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Aims The development of acute heart failure (AHF) is a critical decision point in the natural history of the disease and carries a 
dismal prognosis. The lack of appropriate risk-stratification tools at hospital discharge of AHF patients significantly limits 
clinical ability to precisely tailor patient-specific therapeutic regimen at this pivotal juncture. Machine learning-based strat-
egies may improve risk stratification by incorporating analysis of high-dimensional patient data with multiple covariates 
and novel prediction methodologies. In the current study, we aimed at evaluating the drivers for success in prediction 
models and establishing an institute-tailored artificial Intelligence-based prediction model for real-time decision support.

Methods 
and results

We used a cohort of all 10 868 patients AHF patients admitted to a tertiary hospital during a 12 years period. A total of 
372 covariates were collected from admission to the end of the hospitalization. We assessed model performance across 
two axes: (i) type of prediction method and (ii) type and number of covariates. The primary outcome was 1-year survival 
from hospital discharge. For the model-type axis, we experimented with seven different methods: logistic regression (LR) 
with either L1 or L2 regularization, random forest (RF), Cox proportional hazards model (Cox), extreme gradient boost-
ing (XGBoost), a deep neural-net (NeuralNet) and an ensemble classifier of all the above methods. We were able to 
achieve an area under receiver operator curve (AUROC) prediction accuracy of more than 80% with most prediction 
models including L1/L2-LR (80.4%/80.3%), Cox (80.2%), XGBoost (80.5%), NeuralNet (80.4%). RF was inferior to other 
methods (78.8%), and the ensemble model was slightly superior (81.2%). The number of covariates was a significant 
modifier (P < 0.001) of prediction success, the use of multiplex-covariates preformed significantly better (AUROC 
80.4% for L1-LR) compared with a set of known clinical covariates (AUROC 77.8%). Demographics followed by lab-tests 
and administrative data resulted in the largest gain in model performance.

Conclusions The choice of the predictive modelling method is secondary to the multiplicity and type of covariates for predicting AHF 
prognosis. The application of a structured data pre-processing combined with the use of multiple-covariates results in an 
accurate, institute-tailored risk prediction in AHF
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Graphical Abstract

Introduction
Despite the immense progress in cardiology in the last decades, heart 
failure is a growing pandemic worldwide. It is a leading cause of mor-
bidity and mortality and a colossal economic burden on healthcare 
systems.1–3 Acute heart failure (AHF) is the most common cause 
for hospitalization for adults (>65 years) in western societies.4 The 
prognosis of patients admitted with AHF is dismal, with 30% re-
admission rate and 5 to 15% mortality rate at 60 to 90 days post- 
discharge.5,6 Nevertheless, AHF is a heterogenous syndrome with 
a variable prognosis and identifying patients for early events may 
have a broad impact on health care delivery.7 While in recent years, 
the armamentarium for mitigating high risk heart failure has been ex-
panded, the lack of appropriate risk-stratification tools for AHF pa-
tients limits physician ability for tailoring the appropriate 
therapeutic and follow-up regimen. This limitation may contribute 
to the unacceptably high re-hospitalization rate and short-term mor-
tality associated with AHF.6,8

Advances in statistical machine learning (ML) method have led to 
an explosion of personalized risk scores based on a large number 
of patient-specific covariates. Many of these models were devel-
oped using electronic medical records (EMRs) of large patient po-
pulations. When assessing the value of these risk scores, several 
factors are often conflated: the use of large high-dimensional 

patient data derived from EMR, and the use of novel statistical 
methods for prediction. Such methods are often identified with 
the field of ML and include random-forest,9 gradient-boosted de-
cision trees,10 sparse-regression methods such as least absolute 
shrinkage and selection operator11 and deep-neural nets.12

Prediction based on hospitalization data is of major importance 
for supporting decisions related to optimizing patient discharge 
and examining the appropriate therapeutic strategy (e.g. eligibility 
for advanced heart failure device treatment and heart transplant-
ation) and the surveillance schedule. In the current study, we 
used a single-centre cohort of AHF patients aiming at developing 
a clinically useful model for the prediction of mortality and HF re- 
hospitalization after hospital discharge. Toward this aim we eval-
uated the relative contribution of two axes of prediction drivers: 
(i) the type and number of covariates; (ii) The type of the predic-
tion model including classical statistical models and ML-based 
methods.

