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population of COVID-19 patients during the course of their 
illness than what has been reported [7]. According to the 
published literature, neurological complications, such as 
cognitive dysfunction and encephalopathy, appear to be 
more debilitating than complications reported in other organ 
systems in COVID-19 [8]. The spectrum of neurological 
manifestations in SARS-CoV-2 infection likely represents 
multiple pathogenic pathways. Various mechanisms leading 
to the development of the neurological manifestations fol-
lowing neurotropic invasion have been proposed, including 
endothelial dysfunction, hyperinflammation, hypercoagu-
lability, hypoxia, and general critical illness. There is still 
much to be explored in order to fully comprehend the patho-
genicity of SARS-CoV-2 and its deleterious effects on the 
nervous system [7, 9].

Neurological involvement has been found at different 
stages of SARS-CoV-2 infection – during acute infection 
and as post-acute sequelae manifesting in a chronic course 
of infection [9]. Among the many reported, the most com-
mon neurological symptoms associated with COVID-19 
have been anosmia, encephalopathy, and stroke [10]. In the 
acute phase, infected patients frequently show nonspecific 
symptoms such as generalized weakness, dizziness, head-
ache, nausea, anosmia, and dysgeusia [11]. Neurological 
manifestations are also frequently seen in ‘long COVID’ 
syndrome. Anosmia and dysgeusia, as well as neuropsychi-
atric symptoms, have been reported to persist for months 
following infection [12].

Introduction

From the time COVID-19 was declared a pandemic by 
the World Health Organization (WHO), clinicians began 
observing neurological manifestations of both mild and 
severe intensity in acutely ill patients with confirmed infec-
tion [1–3]. Early retrospective studies from China and 
France revealed that a very large number of COVID-19 
patients had experienced neurological complications dur-
ing the period of their hospitalization [4, 5]. However, since 
these reports were limited to hospitalized patients, they are 
not reflective of the true community-wide burden of neu-
rological manifestations following SARS-CoV-2 infection. 
Furthermore, since the data used in many of these studies 
were extracted from the hospitals’ electronic records, there 
is a strong possibility that some nonspecific neurological 
symptoms were overlooked [6]. Considering the magni-
tude of the pandemic, there is a strong likelihood of neuro-
logical manifestations being experienced by a much larger 
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In this review, we highlight the literature focusing on 
clinical observations that suggest associations between 
SARS-CoV-2 infection and the nervous system. We also 
discuss the different mechanisms of neural injury that lead 
to various complications. Knowledge about the possible 
neurological manifestations of COVID-19 is vital for physi-
cians to recognize, treat, and manage complications of the 
nervous system.

Methods

We searched the PubMed database for literature published 
between December 1, 2019, and April 1, 2023. The follow-
ing search terms were included: “COVID-19”, “SARS-
CoV-2”, “neuroCOVID”, “encephalopathy”, “neurological 
impairment”, “neurological deterioration”, “encephalitis”, 
“neurological manifestations”, “post-COVID symptoms”, 
“long COVID”, and “neurological symptoms”. Observa-
tional and interventional studies involving adult subjects 
were included. Commercial reports and government pub-
lications and reports were not included. Information about 
disease pathophysiology and clinical manifestations was 
extracted from the included studies.

The results are reported in a narrative form under the 
headings Pathogenesis: infection and neuroinflammation 
and Neurological manifestations. Patient-related clinical 
outcomes, wherever available, were also included in this 
summary.

Pathogenesis: infection and 
neuroinflammation

SARS-CoV-2, the seventh known human coronavirus, is 
a single-stranded enveloped RNA virus. It shares 79.5% 
genome sequence identity with SARS-CoV. It also shares 
89–96% nucleotide sequence identity with bat coronavi-
ruses [6]. SARS-CoV-2 binds to its receptor, angiotensin 
converting enzyme 2 (ACE-2), an important component 
of the renin-angiotensin system, to initiate replication in 
its host cells. The formation of the SARS-CoV-2/ACE-2 
complex leads to the activation of transmembrane protease, 
serine 2 (TMPRSS2), which then cleaves the spike protein, 
allowing the SARS-CoV-2/ACE-2 complex to be internal-
ized into the cell by endocytosis [13]. An alternate co-recep-
tor for the virus is the membrane protein neuropilin 1 (NRP 
1) [14]. After uncoating within the cell, the viral genome is 
used as an mRNA for translation of the viral non-structural 
proteins, forming a replicase-transcriptase complex (RTC) 
that produces subgenomic RNA for translation of the viral 

structural proteins. After assembly, new virions are released 
by exocytosis [15].

