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Enzyme commission (EC) numbers, which associate a protein sequence with the biochemical reactions 
it catalyzes, are essential for the accurate understanding of enzyme functions and cellular metabolism. 
Many ab initio computational approaches were proposed to predict EC numbers for given input protein 
sequences. However, the prediction performance (accuracy, recall, and precision), usability, and efficiency 
of existing methods decreased seriously when dealing with recently discovered proteins, thus still having 
much room to be improved. Here, we report HDMLF, a hierarchical dual-core multitask learning framework 
for accurately predicting EC numbers based on novel deep learning techniques. HDMLF is composed of 
an embedding core and a learning core; the embedding core adopts the latest protein language model 
for protein sequence embedding, and the learning core conducts the EC number prediction. Specifically, 
HDMLF is designed on the basis of a gated recurrent unit framework to perform EC number prediction 
in the multi-objective hierarchy, multitasking manner. Additionally, we introduced an attention layer to 
optimize the EC prediction and employed a greedy strategy to integrate and fine-tune the final model. 
Comparative analyses against 4 representative methods demonstrate that HDMLF stably delivers the 
highest performance, which improves accuracy and F1 score by 60% and 40% over the state of the 
art, respectively. An additional case study of tyrB predicted to compensate for the loss of aspartate 
aminotransferase aspC, as reported in a previous experimental study, shows that our model can also 
be used to uncover the enzyme promiscuity. Finally, we established a web platform, namely, ECRECer 
(https://ecrecer.biodesign.ac.cn), using an entirely could-based serverless architecture and provided 
an offline bundle to improve usability.

Introduction

With the widespread adoption of high-throughput methods and 
high-quality infrastructure, the speed of new protein discovery 
has increased dramatically. However, this was not followed by 
a concomitant increase in the speed of protein annotation. For 
example, 801,118 sequences were added to TrEMBL in the 
UniProt database [1] in the single month of December 2022, 
while only 388 sequences were reviewed and added to Swiss-
Prot in the same period (Fig. S2). Such a slow speed of protein 
annotation considerably restricts related research and industrial 
applications.

Among the multiple and complex protein annotation tasks, 
one of the crucial steps is enzyme function annotation [2,3]. 
Annotations of enzyme function provide critical starting points 
for generating and testing biological hypotheses [3]. Current 
functional annotations of enzymes describe the biochemistry or 

process by assigning an enzyme commission (EC) number. An 
EC number is a 4-part code associated with a recommended 
name for the corresponding enzyme-catalyzed reaction that 
describes the enzyme class, the chemical bond acted on, the reac-
tion, and the substrates [4]. Thus, the primary task of enzyme 
annotation is to assign an EC number to a given protein sequence. 
However, as the uncertainty of the assignments for uncharacter-
ized protein sequences is high and biochemical data are relatively 
sparse, both the speed and the quality of enzyme annotation are 
considerably restricted.

To achieve improved, rapid, and intelligent functional anno-
tation, computational methods were introduced to assign or 
predict EC numbers. The simplest and most commonly used 
method is based on sequence homology [5]; researchers have 
developed a variety of EC databases and profile-based methods 
for the functional annotation of enzymes [6–8]. However, these 
methods cannot perform annotations for novel proteins without 
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similar sequences, which is generally the case for newly discov-
ered enzymes. To overcome this restriction, researchers intro-
duced machine learning (ML) methods, such as hidden Markov 
model [9], K-nearest neighbor (KNN) [10], and SVM [11] for 
annotating enzymes. Although these methods can predict EC 
numbers for proteins without similar references, the prediction 
speed and precision are not ideal. Because deep learning has 
delivered powerful results in many areas [12–15], researchers 
use deep learning methods to predict EC numbers and contin-
ually improve the precision of functional annotation [2]. 
However, deep learning methods are prone to overfitting because 
of an unbalanced distribution of training datasets [16]. Specific 
to the EC number prediction task, this would lead to predictions 
with high precision, medium recall, and low accuracy.

Overall, there has been a steady improvement in computa-
tional methods for enzyme annotation [2,7,17,18], but several 
obstacles still exist that have slowed the progress of computa-
tional enzyme function annotation. The first is a lack of publicly 
available benchmark datasets to evaluate the existing and newly 
proposed models, making it troublesome for the end user to 
choose the best method in their production scenario. Another 
hindrance is the lack of an explicitly designed method with sta-
ble prediction performance to deal with newly discovered pro-
teins. Especially, the lacking of an efficient and universal protein 
sequence embedding method made researchers have to spend 
large amounts of time on handcrafted feature engineering to 
encode the sequence, such as functional domain encoding [19] 
and position-specific scoring matrix (PSSM) encoding [20], as 
encoding quality dramatically affects the performance of down-
stream applications [21]. The third one is the usability of existing 
tools, as some tools are only available offline and are not easy to 
install, while some online tools are no longer available.