Methods
Study population
We used a database of all patients admitted to the Rambam Medical 
Center, Haifa, Israel, with the primary diagnosis of AHF between 
September 2004 and December 2015. Eligible patients were those 
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hospitalized with new-onset or worsening of preexisting heart failure as 
the primary cause of admission,13–15 using the European Society of 
Cardiology criteria.16 The study was performed in accordance with 
the Declaration of Helsinki and approved by the institutional review 
committee on human research. Like most of the observational data 
in the healthcare domain, the patients’ data that used in our study 
were assembled from EMR. The basic characteristics of our cohort 
are detailed in Table 1.

Study outcomes
Study outcomes were predefined prior to data analysis. The primary 
outcome was 1 year mortality from hospital discharge. The second-
ary outcome was a composite of one year mortality or rehospitaliza-
tion for AHF at 1 year. Analysis for the primary outcome is included 
in the main manuscript. Analysis for the secondary outcome is in-
cluded in the Supplementary material online, supplementary data.

Data collection and preparation
Using observational data (rather than prospective clinical research) is 
cheap, relatively easy to obtain and often provides a good representa-
tion of the real-world population of interest. However, it poses two 
major challenges that need to be addressed prior to the prediction ef-
forts: wrong (noisy) data, and missing data. Below we describe how we 
handle these challenges. Overall, we used 372 covariates collected 
from admission to the end of the hospitalization including demograph-
ics, administrative data, lab tests, medical therapies, and echocardio-
graphic data. A full list is available in the Supplementary material 
online, Table S8. A schematic representation of our data preparation 
pipeline is given in Figure 1.

Data imputation and optimization
We searched for errors in the data by analyzing the distribution of 
each covariate in order to map outliers (e.g. mixture of [cm] and 
[m] in height data, swap between systolic blood pressure and diastol-
ic blood pressure values), identify ill-calculated features (e.g. body 
mass index), and spot data points that are out of domain (e.g. text 
values in lab result feature). Then, each outlier was manually checked 
and fixed by the appropriate action, to ensure the data integrity. 
Covariates that were found to be too noisy or irrelevant were 
removed.

We addressed missingness by a two-stage process: indication and im-
putation. For each covariate with at least one missing value, we created a 
dummy variable to indicate which data-point was missing in the original 
data. Then, we imputed missing data17 using median imputation (see 
Supplementary material online, Table S2). We also experimented with 
multivariate imputation by chained equations (MICEs) imputation,18–20

and found that the former achieved slightly better results (see 
Supplementary material online, Table S1). Therefore, we chose to use 
median imputation for all our analyses. Finally, the data were normalized 
using z-scoring: x̂ = x−mean(X)

std(X) . Some covariates (e.g. lab dates) were rede-
fined to represent the number of days from admission, to ensure com-
mon domain.

Statistical analysis
We define the outcome y as a binary indicator of whether the patient 
died during a span of 1-year from hospital discharge. Given a set of pa-
tient covariates measured before and during hospitalization, denoted x, 
we estimated p(y|x), the probability of the outcome for a patient with 
the given set of covariates. The evaluation (test) set is temporally distinct 
from the set used to fit the model: 2004–2013 as train (model fitting) set, 
2014–2015 as evaluation set.

Our aim was to assess model performance across two axes—(i) 
type of prediction method and (ii) type and number of covariates. 
For the model-type axis, we experimented with seven different meth-
ods for estimating p(y|x): logistic regression (LR) with either L1 or L2 

regularization, random forest (RF), Cox proportional hazards model 
(Cox), extreme gradient boosting (XgBoost),10 a deep neural-net 
(NeuralNet), and an ensemble classifier (average of the LR- L1, Cox 
proportional hazards model, XgBoost, and NeuralNet predictions). 
The LR, RF, and majority vote classifiers were implemented using the 
Sci-kit learn python package.21 The Cox model required regularization 
because of the large number of covariates. Since Cox model predicts 
time-to-event, and the other methods simply predict a probability of 
the event happening, we needed to slightly modify the way we use 
the Cox predictor for a direct comparison with the other models. 
See details below.