Direct invasion of the nervous system

Via olfactory nerves

The chemosensory loss seen in COVID-19 patients in the 
form of anosmia, ageusia, or dysgeusia can be attributed to 
dysfunctional or damaged olfactory and gustatory receptors 
and their supporting cells or disruption of interactions with 
semaphorins (key molecules in olfactory and gustatory sig-
nalling pathways) [16]. There is no evidence of the expres-
sion of ACE-2 in the olfactory nerve, which seems to rule 
out direct neuronal damage by the virus as the cause of anos-
mia. However, ACE-2 receptors have been demonstrated in 
the olfactory mucosa by immunostaining. Olfactory epithe-
lial sustentacular cells have been shown to express ACE-2. 
This has been demonstrated by single-cell sequencing and 
confirmed by immunostaining [17–19]. The spike protein 
(detected by immunohistochemistry) and RNA (detected by 
real-time PCR) of SARS-CoV-2 virus have been demon-
strated in olfactory mucosa of post-mortem samples from 
SARS-CoV-2 infected individuals [20–22]. Infection of the 
olfactory epithelium (Fig. 1) can therefore account for the 
anosmia seen in the disease and potentially serve as a path-
way of entry of the virus into the central nervous system 
(CNS) [18, 19].

Via other cranial nerves

Other cranial nerves, such as the vagus, glossopharyngeal, 
and trigeminal nerves, may also be potential routes for the 
virus to enter the brain via retrograde axonal transport. 
These nerves get exposed to the virus during the course of 
infection. The vagus nerve, which is connected to the gas-
trointestinal tract as a part of the enteric nervous system, has 
an abundance of ACE-2 and NRP 1 receptors [23]. Some 
studies have suggested that the virus can access the CNS 
through peripheral fibers of the vagus nerve in the lung, sim-
ilar to influenza virus [24, 25]. A study examining brainstem 
neuropathology demonstrated the presence of SARS-CoV-2 
in vagus nerve fibers by the use of immunohistochemistry 
(IHC) [26]. Another study examining the vagal and human 
glossopharyngeal nerves at the level of the medulla oblon-
gata showed that ACE-2 receptors and neuropilin 1 (NRP1) 
co-receptors are widely expressed in axons, myelin sheaths, 
and nerve bundles. Together with ACE-2 and NRP1, the 
presence of TMPRSS2 in the supportive cells of the vagal 
and glossopharyngeal nerves has also been demonstrated 
[14]. SARS-CoV-2 dissemination has been seen in the 
trigeminal nerve as well, which has been implicated in 
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anosmia and headache in patients. One hypothesis states 
that the virus can enter the CNS by invading the sensory 
axon of the trigeminal nerve in the nasal cavity. One study 
showed a high level of SARS-CoV-2 RNA in the trigeminal 
ganglion in deceased COVID-19 patients, and another post-
mortem study showed axonal degeneration and cell loss in 
the trigeminal nerve [17, 27]. Despite this evidence of the 
direct involvement of nerves in the disease process, more 
studies on the pathophysiology of COVID-19 need to be 
undertaken.

Indirect invasion of the nervous system

Hematogenous route

A pathway that is potentially important for invasion of the 
CNS is infection of the brain capillary endothelium, which 
forms the neurovascular unit of the blood brain barrier 
(BBB). Studies examining post-mortem brain samples have 
shown the presence of virus-like particles in the capillary 
endothelium of the brain. The presence of SARS-CoV-2 
nucleic acid in the brain has been demonstrated by poly-
merase chain reaction (PCR) targeting different regions of 
the viral genome [28]. The choroid plexus epithelial cells 
that form a part of the blood-cerebrospinal fluid (BCSF) 
barrier might also be an entry point, as evidenced in human 
brain organoids [29]. Evidence for the presence of the spike 

protein has also been found in the choroid plexus vascu-
lature by immunostaining with anti-spike protein antibody, 
and by PCR. It has been seen that the infection is restricted 
to the lumina of the choroid plexus capillaries and medium-
sized blood vessels [30].