To overcome these obstacles, we proposed a hierarchical dual-
core multitask learning framework (HDMLF) in this work. The 
main contributions are as follows:

• � We constructed 3 standard datasets for benchmarking 
and evaluation. The datasets contain more than 470,000 
distinct labeled protein sequences from Swiss-Prot.

• � We proposed a novel framework on the basis of the 
latest protein language embedding methods and gated 
recurrent unit (GRU) with the attention mechanism. In 
HDMLF, we formulate the EC number prediction as a 
multitask multilabel classification problem. The first task 
predicts whether a given protein sequence is an enzyme. 
The second task predicts how many functions the enzyme 
can perform, i.e., multifunctional enzyme prediction. The 
last task predicts the exact EC number for each enzyme 
function. To achieve cutting-edge performance for EC 
number prediction, we first introduced and evaluated the 
state-of-the-art deep learning language embedding meth-
ods for universal protein sequence embedding [22,23]. 
Then, a novel prediction method based on GRU with an 
attention mechanism was proposed to solve the 3 tasks 
in a multitasking manner. Finally, a feedback mechanism 
is adopted to choose the most suitable embedding, and a 
greedy strategy is introduced to integrate these tasks to 
maximize the EC prediction performance.

• � A webserver was published for easy usability. We pub-
lished a web platform based on a serverless architecture 
so that anyone can annotate EC numbers smoothly in 
high throughput, whether they have coding experience 

or not. Our webserver is publicly accessed via http://
ecrecer.biodesign.ac.cn.

Results

A dataset for benchmarking
Because of the lack of a public benchmark for EC number pre-
diction, we constructed a standard dataset from Swiss-Prot for 
model development and evaluation. To simulate real applica-
tion scenarios as closely as possible, we organized data chron-
ologically. Specifically, we used a snapshot from February 2018 
as the training dataset, consisting of 469,134 records (4,854 
distinct EC numbers). We construct 2 testing sets to simulate 
the real protein discovery and annotation processes and vali-
date the EC prediction performance of effectiveness and sta-
bility with time variance. Testing set 1 (testset_20) is from the 
June 2020 snapshot, consisting of 7,101 records (937 distinct 
EC numbers). Testing set 2 (testset_22) is from February 2022, 
consisting of 10,614 records (1,355 distinct EC numbers). All 
testing sets filtered the sequences that appeared in the training 
set. The details are listed in Tables S2 to S5.

Suitable embedding methods do help in improving 
the prediction performance
ML models trained on protein sequences and their measured 
functions can infer unseen sequences’ biological properties 
without understanding the underlying physical or biological 
mechanisms. However, ML models require vectors as input 
other than amino acid sequences, and converting from a pro-
tein sequence to a vector representation extremely affects the 
model’s ability to learn [21].

To evaluate and choose the best embedding methods for 
our downstream prediction tasks, we evaluated 3 different 
protein embedding methods, one-hot embedding, UniRep 
embedding, and evolutionary scale modeling embedding 
method (ESM) embedding with different layers (from 1 to 33) 
in 2 different testing datasets. The evaluation process can be 
categorized into 2: (a) We use an enzyme or non-enzyme pre-
diction task and 6 ML baselines to evaluate the embedding 
performance in binary classifications, and (b) we use the EC 
prediction task and our proposed method to evaluate the 
embedding performance in multiclass classifications. The 
6 ML baselines are KNN, logistic regression (LR), XGBoost, 
decision tree (DT), random forest (RF), and gradient boosting 
decision tree (GBDT).

• � Protein embedding methods can learn semantic infor-
mation from sequences directly, remarkably improving 
downstream tasks’ performance.