Transforming time-to-event prediction to 
binary prediction
We consider the difference between time-to-event analysis as per-
formed by Cox regression and the rest of the models we use. 
Most predictors provide a probability that a sample is in a particular 
class (e.g. in the binary case, probability for mortality for a patient in 
the 1− year span from discharge), survival analysis does this and 
more. A time-to-event model provides the cumulative probability 
of a sample to have an event before (or at) a time t, where in 
our case t is the time from the baseline, to the event, measured in 
days.

Therefore, for an apples-to-apples comparison, we use the cumulative 
probability F(t) = P(T ≤ t) = 1 − S(t), where S(t) is the survival function, as 
given by the Cox analysis, and t is set to 365 days. This is exactly the prob-
ability for an event occurring during one year from the time of hospital 
discharge.

Neural network
We designed the neural network using a fully connected architecture. 
Each layer built from linear weights, a non-linear activation function 
(ReLU), and applying dropout during model fitting.22 We also added 
an L1 regularization term on the weights of the first layer.

Covariate type and priority
In order to assess the relative contribution of choice of covariates, we 
conducted two analyses: using the type of the features and the clinical- 
priority of the features. From now on, we will refer to them as ‘Type’ 
models and ‘Priority’ models, respectively.

For the ‘Type’ analysis, we partitioned the covariates into seven types: 
Laboratory results (‘lab tests’), demographic (‘personal’), data related to 
administrative processes in the hospital such as relative time from admis-
sion to first blood test (‘admin’), patient comorbidities (‘disease’), drug re-
lated data, both prior to hospitalization, during hospitalization, and at 
discharge (‘drug’), physical measurements such as patient’s blood pres-
sure (‘physical’), and environmental related features such as the season 
of admission (‘environment’). We ran each prediction method on every 
combination of the seven feature types outlined above, for a total of 
27 − 1 =  127 different sets of covariates per prediction method.

For the ‘Priority’ analysis, we used physicians’ expertise (heart failure 
cardiologists) to select for the most validated and established covariates 
both in terms of prediction ability and clinical prior knowledge.23–26 Each 
covariate received a clinical-relevance score from 0 to 4, where 0 is ‘not 
relevant’ and 4 is ‘highly relevant’. Examples for priority 4 covariates are 
the last read of patient diastolic and systolic blood pressure, and exam-
ples for priority 0 covariates are whether the patient weight was 
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Table 1 Backgroud clinical characteristics of patients at development and validation cohorts

Variable Value Development Validation Missing

No. of patients 8520 2348

Demographics

Age, (years) 74.4 ± 12.1 74.3 ± 12.4 0
Gender (female) 49.4% (4209) 48.1% (1129)

BMI, Kg/m^2 29.9 ± 6.4 29.8 ± 6.4 8832

Comorbidities
Chronic renal failure (n) 33.4% (2843) 28.2% (662) 0

Valvular heart disease (n) 13.8% (1176) 12.9% (303) 0

AKI, % (n) 18.39% (1567) 21.97% (516)
Diabetes

COPD 52.6% (4483) 54.6% (1282) 0

Ischaemic heart disease 13.5% (1148) 15.1% (354) 0
Atrial fibrillation 22.3% (1899) 18.9% (443) 0

41.7% (3556) 41.8% (981) 0

Smoking not smoking 74.2% (6323) 70.4% (1654)
past smoker 14.8% (1257) 14.5% (341)

active smoker 11.0% (940) 15.0% (353)

Clinical parameters
Diastolic blood pressure, mmHg Mean 68.6 ± 9.6 69.1 ± 9.6 2281

Systolic blood pressure, mmHg Mean 131.2 ± 22.0 131.3 ± 19.5 2281

MAP, mmHg Mean 89.5 ± 11.6 89.9 ± 11.3 2281
body temperature, celsius First 37.1 ± 10.3 36.7 ± 0.4 2309

Estimated LVEF Mean 44.3 ± 47.3 44.2 ± 19.5 6000

Lab tests
Albumin, g/dL 3.3 ± 0.5 3.2 ± 0.5 3672

BNP, ng/mL First 1313.8 ± 1124.3 1112.3 ± 1011.4 5941

Last 1306.1 ± 1118.6 1112.3 ± 1012.6 5941
BUN, mg/dL Mean 36.0 ± 20.2 36.5 ± 21.0 2472

