, and even the term ‘seizure free’ may 
or may not encompass non-disabling auras. Additionally, these 
metrics change over time as patients relapse, so the results of a sin
gle study may only hold valid at a single point in time. Finally, ap
propriate outcome scales do not exist for neuromodulatory 
devices or surgical interventions intended to be palliative. We pro
pose that studies document both early and late outcomes when 
feasible, and that patients with true seizure freedom are treated 
separately from those with a favorable clinical outcome but re
maining auras.

Figure 3 Challenges and opportunities. (A) Clinical heterogeneity is a primary challenge in deploying quantitative iEEG methods in epilepsy surgery, 
and encompasses variability in implant type, therapy, underlying pathology, and outcome metrics. (B) Effective study design should include develop
ment, validation, and test cohorts to minimize overfitting and maximize generalizability. (C) Data and code sharing should be a standard practice in 
iEEG studies in epilepsy and should incorporate de-identification and standardized formatting of raw data, imaging, and metadata such as using the 
BIDS framework.
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Overall, few single centres have a sufficient clinical volume to 
study a clinically homogeneous cohort. Rigorous documentation 
of subject-level clinical metadata will increase the interpretability 
of future studies, and renewed efforts towards cross-centre collab
oration and data-sharing will permit the aggregation of subjects 
with similar implants, surgery, and pathology to more finely probe 
the factors which drive seizure freedom and relapse.

Challenge 2: effectively designing retrospective 
studies

Another significant barrier to clinical translation is variability in 
retrospective study design (Fig. 3B). We propose that methods 
should be developed on a training cohort, optimized on a validation 
cohort, and performance quantified on a held-out test cohort to 
prevent overfitting to small datasets.128 Ideally, the set of clinically 
hypothesized regions are well within the surgically resected/ab
lated areas in training data to provide the most accurate represen
tation of epileptogenicity possible.

Additionally, most retrospective studies aim to localize tissue 
that should be removed, but do not explicitly identify regions that 
should be preserved. In clinical practice, the selection of surgical 
approach and extent weighs the benefit of seizure freedom with 
the risk of neurologic morbidity and patient preference. Besides 
the avoidance of eloquent cortex, regions which have a desyn
chronizing effect on the epileptogenic network also may be import
ant to preserve for an optimal seizure outcome. Practically, future 
studies should indicate which subjects had resection strategies 
limited by their EZ localized to eloquent cortex and models should 
take neuro-cognitive testing and cortical mapping into account for 
symptom avoidance.

A recent trend in designing studies to validate localization algo
rithms is to predict surgical outcomes instead of identifying the EZ, 
since these regions are not observed. However, one should be aware 
of non-causal covariates that may bias results to be overly optimis
tic. For example, if the number of channels is higher in patients 
with surgical outcomes Engel II, or greater, and a prediction algo
rithm adds the number of channels to its set of features then the 
prediction algorithm leverages a spurious correlation of the num
ber of channels to predict outcome, which has no real clinical util
ity.129 Designing effective studies that fairly evaluate a proposed 
biomarker of epileptogenicity requires a deep understanding of 
the data and statistical challenges.

Finally, some models have a high predictive value but low ex
planatory value—addressing this trade-off is another challenge. 
For example, quantitative models that have high physiological 
plausibility may be easier for physicians to understand and use 
but they may not generalize well. In contrast, some deep-learning 
models might generalize well on new data but could be challenging 
to interpret. Indeed, many of the best tools for seizure prediction 
apply machine learning to quantitative iEEG features rather than 
model underlying electrophysiologic phenomena. On the other 
hand, mechanistic studies of epilepsy may reveal novel approaches 
to treating seizures including with drugs and neuromodulation. As 
our understanding of epilepsy grows, it is critical to advance pre
dictive and explanatory studies together.

Challenge 3: data and code sharing

Data and code sharing is fundamental to moving computational 
epilepsy studies towards clinical translation. We advocate for prop
er de-identification of protected health information, unified 

formatting of datasets, long-term public storage of the data, and 
the release of open-source code (Fig. 3C). Many groups choose to 
not share raw data due to institutional regulations, privacy laws, 
or burdensome data wrangling. However, misaligned incentives 
against data-sharing exist such as competition for publications, 
grants and potential for monetization.130,131 We propose that suffi
ciently de-identifying iEEG datasets and including complementary 
imaging and clinical metadata is feasible, such that quality data 
sharing should be required by funding agencies and academic jour
nals. Many software packages exist that facilitate removing identi
fying information in common recording formats, such as EDF.132-134

For neuroimaging, defacing software135 can automatically remove 
the face part of the images and storage of Nifti (.nii) files facilitates 
anonymization. With these advances, it is possible to share 
EEG-recording and imaging data along with non-identifiable meta
data to facilitate community-driven solutions for epileptogenic 
network localization.

