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Aims The black box nature of artificial intelligence (AI) hinders the development of interpretable AI models that are applicable in 
clinical practice. We aimed to develop an AI model for classifying patients of reduced left ventricular ejection fraction (LVEF) 
from 12-lead electrocardiograms (ECG) with the decision-interpretability.

Methods 
and results

We acquired paired ECG and echocardiography datasets from the central and co-operative institutions. For the central in
stitution dataset, a random forest model was trained to identify patients with reduced LVEF among 29 907 ECGs. Shapley 
additive explanations were applied to 7196 ECGs. To extract the model’s decision criteria, the calculated Shapley additive 
explanations values were clustered for 192 non-paced rhythm patients in which reduced LVEF was predicted. Although 
the extracted criteria were different for each cluster, these criteria generally comprised a combination of six ECG findings: 
negative T-wave inversion in I/V5–6 leads, low voltage in I/II/V4–6 leads, Q wave in V3–6 leads, ventricular activation time 
prolongation in I/V5–6 leads, S-wave prolongation in V2–3 leads, and corrected QT interval prolongation. Similarly, for 
the co-operative institution dataset, the extracted criteria comprised a combination of the same six ECG findings. 
Furthermore, the accuracy of seven cardiologists’ ECG readings improved significantly after watching a video explaining 
the interpretation of these criteria (before, 62.9% ± 3.9% vs. after, 73.9% ± 2.4%; P = 0.02).

Conclusion We visually interpreted the model’s decision criteria to evaluate its validity, thereby developing a model that provided the 
decision-interpretability required for clinical application.
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How can we develop AI model with the decision-interpretability required for clinical application?
The AI model’s decision criteria should be clearly and correctly explained

The accuracy of cardiologists’ ECG readings was improved
after watching a video expaining the model’s decision criteria

We extracted six ECG �ndings as model’s decision criteria

Visualization of the model’s decision criteria

A random forest model was trained to
identify a case of reduced LVEF

Calculate SHAP values and
adopting the dimensionality reduction

The calculated SHAP
values were clustered for
cases in which reduced

LVEF was predicted

Accuracy
62.9%

Accuracy
73.9%

UMAP component 2

VAT prolongation in I/V5-6 leads
S wave prolongation in V2-3 leads
Low voltage in I/II/V4-6 leads
QTc prolongation
Negative T wave inversion in
I/V5-6 leads
Q wave in V3-6 leads
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Introduction
In recent years, artificial intelligence (AI) has made remarkable progress 
in medicine. Various clinical studies on AI have been reported and im
plemented in clinical practice.1–7 In daily practice, physicians provide 
medical care by interpreting a great deal of information, including med
ical history, physical examination findings, blood tests, imaging tests, the 
patient’s social background, and treatment guidelines. AI can also help 
physicians’ clinical decisions. From this perspective, AI models imple
mented in medical practice should achieve both high-performance 
and considerable interpretability.7,8 However, many AI models involve 
a trade-off between high accuracy and high interpretability.9 This so- 
called ‘black box’ problem with AI is seen not only in the medical field, 
but also in many other fields. Therefore, various machine learning meth
ods have been developed to increase the ‘explainability’ of AI models, 
which are known as explainable AI (XAI).10 XAIs can show which parts 
of the input data have a strong influence on the predicted outcomes. 
Although the physicians’ needs for interpretable AI models might be 
to understand the causality between the input data and predicted out
comes within the AI model, XAI does not reveal this causality; that is, 
what findings in the input data are deduced to lead to the predicted re
sults. Unless the causality is clarified, it is likely to be difficult for 

physicians to apply the predicted outcomes provided by the XAI in clin
ical practice. Therefore, the current applications of XAI alone cannot 
satisfy physicians’ needs for interpretable AI models.11

We previously developed a convolutional neural network-based AI 
model to classify patients with reduced left ventricular ejection fraction 
(LVEF) from raw 12-lead electrocardiogram (ECG) data. The performance 
of this model was shown by an area under the receiver operating charac
teristic curve (AUROC) of 0.945.12 However, it was unclear what ECG 
findings the model used to derive the predicted results. Accordingly, if 
this model was to be implemented in the medical field, physicians would 
make insufficient clinical decisions when interpreting the model’s predicted 
results because they would not have a benchmark to use as a reference. 
Therefore, we aimed to develop an AI model for classifying patients of re
duced LVEF from 12-lead ECG data with sufficient interpretability to satisfy 
physicians’ needs when the model is implemented in clinical practice.