Creatinine, mg/dL Mean 1.7 ± 1.1 1.6 ± 1.1 2473

RDW (%) First 15.7 ± 1.9 16.1 ± 2.3 3496
Sodium, mmol/L Mean 138.3 ± 3.5 138.1 ± 3.7 2469

Haemoglobin, g/dL First 11.6 ± 1.9 11.5 ± 2.0 2504

Last 11.5 ± 1.8 11.4 ± 1.9 2498
Troponin, ng/mL First 0.2 (1.5) 0.2 (1.1) 4088

HCT (%) First 35.3 (5.7) 35.1 (5.9) 2502

Medical therapy
β-blockers (n) Background 64.8% (5518) 78.7% (1849) 0

In hospital 61.7% (5255) 88.4% (2075) 0

Discharge 65.2% (5554) 83.3% (1955) 0
ACE inhibitors (n) Background 60% (5114) 66.3% (1557) 0

Angiotensin receptor blocker, % (n) In hospital 41.2% (3509) 49.6% (1165) 0

In hospital 15.5% (1322) 22.8% (536) 0
In hospital 17.9% (1522) 27.3% (642) 0

MRA, % (n)

Furosemide, % (n) Background 59.19% (5043) 68.44% (1607) 0
Target

1-year mortality, % (n) 30% (2552) 31.3% (736) 0

AKI, acute kidney injury; BMI, body mass index; BNP, brain natriuretic peptide; HCT-Hematocrit, MAP, mean arterial pressure, MRA, mineralocorticoid receptor antagonist; RDW, 
red cell distribution width.

178                                                                                                                                                                                      R. Gutman et al.



recorded in admission. The full list of variables their subtype and the clin-
ical priority is detailed in the Supplementary material online, Table S8. We 
use this clinical prior knowledge input to train our predictors as follows: 
The first model used only the most important clinical features (4), the 
next one used these together with the second most important ones, 
so we denote it 3+, and so on, where the last model used all the features, 
which we denote 0 + . Overall, for the Priority analysis, we evaluated five 
sets of covariates per prediction method.

Thus, in total we considered 127 + 5 = 132 sets of covariates, and se-
ven prediction methods, giving a total of 132 × 7–7 = 917 models (we 
subtract 7 because the models fit on 0 + priority are identical to those 
fit using all Types of features). Each model’s hyper-parameters (e.g. level 
of regularization) was optimized for Area under receiver operator curve 
(AUROC) using 10-fold stratified cross-validation on the training set. The 
AUROC of different models was compared using the DeLong method 
for comparing areas under the ROC curve.27,28 We emphasize that 
our goal is not to find the single most accurate model out of the 917 
—rather we wish to understand which factors account for better or 
worse model accuracy across the settings.

In addition to AUROC, we also give a decision curve analysis (net- 
benefit)29 and report the following metrics, as suggest by Shameer 
et al.30: sensitivity, specificity, negative predictive value (NPV), positive 
predictive value (PPV), accuracy, and Brier Score. See Supplementary 
material online, Table S9 for the full details.

Code availability
Full code is available in https://github.com/RomGutman/ADHF.

Results
A cohort of patients with a primary diagnosis of AHF admitted to a 
tertiary hospital during a period of 12 years was used in order to as-
sess study outcomes. The cohort included 10 868 cases from which a 
total of 372 covariates were collected from admission to discharge. 
The training cohort consisted of 8520 cases and the validation cohort 
included 2348 cases.

The performance of the seven prediction models was evaluated 
across seven predetermined sets of covariates (demographic, 

physical examination, patient’s comorbidities, laboratory tests, drug 
therapy, environmental, and administrative) classified according to 
their clinical level of priority (indicated as low priority-0 to high 
priority-4). Heart failure clinicians identified 52 covariates as high pri-
ority level. The results on prediction model performances for pre-
dicting the primary outcome (1-year mortality) are presented over 
a total of 917 settings assessed on a temporally held-out dataset.