Immune-mediated mechanisms

Immune-mediated mechanisms have been shown to play 
a significant role in neuroinvasion by SARS-CoV-2. Sys-
temic inflammatory responses to infection are responsible 
for triggering the activation of microglial cells by excessive 
production of proinflammatory cytokines, including inter-
leukins (IL-6, IL-2, IL-12, and IL-15) and tumour necrosis 
factor alpha (TNF-α) [9]. Some proinflammatory cytokines 
have been shown to have saturable mechanisms of transport 
from the blood to the CNS. It has been demonstrated that 
blood-borne proinflammatory cytokines can disrupt and tra-
verse the blood brain barrier (BBB) to reach the cerebrospi-
nal fluid and interstitial fluid spaces of the brain and spinal 
cord [31]. They, thus, play an important role in the develop-
ment of neurological symptoms in patients. An increase in 
the levels of intrathecal interleukins (IL- 6, IL-18, IL-15) 
and macrophage inflammatory protein 1β (MIP-1β) has been 
seen in a subset of immunocompetent COVID-19 patients 
displaying neurological manifestations when compared to a 
control group of immunosuppressed SARS-CoV-2-infected 

Fig. 1  Potential routes of SARS-CoV-2 entry into the CNS (created 
using BioRender). A potential entry route of SARS-CoV-2 into the 
CNS could be via the olfactory epithelium. Another pathway of entry 
could be by infection of the brain capillary endothelium (hematog-

enous pathway). Immune responses to viral infection may result in dis-
ruption of the blood brain barrier, resulting in the creation and mainte-
nance of an inflammatory environment in the CNS.
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This is a result of a multitude of reactive components of 
the neurovascular unit (NVU) and their responses. These 
components include neurons, microglia, astrocytes, oligo-
dendrocytes, and endothelial cells [37].

The various inflammatory mediators that are produced 
by these activated components include cytokines, chemo-
kines, and free radicals (Fig. 2). These mediators contrib-
ute to the increased permeability and infiltration of immune 
cells across the BBB, thereby promoting neuroinflammation 
[38–40].

It has been found that SARS-CoV-2-infected patients 
with acute neurological complications have elevated lev-
els of proinflammatory cytokines such as IL-6, IL-18, and 

patients who did not have any neurological symptoms [32]. 
Analysis of the CSF of a SARS-CoV-2-infected individual 
diagnosed with acute encephalopathy showed increased 
levels of pro-inflammatory cytokines, including monocyte 
chemoattractant protein 1 (MCP-1) [33]. Elevated levels of 
MCP-1 have been seen in other neuroinfectious or neuroin-
flammatory disorders such as neuroAIDS, bacterial menin-
gitis, and multiple sclerosis [34–36].

Neuroinflammation

Neuroinflammation involves different inflammatory 
responses elicited against particular stimuli in the CNS. 

Fig. 2  Pathogenesis of neurodegenerative processes in COVID-19 
(created using BioRender). Neurodegenerative processes can be 
observed as a result of direct invasion via the olfactory or gustatory 

receptors, coagulopathy, generation of reactive oxygen species (ROS), 
or induction of autoimmunity.
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and fibrinogen production by endothelial and monocyte 
cell types [54]. Furthermore, damage to endothelial cells 
by cytokine storm can lead to the production of phospha-
tidylserine (PS), which can promote thrombin production. 
Release of plasminogen activator inhibitor type 1 (PAI-1) 
by damaged endothelial cells can inhibit the fibrinolytic sys-
tem, leading to thrombosis [55]. Systemic coagulopathy and 
vasculopathy result in neurological manifestations such as 
encephalopathy and delirium seen in a SARS-CoV-2 infec-
tion [10].