As shown in Fig. 1, compared with the traditional one-hot 
protein representation, methods UniRep and ESM improve the 
downstream task by more than 20% in all testing tasks, in terms 
of F1 score (details can be found in Tables S6 and S7). For embed-
ding, ESM-32 exhibited the best overall performance among all 
6 baselines regarding all evaluation metrics for embedding. As 
shown in Fig. 1C and D, in the EC prediction task, ESM-32 
achieved 21.67% and 6.03% improvements over one-hot and 
UniRep in terms of accuracy, as well as 27.20% and 7.32% in 
terms of mF1, respectively. This experiment suggests that better 
embedding can lead to better learning performance, and deep 
latent representation can comprehensively represent the protein 
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sequence. Apart from protein sequences, protein structure can 
also be helpful in conducting protein embedding, and existing 
studies have demonstrated this [24,25]. In our future work, we 
plan to incorporate these techniques to further enhance the pre-
diction performance.

• � For embedding layers, not the deeper the better.
To validate the effectiveness within different depths of embed-

ding layers, we evaluated embedding layers 1 to 33 from ESM 
under 4 classification baseline methods. Interestingly, we found 
that, when layers increase from 1 to 32, the performance 
increases, while when layers reach 32, the performance began 
to decrease (Fig. 1); this is mainly due to the overfitting issue 
and suggests that, for selection of embedding layers, not the 
deeper, the better.

HDMLF versus existing EC prediction methods
To achieve the best performance, HDMLF is proposed with 3 
objectives: (a) classify the enzyme and non-enzyme with high 
accuracy, (b) provide the ability to predict multifunctional 
enzymes, and (c) achieve state-of-the-art EC prediction per-
formance, and we treat these objectives as 3 learning tasks. To 
meet these objectives, our proposed framework is designed 
with mutitask learning techniques and is organized in a hier-
archical order.

To evaluate the performance of HDMLF and validate whether 
these objectives do help our final goal, we made a comprehensive 
comparison experiment with existing EC prediction methods 
among all these tasks.

EC number prediction performance comparison
EC prediction is the main task and final goal in HDMLF. As 
shown in Fig. 2C, our proposed methods achieved the best over-
all performance in testset_20. PRIAM [7] is mainly designed to 
include more sequences, so the mRecall is high (78.48%, 75.26%), 
while the mPR (20.80%, 25.03%) is very low. DeepEC, ECPred, 
and CatFam pursue high precision; these methods are very likely 
to miss many new functions, which, in turn, wound underper-
form in terms of accuracy and F1 score. The F1 score should be 
a better evaluation metric for the EC assignment of real-world 
proteins. In terms of mF1 score, our model reached over 150% 
performance than the second best method, which achieved 
86.91% accuracy with 69% mPR and 63.88% mRecall. In other 
words, if 100 protein sequences were uploaded for annota-
tion, then we can obtain approximately 87 correct annotations. 
Interestingly, existing methods show much poorer performance 
on testset_22 while our method can maintain the prediction per-
formance. We conducted further validation of the HDMLF’s 
performance in predicting EC numbers at first to third levels 
compared to other baselines. The results are shown in Tables S11 

Fig. 1. Performance comparison of different embedding methods. (A and B) Embedding performance (F1 score) comparison using ML baselines on task 1. (A) Results on 
testset_20 and (B) on testset_22. (C and D) Embedding performance comparison using our proposed framework HDMLF on task 3; mACC, mPR, mRecall, and mF1 are different 
evaluation metrics defined in the “Evaluation metrics” section. (C) Results on testset_20 and (D) on testset_22.
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to S13. Our findings demonstrate that the HDMLF outperforms 
the second-best method by more than 20%, 28%, and 30% in 
terms of mF1 at the first, second, and third levels of EC, respec-
tively. However, when we simplify the evaluation criteria and 
only consider the first-digit EC, the mF1 score remains below 
70%. Note that these methods were specifically designed to pre-
dict the fully 4-digit EC number, which is not optimal for first-
digit EC prediction.

Overall, in testset_22, for these relatively new proteins, our 
method much improved the mF1 score over existing methods; 
this is mainly due to the EC numbers and enzyme samples 
being more inclusive in testset_22. All the above results show 
that our method shows a clear advantage in terms of EC num-
ber assignment.

Enzyme or non-enzyme prediction  
performance comparison
In enzyme or non-enzyme prediction task, as shown in Fig. 2B, 
our method can achieve scores of 92.01% and 93.61% in terms 
of F1 score in the above-constructed testing sets, respectively. 
Compared with other state-of-the-art tools, the overall accuracy 
was greatly improved. Many previous methods were designed to 
obtain high precision while neglecting accuracy, negative pre-
dictive value, and recall. For example, DeepEC can reach 94.68% 

precision while recall is only 20.83% in testset_20, which means 
that many enzymes would be missed by DeepEC prediction.