The models applied predicted one year mortality with a relative-
ly high level of accuracy. Overall, the performance of the different 
methods was found to be comparable (Figure 2), with the excep-
tion of the RF model that significantly underperformed all other 
models (Table 2). Specifically, L1- and L2-regularized LR (80.4% 
and 80.3% AUROC, respectively), XgBoost (80.5%) and 
NeuralNet (80.4%) predicted the occurrence of one year mortality 
with essentially the same AUROC when using all covariates, 
whereas the RF (78.8%) performed slightly worse than other mod-
els and the ensemble model (81.2%) slightly better. The probable 
reason for RF to preform less than other models here may be re-
lated to overfitting of the training data. Importantly, Cox based 
model, which is not based on a ML paradigm, preformed similarly 
(80.2%).

To further characterize the difference in the predictive capacity of 
the models a comparative analysis between pairs of models was con-
ducted using the DeLong method for comparing areas under the 
ROC (AUROC) curve27,28 (Table 2). A P-value for a one-sided 
test, i.e. whether model A has higher AUROC than model B, of all 
the pairs of methods when using the full set of covariates. The ana-
lysis demonstrate similar performance between the models despite 
the fact that the models we compare make vastly different assump-
tions about the outcome (linear vs. non-linear, sparse or not), and 
have a widely varying number of parameters (neural networks 
have 1.4 million parameters vs. 372 parameters for the LR models). 
To evaluate the contribution of the number of covariates and their 
clinical importance we evaluated the differential performance of 
each model according to the assigned priority of the clinical variables 
(Figure 2). A comparative analysis demonstrated that inclusion of low 
priority variables improved the predictive performance of the 

Figure 1 The suggested pipeline of the predicting process.
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models even when comparing analyses based on priority 0 + com-
pared to priority 1+ (Table 3).

Calibration plots found a good calibration for most models with 
slight underestimation of the predicted risk for low risk patients using 
RF (Figure 3). To assess the clinical implication of the model in pre-
dicting mortality outcome for AHF patients, we carried out a net- 
benefit analysis (Figure 4).31 A reasonable threshold for 1 year mor-
tality risk in heart failure patients that entails consideration of ad-
vanced therapies (e.g. Heart transplantation or mechanical 
circulatory support) is 20%.32–34 All models give a significant net 
benefit and perform similarly across a wide range of decision 

thresholds. We further see that most models are indistinguishable 
in their net benefit, with RF again the only model with diminished 
performance compared to the other models. In addition, the sensi-
tivity, specificity, NPV, PPV, and Brier score, for all models using 
the full set of covariates is detailed in Table 4. There are differences 
between the models in their sensitivity and PPV, but these are mostly 
the result of slightly different decision thresholds of the models, 
which disappear when using analyses that consider all possible 
thresholds such as AUROC and net benefit.

To estimate the relative cumulative contribution of different types 
of covariate, we analyzed their relative contribution to model 

Figure 2 Prediction of the models based on the set of clinical covariates utilized. Area under receiver operator curve of the models used splitted 
by clinical priority of the variables. The confidence interval in this graph are the prediction interval for the area under receiver operator curve pre-
diction. LR, logistic regression; NN, neuron network; RF, random forest; XgBoost, extreme gradient boosting trees; Cox, Cox regression; Majority 
Ensemble, ensemble model using LR-L1, Cox, XgBoost and NN.
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performance. For this purpose, we conducted the analysis for the L1 
LR model (Figure 5). Specifically, we ordered the types by the biggest 
gain each type gave over the previously added types, with the provi-
sion that age and sex are always included. Using only sex and age gives 
AUROC of no more than 61.6% (ranging from 56.3 to 61.6% across 
the other models). The addition of lab-test gives by far the biggest 
gain in performance, followed by adding administrative data (exam-
ples of administrative data is whether the patient had a previous 
AHF hospitalization in the previous years as indicated in the database, 
or whether a weight of the patient was recorded). We further see 
diminishing returns when adding two other types of information: 
personal (demographic data) and physical examination. On top of 
these, adding diseases (comorbidities), environmental and drug infor-
mation gives essentially only modest gain in model performance. In 
Table 5, we summarize the most statistically significant covariates 
(P < 0.05) obtained when using L1 LR as the predictive model, ap-
plied to the full set of covariates.