The activation of glial cells (astrocytes, oligodendro-
cytes, and microglial cells) due to systemic infection modu-
lates neuroinflammatory responses [37]. Microglial cells, 
when activated, polarise to the M1 phenotype. This pheno-
type mediates a proinflammatory response which involves 
an increase in proinflammatory mediators such as TNF-α, 
IL-β, IL-6, and reactive oxygen species (ROS) [37, 56]. 
This proinflammatory state can lead to the activation of 
astrocytes [37] or lead to the destruction of microglia [56]. 
A post-mortem study done on the brainstems and olfactory 
bulbs of individuals who had succumbed to SARS-CoV-2 
infection revealed high microglial immune activation with 
microglial nodules and immune cell clusters (such as CD8+ 
T cells) associated with axonal damage [57]. Activated 
microglia can produce IL-1 and TNF-α, which can activate 
astrocytes, which then produce inflammatory factors such as 
TNF-α, nitric oxide (NO), and ROS. This mutual interaction 
between microglia and astrocytes amplifies neuroinflamma-
tion [37, 58]. Another stress factor that can contribute to 
disruption of the integrity of the BBB is hypoxia, which can 
lead to the infiltration of immune cells and proinflammatory 
cytokines into the brain [51]. Neurological manifestations 
such as stroke and meningoencephalitis may be due the 
cytokine storm (Fig. 2) induced by SARS-CoV-2 infection 
[46].

Neurological manifestations of SARS-CoV-2

Parainfectious/acute neurological manifestations

Various acute neurological manifestations have been 
associated with COVID-19 (Table  1). The most common 
nonspecific symptoms of the nervous system reported in 
COVID-19 patients include olfactory and gustatory dys-
function presenting as anosmia, dysgeusia, headache, and 
fatigue. A meta-analysis of 350 studies with 145,721 sub-
jects found that the pooled prevalence of taste and smell 
dysfunction were 21% and 19%, respectively [59]. In most 
cases, these symptoms were the initial manifestations of the 
illness and were not associated with nasal discharge or con-
gestion. However, taste and smell disturbances were rarely 

IL-8 when compared to healthy controls [41]. Similarly, 
another study reported increased levels of proinflammatory 
cytokines (IL-6, IL-8, and TNF-α) in CSF from a SARS-
CoV-2-infected individual with akinetic mutism. It was also 
shown that cytokine levels decreased with the recovery of 
the individual [42]. An in vitro study in which human brain 
microvascular endothelial cells (BMVECs) were exposed 
to SARS-CoV-2 spike protein showed that there was an 
association between a reduction in the expression of tight-
junction and an increase in the levels of the cytokines IL-6, 
IL-10, and TNF-α [43].

Other studies have shown that, in anosmia, the loss of 
olfactory function could be correlated with infection of the 
olfactory epithelium and increased expression of cytokines 
such as IL-6 [10, 44]. The regeneration of nasal epithelial 
cells may be compromised, as the olfactory mucosa is sen-
sitive to cytokines [45]. Proinflammatory cytokines such as 
IL-6 can potentially activate Toll-like receptors, which may 
lead to inflammation of taste buds and, thereby, a loss of 
taste [46, 47].

Oxidative stress, a significant inflammatory response that 
has been implicated in neuroAIDS in human immunodefi-
ciency virus (HIV) infection, is suggested to play a role in 
the pathogenesis of neurological manifestations of COVID-
19. An in vitro study performed on human microglia treated 
with the SARS-CoV-2 spike protein showed that there was 
an increase in mitochondrial respiration, leading to the pro-
duction of ROS, and increased oxidative stress arising as 
a result of an imbalance between ROS production and the 
body’s ability to detoxify the reactive intermediates. This 
might contribute to the neurodegenerative process [48–50]. 
Neurodegenerative disease may also occur due to the acti-
vation of autoimmune responses by molecular mimicry of 
self-antigens by viral antigens. An example of this is Guil-
lain-Barre Syndrome (GBS), an autoimmune disease that 
has been seen in some COVID-19 patients [51, 52].