Multifunctional enzyme prediction
The multifunctional enzyme prediction task is designed to pre-
dict the number of ECs assigned to a given protein. As shown 
in Fig. 2C, we can see that the performance of our proposed 
method is stable and superior to existing baselines. In test-
set_20, our method achieved 91.71% accuracy with 58.37% 
mPR and 55.20% mRecall recall. In testset_22, our method 
achieved 92.45% accuracy with 70.68% mPR and 59.56% mRe-
call recall. The low mRecall and mPR are mainly due to the data 
sparseness of 3 to 8 functional enzymes , which results in the 
classifier being more preferred to predict an enzyme as a single- 
function enzyme. Although our proposed method achieved the 
best performance among existing methods, this is still inade-
quate in a productive scenario, especially for enzymes assigned 
with more than 3 EC numbers, so it should be further improved 
in future work.

Assessing the stability of EC prediction  
performance over time
To assess the efficacy and predictability of our proposed frame-
work over time, we simulated an EC prediction experiment 

A

B

C

Fig. 2. Performance comparison of different methods for different prediction tasks. Bars with  represent prediction results on testset_20, bars with  represent 
prediction results on testset_22 (A) Performance comparison on EC number prediction. (B) Performance comparison on enzyme and non-enzyme prediction. (C) Performance 
comparison on task 2 multifunctional enzyme prediction.
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using Swiss-Prot data in a realistic setting. We first collected 
the snapshot of Swiss-Prot from 2019 to 2022. Then, we 
excluded the data that appeared in the training set and used 
the trained model to predict the new data added from 2019 to 
2022. Comparative results with existing EC prediction methods 
are shown in Fig. 3. From Fig. 3, we can observe that all meth-
ods’ prediction performance will decrease over time. In terms 
of baselines, DeepEC and CatFam are relatively more stable 
than the others. For DeepEC, the performance in terms of F1 
score dropped by 3.20%, 11.34%, and 21.20% from 2020 to 
2022, compared to 2019, and decreased by 9.86%, 19.94%, and 
29.48% in terms of accuracy. The reason for this is that DeepEC 
uses one-hot embedding and 3 different models to predict the 
different levels of EC, and it integrates the output using the 
sequences alignment method. While the first level of EC pre-
diction is much more precise, one-hot embedding cannot pre-
serve sufficient information to represent protein sequences. 
Moreover, it is weak in the fourth level of EC prediction, and 
the sequence alignment method cannot handle new sequences 
with low similarities. On the other hand, CatFam’s performance 
dropped by −0.4%, 3.28%, and 9.95% from 2020 to 2022, com-
pared to 2019, in terms of F1 score and decreased by 9.02%, 
8.99%, and 28.25% in terms of accuracy. This is because CatFam 
is based on homologous similarity and PSSM. It is more stable 
for protein sequences with existing homologous sequences than 
DeepEC. However, the performance will decrease significantly 
for newly added proteins without homologous sequences. 
Remarkably, the prediction performance of our proposed method 
is more stable, decreasing by less than 1% from 2019 to 2022, 
both in terms of F1 score and accuracy. This mainly benefits 
from the language model, which is powerful in sequence embed-
ding and can reserve sufficient information for downstream 
applications, and we treat 4-level EC as a tuple that reduces the 
integration error from different predictive models. Thus, our 
proposed method is considerably more statable than the exist-
ing ones.

Case study: HDMLF can annotate protein with 
incomplete EC number
In the databases, many enzymes with EC numbers exist in an 
uncompleted 3-level, 2-level, or even 1-level state. These pro-
teins with incomplete EC numbers might not directly be 

utilized for retrieving enzymatic reactions. For instance, an 
enzyme iron/alpha-ketoglutarate-dependent dioxygenase AusU 
(UniProt ID: A0A0U5GJ41) has a 2-level EC number in the 
database (1.14.-.-), while our method HDMLF can assign this 
protein with the fourth-level EC number 1.14.11.38. After blast-
ing it against the UniProt database, we find that the top 5 
reviewed proteins with the highest identities include 3 verruc-
ulogen synthases (Fig. 4A). Because only Q4WAW9 has a crys-
tal structure, we take protein Q4WAW9 [26] as an example and 
find that both genes belong to exactly the same protein families 
with the same domains (Fig. 4B). To further validate the results, 
we compare the structure of A0A0U5GJ41 (alphfold2 pre-
dicted) and Q4WAW9 (alphfold2 predicted and crystal struc-
ture). The results show that these 2 proteins have a highly 
similar structure (Figs. S4 to S7) with a small root mean square 
deviation (1.104). Because Q4WAW9 has a 4-level EC number 
1.14.11.38, the protein A0A0U5GJ41 could be potentially 
annotated as EC 1.14.11.38 as well, which supports our 4-level 
prediction.