Methods
Study sample
As in the previous study,12 this study used data from patients aged 18 years 
or older who underwent echocardiography at The University of Tokyo 
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Hospital between January 2015 and December 2019 and had an ECG per
formed within 28 days of their echocardiography. The ECG and matched 
echocardiography data were paired (one-to-one correspondence between 
the ECG and the echocardiography), and 37 103 sets of paired data (the in
ternal dataset) were randomly divided into a training dataset (29 907 pairs 
from 15 135 patients; 80.6%) and test dataset (7196 pairs from 3784 pa
tients; 19.4%). Patients with multiple paired data were included in the 
same dataset (Figure 1). Similarly, we collected data from patients aged 18 
years or older who underwent echocardiography at Mitsui Memorial 
Hospital, and 47 353 sets of paired data were used as an external test da
taset (Figure 1). The study was conducted in accordance with the revised 
Declaration of Helsinki and was approved by the Institutional Review 
Board of The University of Tokyo [reference number: 2021132NI-(2)]. 
Informed consent was obtained in the form of an opt-out on a website.

Electrocardiography and echocardiography 
data acquisition
ECGs were recorded for a 10-s interval at a sampling rate of 500 Hz using an 
FCP-8700 or FCP-8800 system (Fukuda Denshi, Tokyo, Japan). ECG para
meters were obtained through automatic analysis of the ECGs. The ECG para
meters are shown in Supplementary material online, Table S1. Echocardiography 
was performed by skilled sonographers or cardiologists. Echocardiographic 
measurements were obtained in accordance with the American Society of 
Echocardiography recommendations at the time of acquisition,13 and each 
echocardiography was interpreted by one or two experienced echocardiolo
gists. Reduced LVEF was defined as an ejection fraction of <40%.14

Model development
Of the ECG parameters acquired, 178 parameters were used as input data 
(see Supplementary material online, Table S1). Then, we trained several ma
chine learning and deep learning models—support vector machine model,15

logistic regression model,16 random forest model,17 and multi-layer percep
tron model18—to classify whether a patient had reduced LVEF, using only 
the data included in the training dataset. Among these models, we extracted 
the model’s decision criteria for the model that performed best in the val
idation of the test dataset. These models were constructed in the Python 
language using the Scikit-learn machine learning library (https://scikit-learn. 

org/stable/about.html#citing-scikit-learn) and the PyTorch deep learning li
brary (https://pytorch.org).

Adaptation and interpretation of XAI
The model’s decision criteria needed to be interpreted in a two-stage fashion. 
First, the contribution of each ECG parameter to the model’s classification of 
patients with reduced LVEF needed to be calculated. Shapley additive explana
tions (SHAP)19,20 were used to compute this contribution for the test dataset. 
SHAP involves decomposing the difference between the expected predictions 
of the model and the obtained predictions as the contribution of each element 
of the input data. In calculating this contribution, the Shapley value of co- 
operative game theory is applied to calculate the average marginal contribution 
of each input element as an SHAP value.19 Second, the model’s decision criteria 
for patients with reduced LVEF were then clarified by performing pattern clas
sification based on the calculated SHAP value. However, the calculated SHAP 
value represented 178-dimensional information per ECG, and needed dimen
sion reduction to perform pattern classification with high accuracy. Hence, 
the calculated SHAP values were reduced to two dimensions using the principal 
component analysis (PCA)–uniform manifold approximation and projection 
(UMAP) method,21 which combines PCA22 and UMAP,23 a dimensionality re
duction method. Then, the 192 ECGs included in the test dataset in which re
duced LVEF was predicted, excluding those with a paced rhythm, were 
clustered by adapting a variational Bayesian Gaussian mixture model 
(VBGMM)24 to the two-dimensional SHAP values. When the model’s predicted 
value exceeded a cut-off of 0.5, reduced LVEF was predicted in that patient.

Explanation of the developed model’s decision 
criteria
On the basis of the relationship between the SHAP values and ECG para
meters for each classified cluster, the model’s decision criteria for patients 
with reduced LVEF were explained. First, if the median SHAP value for each 
ECG parameter was greater than the mean + standard deviation of the 
SHAP values for all ECG parameters, that ECG parameter was defined as a de
cision factor; i.e. a factor influencing the model’s decision to classify the ECG as 
a patient with reduced LVEF. Next, on the basis of the distribution of the actual 
ECG parameters and SHAP values identified as decision factors, ECG findings 
that provided the basis of the model’s determinations of patients with reduced 
LVEF were extracted as the model’s decision criteria.