Discussion
The present study is aimed at understanding what drives success in 
mortality prediction based on a contemporary AHF hospitalization 
cohort utilizing a variety of ML methodologies. The study’s main find-
ing is that the choice of the predictive modelling method is secondary 
to the choice and variety of covariates: most methods, including both 
classic methods such as Cox regression and newer methods such as 
gradient boosted trees, perform similarly when given the same set of 
covariates. The study also demonstrates that adding a large number 
of covariates, some of which are deemed less clinically relevant by 
clinical experts, results in a significant gain in accuracy, largely irre-
spective of the statistical method chosen. Finally, an additional finding 
of the study is that integrating non-clinical, administrative variables to 
demographic and laboratory variables significantly improves the pre-
dictive capabilities of the model.

In the current study, building prediction models with all available 
information resulted in a reliable prediction of 1-year mortality and 
rehospitalization using data gained solely from hospital EMR. 
Specifically, standard regularized linear methods such as LR and 

Cox regression were shown to be non-inferior to ML based meth-
odologies. An important finding of the current study is that the use 
of multiple covariates is crucial for augmenting the prediction accur-
acy. On the priority front, we found that using 113 covariates (out of 
372) that were set as high priority by clinical experts were inferior to 
using a multiple-covariates strategy (including variables deemed as 
non-significant, priority 0). These results were gained on future split 
of the data, which shows that data from the past can be used for ac-
curate prediction.

Prediction of heart failure rehospitalization and mortality has been 
a long-standing challenge. Given the severe consequences associated 
with the disease many efforts were and are currently invested at im-
proving the prediction the AHF prognosis, with limited success. 
Currently, there are two main prediction tasks that have been stud-
ied. First, for AHF patients, short-term prediction of rehospitaliza-
tion, and in-hospital or 30 day mortality, mainly aiming to assess 
the quality of heart failure treatment during the hospitalization.35

Second, for ambulatory chronic heart failure patient predicting 
1-year and 3-year outcomes.23,35–39 The clinical setting chosen for 
the present study, at patient discharge from acute hospitalization, 
is critical for choosing the appropriate therapeutic strategy (e.g. ad-
vanced therapies or Uptitration of heart failure medications) and for 
tailoring the surveillance programme and the medical therapy. While 
several models have been devised for risk stratifying heart failure pa-
tients at admission to hospital or ambulatory patients24,40–42 none 
thus far have been developed for AHF patients at this critical decision 
point. The current study elucidates the relevant factors affecting AHF 
prognosis and the relative contribution of the factor-type to the risk 
stratification using an institution tailored methodology.

The main predictive variables in the study (listed in Table 5) include 
demographic, laboratory, drug therapy, and administrative factors. 
Age, albumin levels, and RDW have been described as predictive fac-
tors for mortality in general and heart failure mortality specifically.43–48

Our study is in agreement with previous studies showing that dis-
charge (or last) BNP is a stronger predictor of AHF prognosis than 
baseline BNP and provide a substantial tool for risk stratification.49

In recent years, there is growing evidence that admission hypochlorae-
mia is a marker for mortality and rehospitalization in chronic heart 
failure patients,50 and the present study reiterates this finding and 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Table 2 Difference in predictive capacity for predicting the primary outcome between pairs of methods

LR-L1 LR-L2 RF NN XGboost Cox Ensemble

LR-L1 80.4% 0.624 0.991 0.432 0.396 0.72 0.0002

LR-L2 0.376 80.3% 0.988 0.346 0.33 0.66 6.82E-05

RF 0.0085 0.012 78.8% 0.004 0.0003 0.007 9.6E-07
NeuralNet 0.568 0.654 0.996 80.4% 0.467 0.75 0.005

XgBoost 0.604 0.673 1.0 0.533 80.5% 0.75 0.006

Cox 0.28 0.34 0.993 0.249 0.253 80.2% 1.11E-05
Ensemble 1.0 1.0 1.0 0.995 0.994 1.0 81.2%