Case study: HDMLF can uncover enzyme promiscuity
Enzyme promiscuity toward substrates has been discussed in 
evolutionary terms as providing the flexibility to adapt to novel 
environments. Moreover, it has been demonstrated that many 
enzymes exhibit flexibility, or promiscuity, in regard to what 
substrates their catalytic pockets recognize. A previous study 
using model-driven approaches found that even in Escherichia 
coli, a well-studied model species, many underground reactions 
still occur [27]. For example, gene essentiality analysis and gene 
knockout experiment revealed that gene tyrB, which is anno-
tated as tyrosine aminotransferase (EC number 2.6.1.57; 2.6.1.107 
in UniProt), also has aspartate aminotransferase (encoded by 
aspC; EC number 2.6.1.1 in UniProt) activity and thus can 
compensate for aspC gene deletion [28]. The knockout of the 
gene encoding the potential isozyme revealed that tyrosine 
aminotransferase, which is encoded by tyrB (EC number 2.6.1.57; 
2.6.1.107 in UniProt), can compensate for the loss of aspartate 
aminotransferase, which is encoded by aspC (EC number 2.6.1.1 
in UniProt).

Although the specific functional annotation and substrate 
are different, our method can uncover the underground reac-
tion 2.6.1.1 for tyrB (Fig. 5C) . In addition, our method can 

Fig. 3. Task 1 comparison of EC prediction performance over time.
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Fig. 4. (A to C) Comparison of sequence similarity and structural similarity.
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also assign EC numbers 2.6.1.57 and 2.6.1.107 to tryB. However, 
with DeepEC, only 2.6.1.57 can be assigned. This can be further 
validated by the EcoCyc [29], a well-annotated database for 
E. coli MG1655, as tryB was assigned with EC number 2.6.1.1 
in EcoCyc. In addition, there are 852 proteins with more than 
90% similarity with tyrB in the UniProt database based on a 
homology search. Only one protein(UniProt ID: P74861) was 
reviewed and the assigned EC number is 2.6.1.57. All the other 
proteins were assigned with EC number 2.6.1.-. Because these 
proteins all have very high similarity with tryB, they should all 
have the EC number 2.6.1.1. As expected, our model can assign 
these proteins with EC number 2.6.1.1. All these cases show 
that our model can be used to uncover enzyme promiscuity.

Case study: HDMLF can uncover unknown enzyme 
for a not well-annotated genome
To demonstrate the inclusiveness and predictive ability of our pro-
posed method, we conducted EC number prediction on unre-
viewed proteins. Corynebacterium glutamicum, the famous 
industrial workhorse for amino acid production with a current 
output of over 6 million tons per year [30], is increasingly being 
adopted as a promising chassis for the biosynthesis of other com-
pounds. However, unlike E. coli (1,652 protein sequences with EC 
numbers out of 4,322 proteins, 38.2%), the protein sequences of 
C. glutamicum were not well annotated. Of 3,305 protein sequences, 
only 537 were reviewed and included in the Swiss-Prot database 
(357 proteins have assigned EC numbers). We used the other 2,768 
protein sequences to compare our tool with DeepEC. Our approach 
was able to assign 1,056 proteins with EC numbers, while DeepEC 
only assigned 157 EC numbers (123 same EC numbers between 

DeepEC and HDMLF). We found many interesting cases, for 
example, pyrimidine reductase, an enzyme involved in riboflavin 
biosynthesis (UniProt ID: Q8NPB8); DeepEC and TrEMBL both 
predict it to be non-enzyme, which is not correct, while our model 
predicts it with EC number 1.1.1.302 with high confidence. 
Another case is deoxynucleoside monophosphate kinase (UniProt 
ID:Q8NPP0); DeepEC and TrEMBL cannot assign an EC number, 
while our model predicts it with EC number 2.7.4.13. As shown 
in the Rhea database (RHEA:11216), the corresponding reaction 
and enzyme class are all consistent with protein annotation. These 
results again show that our method can better annotate new pro-
teins than existing annotation tools.