Figure 1 Data flow. Flowchart showing how the three datasets used for model training, evaluation and external validation were created. To avoid 
cross-contamination across the training and test datasets included the internal dataset, multiple data pairs from a single patient were included only 
within the same dataset. LVEF, left ventricular ejection fraction.

http://academic.oup.com/ehjdh/article-lookup/doi/10.1093/ehjdh/ztad027#supplementary-data
http://academic.oup.com/ehjdh/article-lookup/doi/10.1093/ehjdh/ztad027#supplementary-data
https://scikit-learn.org/stable/about.html#citing-scikit-learn
https://scikit-learn.org/stable/about.html#citing-scikit-learn
https://pytorch.org
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Evaluation of the models’ performance and 
validity of the model’s decision criteria
The diagnostic performance of the models was validated on the test dataset 
by calculating accuracy, sensitivity, specificity and AUROC with the output 
cut-off value set to 0.5. Conventional ECG interpretation was also per
formed to assess the validity of the model’s decision criteria. Seven board- 
certified cardiologists, each with over 8 years of clinical experience, participated 
in this ECG interpretation test. First, 100 ECGs (50% of patients with reduced 
LVEF) were randomly selected from the test dataset while avoiding selecting 
the same patient several times and excluding ECGs with a paced rhythm. 
Second, each cardiologist independently read the 100 ECGs for the presence 
or the absence of reduced LVEF. Decisions during ECG reading were made on 
the basis of the impression of each cardiologist because there are no estab
lished ECG criteria for predicting the presence of reduced LVEF. Finally, after 
watching a video explaining the results of this study (educational video), each 
cardiologist read the same 100 randomly sorted ECGs for the presence or 
the absence of reduced LVEF. The accuracy, sensitivity and specificity of the se
ven cardiologists’ interpretations before watching the educational video were 
compared with those after watching it.

External validation of the model’s decision 
criteria
The same explanations were also performed on the external test dataset to 
validate the generalizability of the extracted model’s decision criteria. The 
1244 ECGs included in the external test dataset in which reduced LVEF 
was predicted, excluding those with a paced rhythm, were used to explain 
the model’s decision criteria.

Statistical analysis
Continuous variables are presented as mean and standard deviation and 
were compared using unpaired Student’s t-tests. Categorical variables are 
expressed as numbers and percentages and were compared using χ2 tests. 
The 95% confidence intervals (CIs) of accuracy, sensitivity, specificity, and 
AUROC were calculated using bootstrapping (resampling 10 000 times 
with replacement).25 Obuchowski’s method was used to evaluate the edu
cational effectiveness of the ECG interpretation test.26 This extends the 
McNemar test to a situation where the observations are sampled in clus
ters. Statistical analysis was performed using R version 4.1.1 (clust.bin.pair- 
package authorized by Dan Gopstein; www.r-project.org), and statistical 
significance was defined as a P-value of <0.05.

Results
Patient characteristics
The internal dataset comprised 37 103 ECG–echocardiography pairs from 
18 919 patients. The median period between the acquisition of the paired 
ECG and echocardiography was 1 day. The external test dataset com
prised 47 353 ECG–echocardiography pairs from 23 473 patients. The 
median period between the acquisition of the paired ECG and echocardi
ography was 1 day. The characteristics of the patients in the internal data
set and the external test dataset are shown in Table 1 and Supplementary 
material online, Table S2, respectively. The mean age in the internal dataset 
and the external test dataset was 63.4 ± 16.9 and 69.8 ± 13.9 years, re
spectively. There were 21 025 ECGs from 10 403 men and 16 078 
ECGs from 8516 women in the internal dataset and 29 805 ECGs from 
14 141 men and 17 548 ECGs from 9332 women in the external test da
taset. We enrolled 3501 ECGs from 1116 patients with reduced LVEF in 
the internal dataset and 4187 ECGs from 1667 patients with reduced LVEF 
in the external test dataset. The training and test datasets comprised 
29 907 ECGs from 15 135 patients (80.6%) and 7196 ECGs from 3784 
patients (19.4%), respectively (Figure 1 and Table 1). The distributions of 
patients with reduced LVEF in each dataset are shown in Table 1.