The table diagonal contains cells with the AUROC value for each prediction model (bold). The off-diagonal cells represent the P-value of a one-sided paired test, testing whether the 
ROC curve of the row model is smaller than the model in the column. Cells highlighted in red indicate that the result is significant for P < 0.05. All models were generated the full set of 
covariates (i.e. 300 + covariates). 
LR, logistic regression; NeuralNet, neural network; RF, random forest; XgBboost, extreme gradient boosting trees; Cox, Cox regression; Ensemble, ensemble model using LR-L1, Cox, 
XgBoost and NeuralNet.
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demonstrates that low plasma chloride levels at admission (more than 
low sodium levels) serve as a significant prognostic factor in AHF for 
predicting 1 year mortality. A key finding of the study is that adminis-
trative variables significantly boost the predictive performance of the 
evaluated models. Among those variables, while a history of recent 
AHF hospitalization is widely described as a prognostic factor,51,52

factors such as length of stay and missing weight measurement are 
less established as risk markers and may be used to alert clinicians 
for the associated risks, serving as proxies for underlying patient 
characteristics.

The application of ML methodologies for predicting adverse 
events and outcomes based on electronic health records (EHRs) is 
a promising approach, highly relevant to acute exacerbation of 
chronic diseases such as heart failure.42,53–55 The benefit of ML in 
predicting prognosis in the setting of heart failure is not yet estab-
lished and its added advantage over traditional models is still contro-
versial. In the study of Frizzell et al.,56 use of a number of ML 
algorithms did not improve prediction of 30-day all-cause readmis-
sions 30 days after discharge from a heart failure hospitalization com-
pared with traditional LR models. Desai et al.57 recently 
demonstrated that multiple ML methodologies have minimal benefit 
over traditional LR in the setting of chronic heart failure. However, 
the authors noted that ML approaches generally fared better when 
the models included numerous continuous variables such as labora-
tory tests.57

A recent systematic review compared the results of LR and other 
ML methods, across different risk-scores using clinical data, found no 
evidence of superior performance of ML techniques in terms of 
AUROC.58 More recent reviews have found and discussed similar 
finding regarding general benefit for using Deep-learning techni-
ques.59–61 Our findings generally agree, as we were unable to dem-
onstrate any systematic benefit of ML methods in terms of 
AUROC, calibration or net benefit. Importantly, it remains to be de-
termined whether ML can improve model calibration, which is con-
sidered as the ‘Achilles heel’ of predictive analytics, and specifically in 
heart failure (underestimating the risk for high-risk patients and over-
estimating the risk for low-risk patients).62–64

The present study adds an important observation: using a very 
large and diverse set of covariates, many more than are used in clas-
sic risk scores, carries a significant benefit in terms of model dis-
crimination regardless of the method used, without adversely 
affecting model calibration. This lesson is likely to be applicable 
not only for AHF outcome prediction but also for other chronic 
diseases undergoing acute decompensations with complex EHR 
data, such as inflammatory bowel disease and chronic obstructive 
pulmonary disease.

Unlike much of the above work, we propose not a single model 
but a framework for understanding what drives performance when 
building site-specific models. When building predictive models, 
there is usually a tradeoff between robustness and accuracy65,66

In this work, we focus on the accuracy end of this tradeoff, where 
we are willing to use many hospital-specific and population-specific 
variables in order to boost accuracy at the site, with the possible 
price of building models which will not generalize well to other sites 
or populations. Thus, the limitation of using a large number of cov-
ariates is the adaptation and stability of the prediction model when 
applied to other EHRs in alternate institutions. For example, the 
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typical time until a certain lab test is administered will very likely 
vary between hospitals. This means the models our framework 
yielded when applied to a specific population cannot and should 
not be used ‘as is’ in different environments. Rather, the structured 
framework for constructing models such as ours, each tailored to 
the patient population and practices of a specific hospital and a spe-
cific clinical scenario, should be used. Towards that end, we are 
sharing the code base used to construct and evaluate our models 
(https://github.com/RomGutman/ADHF). We also note that such 
predictors should be re-calibrated at some-future-point, as we 

cannot expect a model to be accurate for indefinitely long periods 
of time.