ECRECer: A web platform for EC prediction  
based on HDMLF
To enhance the usability of our proposed framework (Fig. S8) 
so that the end user can use them smoothly even with no coding 
experience, we built a web application using a cloud-based 
architecture, offering high reliability, robustness, and scalability. 
The static files such as the HTML pages and JavaScript codes 
are hosted on AWS S3 and distributed through AWS CloudFront 
for speed of content delivery to users worldwide. End users can 
simply upload sequences to our platform and then click the 
submit button to trigger the prediction workflow. AWS API 
Gateway routes HTTP requests from the front end to the back-
end. We used AWS Step Functions to coordinate the compo-
nents of our applications, process messages passed from AWS 
API Gateway, and invoke the workflows asynchronously. We 
used AWS S3 to exchange data between jobs and store the result 
files. In general, the whole workflow can be completed in a few 

A

B

Fig. 5. (A) TryB is assigned with EC numbers 2.6.1.57 and 2.6.1.107 in UniProt. (B) Our model can assign TyrB with additional EC number 2.6.1.1, and this is consistent with a 
previous experimental study in Escherichia coli, which finds that tyrB can compensate for the loss of aspC (EC number 2.6.1.1 in UniProt), while DeepEC can only assign tyrB 
with EC number 2.6.1.57.
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seconds. We use Amazon DynamoDB to store job information, 
and users can track their previous submission records and cor-
responding status information. Once the analysis is finished, 
the user can view or download the corresponding results.

Conclusion
In this work, we proposed a novel HDMLF to complete 3 
benchmarking tasks: (a) enzyme or non-enzyme annotation, 
(b) quantity of EC numbers prediction, and (c) EC number 
prediction. The method developed in this work has 2 cores, an 
embedding core and a learning core. The embedding core is 
responsible for selecting the best available embedding method 
among one-hot, UniRep, and ESM to calculate sequence embed-
dings. The learning core is responsible for completing the spe-
cific benchmarking tasks using the best-calculated protein 
sequence embedding as input in a hierarchical multitask way.

We were guided by 2 principles in the design of HDMLF. The 
first principle is providing state-of-the-art EC number predic-
tion performance. The second principle is high usability (both 
can be accessed via the world wide web and offer a standalone 
suit for high-throughput prediction). To implement the first 
principle, we proposed HDMLF, which integrates the protein 
language model with a hierarchical BGRU with an attention 
mechanism. To implement the second principle, we provided a 
web server (ECRECer) and a standalone package. We opened 
all the source codes, including data preprocessing, dataset 
buildup, model training, and model testing/evaluation.
Comprehensive comparisons with existing state-of-the-art 
methods demonstrated that our method is highly competitive 
and has the best performance with high usability. In addition, 
our method can be used to uncover enzyme promiscuity. 
Although our method exhibited the best performance, it still 
needs improvement. For example, the performance of multi-
functional enzyme annotation is relatively low, while the accu-
racy and recall of EC number annotation are less than 90%.

Key points: 

•An HDMLF framework is proposed to predict EC numbers by 
using protein sequence data.
•A protein language model and an extreme multilabel classifier 
are adopted to reduce the heavy head-crafted feature engineer-
ing and elevate the prediction performance.
•The proposed framework remarkably outperforms the existing 
state-of-the-art method in terms of accuracy and mF1 score by 
70% and 20%, respectively.
•An online service and an offline bundle are provided for end 
users to annotate EC numbers in high throughput easily and 
efficiently.

Materials and Methods

Problem formulation
To annotate the enzyme function of a new protein sequence, 
the initial and basic task is to define whether the given protein 
is an enzyme. Because there are numerous multifunctional 
enzymes, the next task is to determine the quantity of EC num-
bers. After completing the above 2 tasks, it is necessary to assign 
an EC number to each function. On the basis of these consid-
erations, we proposed 3 basic tasks for the functional annota-
tion of enzymes, as shown below.

Enzyme or non-enzyme annotation
The enzyme or non-enzyme annotation task is formulated as 
a binary classification problem:

where X = {x1, x2, ⋯, xn}, n ≥ 1 represents a group of protein 
sequences, and {0, 1} is the label indicating whether a given 
protein is an enzyme.

Multifunctional enzyme annotation
Multifunctional enzyme annotation is formulated as a multi-
classification problem:

where k represents the maximum number of EC numbers for 
a given protein.

EC number assignment
The EC number assignment task is also formulated as a multi-
classification problem as defined in Eq. 3.