Diagnostic performances
The AUROC values of the models for the test dataset are shown in 
Figure 2. The model with the best performance was the random forest 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Table 1 Patient characteristics in the internal dataset 
at the time of ECG and echocardiogram acquisition

Training dataset  
(n = 29 907)

Test dataset  
(n = 7196)

P-value

Age (years) 63.3 (17.0) 63.5 (16.7) 0.295
Male, n (%) 16 886 (56.5) 4139 (57.5) 0.107

Body height (cm) 161.7 (9.9) 161.8 (10.0) 0.808

Body weight (kg) 59.9 (13.6) 60.3 (13.6) 0.068
LVEF (%) 61.2 (14.7) 60.9 (15.2) 0.064

Reduced LVEF, n (%) 2764 (9.2) 737 (10.2) 0.010

HR (/min) 74.0 (15.4) 74.1 (15.1) 0.543
PR interval (ms) 171.5 (43.9) 169.9 (43.9) 0.007

QRS duration (ms) 105.8 (22.6) 106.1 (22.6) 0.232

QT interval (ms) 396.9 (40.0) 396.9 (39.3) 0.956
QTc 435.0 (34.1) 435.6 (35.0) 0.142

QRS axis 28.1 (45.3) 28.5 (44.5) 0.429
P axis 41.5 (34.8) 41.6 (33.9) 0.782

Data are presented as n (%) or mean (standard deviation). P-values are from unpaired 
Student’s t-tests or the χ2 test and indicate differences in the distribution of values 
between the training and test datasets. 
ECG, electrocardiogram; LVEF, left ventricular ejection fraction; HR, heart rate; QTc, 
corrected QT interval.

Figure 2 Receiver operating characteristic curves of the four mod
els applied to the test dataset. Red, green, orange, and purple lines re
present the receiver operating characteristic curves of the random 
forest model, support vector machine model, logistic regression mod
el, and multi-layer perceptron model, respectively. RF, random forest 
model; SVM, support vector machine model; LR, logistic regression 
model; MLP, multi-layer perceptron model; AUROC, area under 
the receiver operating characteristic curve; CI, confidence interval.

http://www.r-project.org
http://academic.oup.com/ehjdh/article-lookup/doi/10.1093/ehjdh/ztad027#supplementary-data
http://academic.oup.com/ehjdh/article-lookup/doi/10.1093/ehjdh/ztad027#supplementary-data
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model (AUROC: 0.939; 95% CI: 0.929–0.948; Figure 2). With a cut-off 
value of 0.5, the accuracies, sensitivities, and specificities of the models 
for the test dataset are shown in Supplementary material online, 
Table S3.

Adapting SHAP in each model
By adapting SHAP to the four trained models, we extracted the ECG 
parameters that contributed significantly to each model’s decision 
across the test dataset (see Supplementary material online, Figures 

Figure 3 Visualization of the two-dimensional SHAP values of the test dataset. (A) Colour mapping of the two-dimensional SHAP values of the test 
dataset according to the LVEF values of each data item. (B) Colour mapping of the two-dimensional SHAP values of the test dataset according to the 
model’s predictive values for each data item. UMAP, uniform manifold approximation and projection.

http://academic.oup.com/ehjdh/article-lookup/doi/10.1093/ehjdh/ztad027#supplementary-data
http://academic.oup.com/ehjdh/article-lookup/doi/10.1093/ehjdh/ztad027#supplementary-data
http://academic.oup.com/ehjdh/article-lookup/doi/10.1093/ehjdh/ztad027#supplementary-data
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Figure 4 Clustering of two-dimensional SHAP values for ECGs in 
the test dataset by which the model predicted reduced LVEF. The 
192 ECGs by which the model predicted reduced LVEF, excluding 
those with a paced rhythm, were clustered by adapting a variational 
Bayesian Gaussian mixture model to the two-dimensional SHAP va
lues. The clusters are classified from 1 to 6, and the data points belong
ing to each cluster are coloured red, green, blue, orange, pink, or 
brown. UMAP, uniform manifold approximation and projection.
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Table 2 Decision factors and decision criteria in each cluster

