Skip to main content
. 2022 Sep 30;4(3):175–187. doi: 10.1093/ehjdh/ztac054

Table 4.

The metrics of the prediction models using all the features (variables) for predicting the primary outcome

AUROC Sensitivity Specificity PPV NPV Accuracy Brier
Cox 80.18% 0.34 0.94 0.72 0.76 0.75 0.167
LR-L1 80.37% 0.44 0.91 0.69 0.78 0.76 0.162
LR-L2 80.29% 0.44 0.91 0.69 0.78 0.76 0.162
Ensemble 81.23% 0.42 0.92 0.71 0.78 0.76 0.161
NeuralNet 80.45% 0.45 0.90 0.68 0.78 0.76 0.165
RF 78.84% 0.51 0.86 0.63 0.79 0.75 0.177
XgBoost 80.49% 0.46 0.91 0.69 0.78 0.76 0.161

A threshold of 0.5 is used.

AUROC, area under receiver operator curve; NPV, negative predictive value; PPV, positive predictive value.