Dataset description
To address the first challenge, we constructed 3 standard datasets 
(Supplementary Materials). Similar to previous work [21,25], these 
datasets are extracted from the Swiss-Prot database. To simulate 
real application scenarios as closely as possible, we did not shuffle 
data randomly. Instead, after data preprocessing (Supplementary 
Materials), we organized data in chronological order. Specifically, 
we used a snapshot from February 2018 as the training dataset. To 
simulate the real protein discovery and annotation processes and 
validate the EC prediction performance of effectiveness and sta-
bility with time variance, we construct 2 testing sets per task; test-
ing set 1 is from June 2020 snapshot, and testing set 2 is from 
February 2022, all testing sets filtered the sequences that appeared 
in the training set. The details are listed in Table S7.

• � Dataset 1: Enzyme and non-enzyme dataset
The training set in total has 469,134 records, 222,567 of which 

are enzymes and 246,567 are non-enzymes (Table S2). To make 
the data more inclusive, we did not filter any sequence in terms 
of length and homology, which is different from previous studies. 
An enzyme is labeled as 1 and a non-enzyme is labeled as 0.

• � Dataset 2: Multifunctional enzyme dataset
The multifunctional enzyme dataset only contains enzyme 

data. The number of EC categories ranges from 1 to 8 (Table S3).

• � Dataset 3: EC number dataset
Similar to the multifunctional enzyme dataset, the EC number 

dataset contains only enzyme records, 222,567 of which constitute 
the training dataset (covering 5,111 EC numbers). The test data 
include newly added EC numbers compared with the training 
data (Fig. S3), which means that these EC numbers do not appear 
in the training process, so predictive methods cannot handle this 
part of the EC numbers. Thus, we exclude the sequences with 
these EC numbers in the evaluation process.

Proposed framework
To develop a novel EC prediction method with cutting-edge 
performance, we proposed HDMLF, which is composed of an 
embedding core and a learning core. These 2 cores operate rel-
atively independently. The embedding core is responsible for 

(1)f :X → {0,1}

(2)f :X → {1,2, ⋯ ,k},

(3)f :X → {1.1.1.1,1.1.1.2, ⋯},
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embedding protein sequences into a machine-readable matrix. 
The learning core is responsible for solving specific downstream 
biological tasks (e.g., enzyme and non-enzyme prediction, mul-
tifunctional enzyme prediction, and EC number prediction). 
The overall scheme of HDMLF is illustrated in Fig. 6.

• � Core 1: Embedding
The objective of this core is to calculate the embedding rep-

resentations for protein sequences. For protein sequence encoding/

embedding, recent studies have shown the superior performance 
of deep learning-based methods compared to traditional methods 
[31,32]. Accordingly, we only compared one-hot encoding to 
show the difference between these 2 kinds of embedding in this 
study. Here, we adopted 3 different embedding methods to 
calculate the sequence embedding patterns that adequately 
represent protein sequences. The first one is the commonly 
used one-hot encoding [33]. The second is UniRep [22], an 
mLSTM “babbler” deep representation learner for proteins. We 

Fig. 6. HDMLF is an explicitly designed dual-core driven framework for EC number prediction. It consists of 2 independent operation units—an embedding core and a learning 
core. The embedding core is tasked with converting protein sequences into features. The learning core is designed to address the specific biological tasks defined in the 
problem formulation section.

https://doi.org/10.34133/research.0153


Shi et al. 2023 | https://doi.org/10.34133/research.0153 10

used the last layer for protein representation. The third is the 
ESM [23], a pretrained transformer language model for protein 
representation. We used representations from the 1st, 32nd, 
and 33rd layers as protein embeddings.

• � Core 2: Learning
The learning core is specialized to perform specific biolog-

ical tasks using a multitask learning (MTL) framework, which 
is implemented by a bidirectional GRU (BGRU) network with 
an attention mechanism. As shown in Fig. 6, the learning core 
uses embedding results as a unified input and uses BGRU to 
learn enzyme and non-enzyme prediction task (task 1), mul-
tifunction enzyme prediction task (task 2), and EC number 
prediction task (task 3) together. We use 3 multihead attention 
layers to learn and highlight interactive information among 
different tasks:

where 
√
dh is a scaling factor and Oh is a one-head output of 

the attention layer, Qhti
 is the weight learning weight from 

task 1 to task 3, and KT
h

 represents the multitask learning hid-
den state vector for each learning layers.