Decision factors Decision criteria

Cluster 1 T-wave amp. in I/aVR/V5–6 leads 

R-wave amp. in II/V4–5 leads 
Age S-wave dur. in V3 lead

Negative T-wave inversion in I/V5–6 leads 

Low voltage in II/V4–5 leads 
S-wave prolongation in V3 lead

Cluster 2 T-wave amp. in I/II/aVR/V5–6 leads 

VAT in V5–6 leads 
R-wave amp. in V4 lead QTc in V1–3 leads 

S-wave dur. in V3 lead

Negative T-wave inversion in I/II/V5–6 leads 

VAT prolongation in V5–6 leads 
Low voltage in V4 lead QTc prolongation in V1–3 leads 

S-wave prolongation in V3 lead

Cluster 3 R wave amp. in I/II/V4–6 leads 
Q-wave dur. in V4–6 leads 

R-wave dur. in V5 lead 

Age 
VAT in V4 lead

Low voltage in I/II/V4–6 leads 
Q-wave in V4–6 leads

Cluster 4 T wave amp. in I/aVR/V5–6 leads 

VAT in I/V6 leads QTc in III/aVL/V1–5 leads 
S-wave dur. in V2–3 leads 

Age

Negative T-wave inversion in I/V5–6 leads 

VAT prolongation in I/V6 leads 
QTc prolongation in III/aVL/V1–5 leads 

S wave prolongation in V2–3 leads

Cluster 5 T wave amp. in I/II/aVR/V5–6 leads 
R wave amp. in II/V4 leads 

Q wave dur. in V3–4 leads VAT in V4 lead 

R wave dur. in V3–4 leads 
Q wave amp. in V3 lead

Negative T inversion in I/II/V5–6 leads 
Low voltage in II/V4 leads 

Q wave in V3–4 leads

Decision factors are defined as the ECG parameters that influenced the model’s decision that the ECG was a patient of reduced left ventricular ejection fraction. Decision criteria are ECG 
findings that contributed to the model’s decision, which are interpreted from the relationship between the decision factors and SHAP values. 
ECG, electrocardiogram; amp., amplitude; dur., duration; VAT, ventricular activation time; QTc, corrected QT interval.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Table 3 Combinations of the six ECG categorizes in 
each cluster

ECG findings

Cluster 1 Negative T-wave inversion in I/V5–6 leads 
Low voltage in I/II/V4–6 leads 

S wave prolongation in V2–3 leads

Cluster 2 Negative T-wave inversion in I/V5–6 leads 
VAT prolongation in I/V5–6 leads 

S wave prolongation in V2–3 leads 

QTc prolongation
Cluster 3 Low voltage in I/II/V4–6 leads 

Q wave in V3–6 leads

Cluster 4 Negative T-wave inversion in I/V5–6 leads 
VAT prolongation in I/V5–6 leads 

S wave prolongation in V2–3 leads 

QTc prolongation
Cluster 5 Negative T-wave inversion in I/V5–6 leads 

Low voltage in I/II/V4–6 leads 

Q wave in V3–6 leads

The decision criteria extracted for each cluster could be decomposed into six ECG 
findings. Data are presented for the combinations of the six ECG findings in each 
cluster. 
VAT, ventricular activation time; QTc, corrected QT interval.
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Figure 5 The six categories of ECG findings on a visualization of the two-dimensional SHAP values for ECGs to predict reduced LVEF in the test 
dataset. (A) The six categories of ECG findings on a visualization of the clustered two-dimensional SHAP values for ECGs to predict reduced LVEF. (B) 
The six categories of ECG findings on colour mapped two-dimensional SHAP values by the model’s predictive value in ECGs to predict reduced LVEF. 
The purple circle represents the category of VAT prolongation in I/V5–6 leads and S-wave prolongation in V2–3 leads. The brown circle represents the 
category of low voltage in I/II/V4–6 leads. The orange circle represents the category of QTc prolongation. The blue circle represents the category of 
negative T-wave inversion in I/V5–6 leads. The green circle represents the category of Q wave in V3–6 leads. UMAP, uniform manifold approximation 
and projection; VAT, ventricular activation time; QTc, corrected QT interval.
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S1–S4). Although there were differences in the extracted ECG para
meters in each model, most were components of QRS duration, R 
amplitude, and QT interval.

Visualization and clustering of the SHAP 
values for the test dataset
Two-dimensional visualization of the calculated SHAP values for the 
test dataset using the PCA–UMAP method is shown in Figure 3. This 
visualization suggests that the ECGs for which the model gave a high 
predictive value could be divided into multiple clusters. In other words, 
the model had multiple criteria for determining patients of reduced 
LVEF. Then, of the 429 ECGs in the test dataset in which the model pre
dicted reduced LVEF, 192 (excluding 237 ECGs with a paced rhythm) 
were classified into one of six clusters using the VBGMM for the two- 
dimensional SHAP values (Figure 4). The characteristics of the ECG data 
included in each cluster are shown in Supplementary material online, 
Table S4.