In conclusion, our study demonstrates that by applying ML 
strategies for optimal use of data, combined with the use of mul-
tiple covariates, we were able to reliably predict the outcome of 
a chronic disease such as heart failure based solely on hospitaliza-
tion data during acute decompensation. However, we were un-
able to demonstrate a clear superiority of ML methods over 
the traditional Cox regression model (when used with a regular-
ization factor). We believe that a similar multiple covariate 

Figure 3 Calibration plot. All models applied were reasonably calibrated (upper panel). Risk distribution of the patients evaluated using the pre-
diction models delineates that most patients had a medium risk for the unified outcome—higher than that assessed for the 1 year mortality outcome 
(lower panel). The number in parentheses after each model indicates the brier score of each model. The ‘full’ prefix for each model is to indicate that 
it uses all the 300 + covariates. LR, logistic regression; NN, neuron network; RF, random forest; XGboost, extreme gradient boosting trees; Cox, 
Cox regression; Majority Ensemble, ensemble model using LR-L1, Cox, XGboost and NN.
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Figure 4 Net benefit of the prediction models. Net benefit allows to evaluate the clinical implication of the model in predicting mortality out-
come. A threshold of 20% risk for mortality is considered significant for altering decisions regarding treatment strategies and patient’s categorization 
(Stage C vs. Stage D heart failure). All models give a significant net benefit with random forest being the least beneficial. The straight yellow line 
denotes the benefit of a model that predicts mortality for all patients. LR, logistic regression; NN, neuron network; RF, random forest; 
XGboost, extreme gradient boosting trees; Cox, Cox regression; Ensemble, ensemble model using LR-L1, Cox, xgboost and NN.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Table 4 The metrics of the prediction models using all the features (variables) for predicting the primary outcome

AUROC Sensitivity Specificity PPV NPV Accuracy Brier

Cox 80.18% 0.34 0.94 0.72 0.76 0.75 0.167
LR-L1 80.37% 0.44 0.91 0.69 0.78 0.76 0.162

LR-L2 80.29% 0.44 0.91 0.69 0.78 0.76 0.162

Ensemble 81.23% 0.42 0.92 0.71 0.78 0.76 0.161
NeuralNet 80.45% 0.45 0.90 0.68 0.78 0.76 0.165

RF 78.84% 0.51 0.86 0.63 0.79 0.75 0.177

XgBoost 80.49% 0.46 0.91 0.69 0.78 0.76 0.161

A threshold of 0.5 is used. 
AUROC, area under receiver operator curve; NPV, negative predictive value; PPV, positive predictive value.
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Figure 5 Area under receiver operator curve plot by types. The relative effect of the various variable types on the performance of the pre-
diction model is delineated. Variable types that are not shown in the graph had a minor (or negative) contribution to the model’s performance. 
Sex and age contribution are represented by the dashed vertical line. Admin, administrative variables; lab-tests, laboratory tests; physical, phys-
ical examination; personal, demographic variables; drug, drug treatment; disease, comorbidities; LR, logistic regression; NN, neuron network; 
RF, random forest; XGboost, extreme gradient boosting trees; Cox, Cox regression; Majority Ensemble, ensemble model using LR-L1, cox, 
XGboost and NN.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Table 5 Most significant variables predicting one year survival

Variable Odds ratio Std.Err Z-value P>|z| [0.025 0.975]

Age 1.52 0.03 13.23 6.13E-40 1.43 1.61

Patient readmission 1.31 0.028 9.46 2.99E-21 1.24 1.38

Albumin 0.77 0.03 −8.76 1.92E-18 0.73 0.82
RDW(%)a 1.12 0.03 6.24 4.42E-10 1.13 1.26

Length of stay 1.24 0.04 5.49 3.95E-08 1.15 1.34

Last BNP 1.14 0.03 4.84 1.31E-06 1.08 1.2
Hyperlipidaemia 0.78 0.06 −4.33 1.49E-05 0.70 0.88

Statins at discharge 0.76 0.06 −4.14 3.42E-05 0.67 0.87

Missing weight measurement 1.32 0.07 4.05 5.05E-05 1.15 1.51
Sex (female) 0.80 0.06 −3.81 0.00014 0.72 0.9

Chloridea 0.90 0.03 −3.05 0.002 0.84 0.96

Furosemide (background) 1.21 0.07 2.85 0.004 1.06 1.38

BNP, brain natriuretic peptide; RDW, red blood cell distribution width. 
aFirst exams taken during hospitalization.
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strategy may be used as a disease and institute specific method-
ology for constructing decision support tools for risk stratifica-
tion at discharge for patients with chronic diseases such as 
heart failure.
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