The advantage of MTL is that multiple related learning tasks 
are solved simultaneously by exploiting commonalities and 
differences across relevant tasks [34], which considerably fits the 
current scenario. Compared with solving the 3 tasks separately 
or predicting EC number directly, MTL can improve the gener-
alization performances of all the tasks because useful informa-
tion contained in multiple related tasks is shared in the learning 
procedure. However, obtaining optimized weight parameters for 
all tasks will lead to a negative transfer problem that will hurt the 
learning performance [35]. To overcome this problem, here, we 
introduced a penalty parameter Ω to enforce a clustering of the 
task parameter vectors at1, at2, at3 toward their mean that is con-
trolled by a hyperparameter λ. Ω is defined as follows:

where a =
∑T

t=1
∕T is the mean parameter vector, T represents 

the number of tasks; in this work, we set λ1 = 0.5, λ2 = 0.1, and 
λ3 = 0.4. The details of implementation and parameter settings 
can be found in the Supplementary Materials.

• � Integration, fine-tuning, and output
As illustrated in Fig. 6, the final EC number prediction output 
is an integrated process. As shown in Eq. 4, we formulated this 
integrated process as an optimization problem:

where obj1, obj2, and obj3 are the prediction results from task 1, task 
2, and task 3, respectively, while sa is the predicted result from 
multiple sequence alignment. The integration and fine-tuning pro-
cess aim to maximize the optimizing objective. In this work, the 
objective is the performance of prediction tasks in terms of the F1 
score. We used a greedy strategy to perform this optimization.

Compared baselines
To evaluate our proposed method comprehensively, we com-
pared our proposed method with 4 existing state-of-the-art tech-
niques with ‘GOOD’ usability (Supplementary Materials) and 
traditional sequence alignment method, which is provided by 
Diamond software. Four state-of-the-art techniques are CatFam, 
PRIAM (version 2), ECPred, and DeepEC.

Evaluation metrics
To comprehensively evaluate the proposed method and existing 
baselines, we use 5 metrics to evaluate binary classification 
problems and 4 metrics to evaluate multiple classification prob-
lems. For the binary classification task, the evaluation criteria 
include ACC (accuracy), Precision, NPV (negative predictive 
value), Recall, and F1 value:

where TP is the true-positive value, FP is the false-positive 
value, TN is the true-negative value, FN is the false-negative 
value, UP is unclassified-positive samples, and UN is unclassi-
fied-negative samples.

For multiple classification problems, the evaluation criteria 
included mACC (macro-average accuracy), mPR (macro-av-
erage precision), mRecall (macro-average recall), and mF1 
(macro-average F1 value):

where N represents the total number of classes, while ACCi, 
PPVi, and Recalli represent the accuracy, precision, and recall 
of the ith class in a one-versus-all mode [36], respectively.

Oh= softmax

�

Qhti
KT
h

√

dh

�

Vh, i∈{task 1, task 2, task 3}

Ω = ||a||2 +
t∑

t=1

�t ||at − a ||

(4)MAX
F1

{

f
(

obj1, obj2, obj3, sa
)}

(5)ACC=
TP+TN

TP+FP+TN+FN+UP+UN

(6)Precision =
TP

TP + FP

(7)NPV =
TN

TN + FN

(8)Recall =
TP

TP + FN +UP

(9)F1 =
2 × Precision × Recall

Precision + Recall

(10)mACC=

∑n

i=1
ACCi

n
, n=1, 2, 3, ⋯ ,N

(11)mPR=

∑n

i=1
PPVi

n
, n=1, 2, 3, ⋯ ,N

(12)mRecall=

∑n

i=1
Recalli

n
, n=1, 2, 3, ⋯ ,N

(13)mF1 =
2 ×mPR ×mRecall

mPR +mRecall
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Web platform implementation
As shown in Fig. S8 the web platform uses Amazon ECR to 
store Docker images, which packages a set of bioinformatics 
software, such as Diamond and in-house Python scripts. We 
built a scalable, elastic, and easily maintainable batch engine 
using AWS Batch. This solution took care of dynamically scal-
ing our computer resources in response to the number of run-
nable jobs in our job queue. Finally, we used AWS step functions 
to coordinate the components of our applications easily, process 
messages passed from AWS API Gateway, and invoke the work-
flows asynchronously. AWS API Gateway was used as the API 
server to handle the HTTP requests and route traffic to the 
correct backends. The static website was hosted by AWS S3 and 
sped up using AWS CloudFront.
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