Interpretation of the model’s decision 
criteria
As there were nine ECGs included in Cluster 6, which we considered to 
be an insufficient number for explanation of the model’s decision cri
teria, we investigated the model’s decision criteria for Clusters 1–5. 
The decision factors for each cluster are shown in Table 2 and 
Supplementary material online, Figures S5–S9, and the model’s decision 
criteria, which were interpreted from the relationship between the ex
tracted decision factors and SHAP values (see Supplementary material 
online, Figures S10–S14), are shown in Table 2. Although the decision 
criteria in each cluster were different, they were generally composed 
of a combination of six ECG findings: negative T-wave inversion in I/ 
V5–6 leads, low voltage in I/II/V4–6 leads, Q wave in V3–6 leads, ven
tricular activation time (VAT) prolongation in I/V5–6 leads, S-wave pro
longation in V2–3 leads, and corrected QT interval (QTc) prolongation 
(Table 3). Findings of low voltage in I/II/V4–6 leads, negative T-wave in
version in I/V5–6 leads, and S-wave prolongation in V2–3 leads over
lapped between several clusters, particularly Clusters 1, 3, and 4, 
which showed high model predictive values (see Supplementary 
material online, Table S4). The categories of these ECG findings are 
displayed on the visualization of the two-dimensional SHAP values 
shown in Figure 5. As VAT prolongation in I/V5–6 leads and S-wave 
prolongation in V2–3 leads were related to intraventricular 

conduction delay, these parameters were considered to be within 
the same category. We suggest that a category related to intraventri
cular conduction delay and a category showing low voltage in a broad 
range of leads may be strongly associated with a high model predictive 
value (Figure 5B).

Assessment of the validity of the 
interpretable model’s decision criteria
The cardiologists’ diagnostic performance values in the ECG interpret
ation before and after viewing the educational video are shown in 
Table 4. Before viewing the video, the mean accuracy, sensitivity, and 
specificity were 62.9% ± 3.9%, 37.4% ± 9.3%, and 88.3 ± 7.1%, respect
ively. After viewing the video, the mean accuracy, sensitivity, and 
specificity were 73.9% ± 2.4%, 71.1% ± 8.1%, and 76.6% ± 8.8%, re
spectively, with significant improvements in accuracy and sensitivity 
(Table 4; both P = 0.02).

External validation of the model’s decision 
criteria
The AUROC value of the random forest model for the external test 
dataset is shown in Supplementary material online, Figure S15
(AUROC: 0.908; 95% CI: 0.904–0.912). Two-dimensional visualization 
of the calculated SHAP values for the external test dataset using the 
PCA–UMAP method is shown in Supplementary material online, 
Figures S16 and S17. This visualization suggests that the distribution 
of the model’s decision criteria was similar in the test dataset and the 
external test dataset. Then, of the 1876 ECGs in the test dataset in 
which the model predicted reduced LVEF, 1244 ECGs (excluding 632 
ECGs with a paced rhythm) were classified into one of seven clusters 
using the VBGMM for the two-dimensional SHAP values (see 
Supplementary material online, Figure S18). The characteristics of the 
ECG data in each cluster are shown in Supplementary material 
online, Table S5. The decision factors for each cluster are shown in 
Supplementary material online, Table S6 and Figures S19–S25. The mod
el’s decision criteria, which were interpreted from the relationship be
tween the extracted decision factors and the SHAP values (see 
Supplementary material online, Figures S26–S32), are shown in 
Supplementary material online, Table S6. As in the test dataset, the 
model’s decision criteria extracted in the external test dataset could 
be expressed as a combination of the six ECG categories 
(see Supplementary material online, Table S7 and Figure S33).
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Table 4 Cardiologists’ diagnostic performance in the ECG interpretation test

Before watching educational video After watching educational video

Accuracy Sensitivity Specificity Accuracy Sensitivity Specificity

Cardiologist 1 62.0 52.0 72.0 72.0 66.0 78.0

Cardiologist 2 57.0 26.0 88.0 76.0 70.0 82.0
Cardiologist 3 64.0 36.0 92.0 71.0 84.0 58.0