However, it is not enough simply to ‘share’ the data as many for
mats for both raw EEG data and metadata are difficult for outside 
users to effectively parse. The Brain Imaging Data Structure (BIDS) 
is a community-driven format for storing and sharing de-identified 
data,135-137 supports all common EEG recording formats and has an 
open-source specification for metadata storage. Open-source 
web portals, such as OpenNeuro, can automatically check data to de
termine BIDS-compliance. Other platforms such as Pennsieve, 
which is developing an Epilepsy Data Ecosystem to integrate with 
other platforms, does similar data aggregation and data sharing for 
the NIH SPARC program.138 Finally, sharing high-quality code and 
documentation (such as on GitHub) can allow researchers to easily 
benchmark their proposed algorithms against prior work.

Introduction of a diverse, multicentre 
dataset
One of the primary barriers to appropriately developing and testing 
robust methods of EZ localization which can handle the vast clinic
al heterogeneity that exists among patients with epilepsy is a lack 
of enough high-quality data. To address this need, we document 
a publicly available dataset including recordings from 122 patients 
who underwent iEEG implantation and subsequent surgery for drug 
resistant epilepsy (Fig. 4). The data are organized in the standar
dized BIDS format on OpenNeuro, in projects ds003029, ds003876, 
and ds004100. Each dataset includes clinical metadata, such as im
plant type, surgery type, surgical outcome, electrode labels and 
standardized coordinates, as well as which electrode contacts 
were targeted by surgery. The electrophysiologic data is recorded 
and stored in referential montages and is unprocessed. Seizures 
were identified by board-certified epileptologists, and interictal 
clips were selected to minimize the presence of artefacts. Project 
ds003029 contains seizure recordings (mean per patient 3 ± 1.3), 
ds003876 contains interictal recordings (one to four clips per pa
tient), while ds004100 contains both (mean seizures per patient 
5.6 ± 1.5 with one interictal clip each). Full descriptions are present 
in the ReadMe files contained on OpenNeuro. Our datasets do not 
include clips where stimulation-based mapping was performed. 
Portions of each dataset have been used and published as part of 
previous studies58,63,65,79; however, we release additional subjects, 
recordings, electrode localizations, and metadata that were previ
ously unpublished.

Using our dataset as well as other high-quality iEEG co
horts,139,140 future studies may effectively develop, validate, and 
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test a wide variety of methods to quantitatively localize the EZ. For 
example, subsets of our dataset can be used to study more clinically 
homogeneous populations, such as those which were only im
planted with sEEG, or only underwent MTL laser ablations. 
Alternatively, our dataset could serve as a ‘test set’ to quantify per
formance of algorithms developed on private cohorts. Finally, we 
encourage others to release de-identified data from their centre in 
the iEEG BIDS format so that further studies may achieve even bet
ter statistical rigor, and our group currently has NIH funding to help 
aggregate more data across epilepsy centres to accelerate research.

Prospective studies
We posit that multiple methods, each which offer complementary 
information, may be integrated into a single software package that 
provides spatially-localized probabilities of epileptogenicity.70

Ideally, these tools may reach a high level of accuracy using only in
terictal recording or stimulation data alone, reducing the lengthy 
and costly stays in epilepsy monitoring units for recording seizures. 
While we foresee that some proprietary algorithms may arise, we 
believe that it is critical to keep scientific discovery in this field 
open-source so that all centres may have equitable access to tools 
which can improve care. We further expect that clinical quantita
tive iEEG models will complement insights from neuroimaging- 
based EZ localization tools leveraging structural, diffusion- 
weighted, and functional MRI. Ultimately, we foresee that the 
quantitative insight that these tools provide will augment, rather 
than replace, the expertise of clinicians in surgical planning.

Incorporating retrospectively validated computational models 
in prospective clinical trials will require careful study design. 
Decision making at the patient level could include predictions 
from quantitative models in an unblinded, randomized fashion to 
help clinicians decide between two equally probable clinical hy
potheses (e.g. medial temporal versus medial + temporal neocor
tical onsets), decide between therapeutic options in very specific 
epilepsy surgery decisions (e.g. standard temporal lobectomy ver
sus medial temporal ablation), or to advise surgical teams regarding 
the extent of intervention in cases where several options are pre
sent. While there are precedents for all of these types of trials, a 
careful, multicentre approach will likely be necessary to establish 
protocols, standards for data collection, annotation, analysis and 
interpretation, with sufficient power to assess the value of these 

methods. Certainly non-destructive therapies, such as neuromodu
lation, which can be tested in different portions of the epileptic net
work in the same patient, provide an interesting alternative to 
larger surgical trials, but current hardware limitations in the num
ber of contacts and leads make this somewhat invasive, as switch
ing between different implanted leads currently requires repeat 
surgery and changing connections to implanted devices.

With our description and consolidation of a high-quality multi
centre dataset, we hope that researchers will benchmark their pro
posed algorithms using this cohort in a sound statistical fashion, 
similar to our prior efforts to benchmark seizure detection and pre
diction.11,141 We encourage researchers to de-identify their data 
using the tools described and release their data in an open access 
and easily shareable format. These collective efforts will continue 
to move the field towards a robust epileptogenic network localiza
tion algorithm.
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