Cardiologist 4 63.0 36.0 90.0 74.0 60.0 88.0

Cardiologist 5 61.0 34.0 88.0 71.0 64.0 78.0
Cardiologist 6 71.0 50.0 92.0 77.0 74.0 80.0

Cardiologist 7 62.0 28.0 96.0 76.0 80.0 72.0

Mean (SD) 62.9 (3.9)* 37.4 (9.3)** 88.3 (7.1) 73.9 (2.4)* 71.1 (8.1)** 76.6 (8.8)

The cardiologists’ diagnostic performances before or after watching the educational video are shown as percentages. The means and standard deviations (SD) are also shown. 
*Interaction between the accuracy of the cardiologists’ interpretations before and after watching the educational video; P = 0.02. 
**Interaction between the sensitivity of the cardiologists’ interpretations before and after watching the educational video; P = 0.02.

http://academic.oup.com/ehjdh/article-lookup/doi/10.1093/ehjdh/ztad027#supplementary-data
http://academic.oup.com/ehjdh/article-lookup/doi/10.1093/ehjdh/ztad027#supplementary-data
http://academic.oup.com/ehjdh/article-lookup/doi/10.1093/ehjdh/ztad027#supplementary-data
http://academic.oup.com/ehjdh/article-lookup/doi/10.1093/ehjdh/ztad027#supplementary-data
http://academic.oup.com/ehjdh/article-lookup/doi/10.1093/ehjdh/ztad027#supplementary-data
http://academic.oup.com/ehjdh/article-lookup/doi/10.1093/ehjdh/ztad027#supplementary-data
http://academic.oup.com/ehjdh/article-lookup/doi/10.1093/ehjdh/ztad027#supplementary-data
http://academic.oup.com/ehjdh/article-lookup/doi/10.1093/ehjdh/ztad027#supplementary-data
http://academic.oup.com/ehjdh/article-lookup/doi/10.1093/ehjdh/ztad027#supplementary-data
http://academic.oup.com/ehjdh/article-lookup/doi/10.1093/ehjdh/ztad027#supplementary-data
http://academic.oup.com/ehjdh/article-lookup/doi/10.1093/ehjdh/ztad027#supplementary-data
http://academic.oup.com/ehjdh/article-lookup/doi/10.1093/ehjdh/ztad027#supplementary-data
http://academic.oup.com/ehjdh/article-lookup/doi/10.1093/ehjdh/ztad027#supplementary-data
http://academic.oup.com/ehjdh/article-lookup/doi/10.1093/ehjdh/ztad027#supplementary-data
http://academic.oup.com/ehjdh/article-lookup/doi/10.1093/ehjdh/ztad027#supplementary-data
http://academic.oup.com/ehjdh/article-lookup/doi/10.1093/ehjdh/ztad027#supplementary-data
http://academic.oup.com/ehjdh/article-lookup/doi/10.1093/ehjdh/ztad027#supplementary-data
http://academic.oup.com/ehjdh/article-lookup/doi/10.1093/ehjdh/ztad027#supplementary-data
http://academic.oup.com/ehjdh/article-lookup/doi/10.1093/ehjdh/ztad027#supplementary-data
http://academic.oup.com/ehjdh/article-lookup/doi/10.1093/ehjdh/ztad027#supplementary-data


262                                                                                                                                                                                       S. Katsushika et al.

Figure 6 An example of how our model could be used in clinical practice, focusing on interpretability. (A) This figure shows where the two- 
dimensional SHAP values of a newly acquired ECG are projected onto the colour-mapping of the two-dimensional SHAP values for the test dataset 
according to the LVEF values of each data item. For example, in this figure, the newly acquired ECG is projected onto the location indicated by a star. We 
can approximately identify the LVEF values of patients with similar decision criteria to the newly acquired ECG. (B) This figure shows how to use the 
clustered two-dimensional SHAP values and the SHAP values of the newly acquired ECG when the model predicts that the newly acquired ECG is a 
reduced LVEF patient. For example, if the newly acquired ECG is projected to a star position in the clustered two-dimensional SHAP values, it can be 
recognized to which cluster it is likely to belong. From the SHAP values of the newly acquired ECG, decision factors indicating the ECG parameters that 
the model considers important for this ECG can be extracted. By referring to the interpreted decision criteria in the cluster and the extracted decision 
factors of the newly acquired ECG, we may be able to understand the ECG findings that seem to indicate reduced LVEF, as expressed in the newly 
acquired ECG. UMAP, uniform manifold approximation and projection; SHAP, Shapley additive explanations.
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Discussion
In this study, we used SHAP, dimensionality reduction, and cluster ana
lysis to explain the decision criteria used by an AI model that accurately 
classifies patients with reduced LVEF from their ECG data. We also cre
ated an educational video on the model’s decision criteria and evaluated 
their validity with an ECG interpretation test. Furthermore, we also va
lidated the generalizability of the model’s decision criteria using external 
validation data. As a result, we were able to develop an AI model that 
might satisfy the needs of the decision-interpretability required in clin
ical applications.

In a previous study comparing ECG findings between normal sub
jects and patients with heart failure,27 QRS prolongation, VAT pro
longation in V5–6 leads, axis deviation, QT prolongation, left 
ventricular hypertrophy, ST-T abnormalities, and left bundle branch 
block were identified as ECG findings associated with heart failure 
with reduced LVEF (HFrEF), whereas increased resting heart rate, 
P-wave axis abnormalities and QRS-T axis abnormalities were identi
fied as ECG findings associated with heart failure with preserved 
LVEF (HFpEF). In addition, a comparison of ECG findings between 
HFrEF and HFpEF showed that VAT prolongation in V5–6 leads, QT 
prolongation, and ST-T abnormalities were extracted as ECG findings 
associated with HFrEF. In the present study, the model’s decision cri
teria included VAT prolongation in I/V5–6 leads, negative T-wave inver
sion in I/V5–6 leads, and QTc prolongation, which overlap with the 
findings of the previous study.27 In this regard, the interpretable model’s 
decision criteria seem reasonable as ECG findings in patients with re
duced LVEF.

An example of how the interpretability of the AI model could be pre
sented to physicians in clinical practice is shown in Figure 6. By reflecting 
the SHAP values of the ECGs in the existing two-dimensional space, we 
can approximately identify the LVEF values of patients with similar de
cision criteria (Figure 6A). As a result, we could determine the confi
dence level for the predictive results of the AI model. When the AI 
model predicts reduced LVEF, the clustered two-dimensional space 
can help us recognize which cluster the ECG belongs to. By referring 
to the decision criteria indicated in the cluster and the SHAP value of 
the ECG, the physician can compare the AI model’s decision criteria 
with the actual ECG findings, which should assist in decision making 
(Figure 6B).

Adapting XAI to AI models not only contributes to improved in
terpretability after implementation, but it may also lead to the discov
ery of new findings.11,28 The finding of S-wave prolongation in V2–3 
leads, as identified in this study, was not included in the analysis in a 
previous study on ECG findings in patients with HFrEF.27,29 In the 
present study, we performed a comprehensive analysis using many 
ECG parameters previously considered unimportant. As a result, 
we were able to show that S-wave prolongation in V2–3 leads may 
be an important new ECG criterion in patients of reduced LVEF.

Furthermore, we showed that educating cardiologists on the deci
sion criteria of the AI model contributed to improvement in their 
ECG reading accuracy. Although there are reports of improved diag
nostic ability by ‘referencing’ AI,12,30 there are no reports on improved 
diagnostic ability by ‘learning’ from AI. Even if AI becomes more widely 
used in medical practice in the future, it is not always possible to use the 
AI models that satisfy physicians’ needs. In such a case, a physician’s 
medical skills are obviously important. Hence, physicians must always 
strive to improve their medical practice capabilities. This study has pre
sented the possibility of a new AI–physician relationship, in which the 
physician does not just ‘use’ a qualified AI model, but also ‘learns’ 
from it.

This study has several limitations. First, the ECG–echocardiography 
data pairs were not acquired simultaneously, with a slight temporal de
lay between the components of the paired data. However, this 

temporal delay was small, with both assessments being obtained within 
a few days for most pairs. Second, the number of patients available for 
interpretation of the model’s decision criteria was limited. As the ECG 
patterns of patients with reduced LVEF may not have been analysed 
comprehensively, further analysis using more data is needed. Finally, 
the explanation evaluated in this study has not been applied to a 
deep learning model. Many deep learning models are now being applied 
in clinical research and implemented in medical practice. Technological 
improvements in deep learning models and their interpretability are 
desired.

Conclusion
In this study, we succeeded in using XAI to objectively interpret the de
cision criteria of an AI model applied to ECG analysis and evaluated its 
validity. We were able to develop a model that could satisfy the inter
pretability required for clinical application.
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