Coagulopathy has been observed in patients with severe 
COVID-19. The onset of stroke in COVID-19 could be due 
to hypercoagulability and vasculitis. In acute infections, 
mediators of inflammation such as tissue factors may induce 
hypercoagulation [46]. Tissue factors can act as receptors 
for factor VII. The expression of tissue factor on the cell 
surface of endothelium and leukocytes can be stimulated 
by proinflammatory cytokines such as TNF-α by the extrin-
sic coagulation pathway. A prothrombotic state and vascu-
litis could be attributed to elevation of levels of adhesion 
molecules, cytokines, angiotensin II, and D-dimer and a 
decrease in fibrinolysis, which has been associated with the 
disseminated intravascular coagulation (DIC) seen in severe 
COVID-19 [47, 53]. Additionally, the proinflammatory 
cytokine IL-6 has been shown to be responsible for stimu-
lation of platelet production, tissue factor gene expression, 
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the only COVID-19 symptoms and were accompanied by 
other manifestations. Anosmia has been reported more com-
monly in younger individuals than in older ones. Also, it 
has been seen more frequently in women than in men [60]. 
Smell and taste disorders resolve spontaneously without the 
requirement for any specific management in most patients 
with COVID-19. However, 10–20% of these patients have 
serious or long-term deficits [59, 61].

Headache, with an incidence of 25–47%, has been 
reported as an acute-phase manifestation of COVID-19. 
Fatigue was another common, debilitating symptom during 
acute illness. The reported prevalence was around 27–32%. 
However, it is likely to have been underdiagnosed due to the 
subjectivity of reporting [71–73].

Other reported cranial nerve dysfunctions in COVID-
19 patients include oculomotor dysfunction, hearing loss, 
facial palsy, ocular neuropathies, and lower cranial-nerve 
abnormalities. During or after infection, sudden sensorineu-
ral hearing loss (unilateral or bilateral) with an incidence of 
13% and persistent tinnitus with an incidence of 15% have 
been reported relatively frequently [71, 74].

Another nonspecific neurological manifestation com-
monly seen in COVID-19 patients is myalgia, which has 
been documented and reported in 22–63% of patients. It 
has been reported in mild as well as severe COVID-19 [61]. 
Increased levels of creatinine kinase (CK) have been seen 
in more-severe cases. Myopathy has also been reported 
in some patients during the acute phase of infection [60]. 
It is not clear if this is due to the direct effect of the virus 
on myocytes or due to the local and/or systemic immune 
response against the invading virus [75].

Among the more-specific neurological symptoms, 
encephalopathy is commonly diagnosed in patients with 
COVID-19. Different studies have shown its prevalence to 
be 8%-12% [62, 76]. The term “encephalopathy” includes 
altered consciousness, delirium, agitation, confusion, or 
coma. Signs of encephalopathy are seen in most critically 
ill COVID-19 patients. Some of the risk factors associated 
with encephalopathy are older age, smoking, prior history 
of neurological derangement, diabetes, chronic kidney dis-
ease, cerebral vasculitis, dyslipidaemia, cardiac failure, and 
hypertension. Of the patients admitted to an intensive care 
unit (ICU), 60% present with agitation and delirium. In 
patients older than 60 years, acute confusion or delirium was 
seen with a pooled prevalence of 34% and was associated 
with higher mortality [9, 59]. Occasional cases of encepha-
litis and meningitis have also been reported in COVID-19 
patients. The incidence of encephalitis in COVID-19 is less 
than 1% but can be as high as 6–7% in severe disease [77]. 
Patients with encephalitis or meningitis due to suspected 
SARS-CoV-2 infection have presented with a wide range of 
typical presentations (signs of meningeal irritation, altered 
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symptoms that persisted long after microbiological recovery 
(i.e., a negative PCR test) [91].

However, research data were scarce at that time, and 
there was no concrete definition or diagnostic criteria for 
this syndrome. Subsequently, in October 2021, the WHO 
formally recognised this post-COVID-19 condition by for-
mulating a clinical case definition. The definition states that

Post COVID-19 condition occurs in individuals with 
a history of probable or confirmed SARS-CoV-2 infec-
tion, usually 3 months from the onset of COVID-19 
with symptoms that last for at least 2 months and can-
not be explained by an alternative diagnosis. Common 
symptoms include fatigue, shortness of breath, cogni-
tive dysfunction but also others and generally have 
an impact on everyday functioning. Symptoms may 
be new onset following initial recovery from an acute 
COVID-19 episode or persist from the initial illness. 
Symptoms may also fluctuate or relapse over time.

Additionally, a code was assigned in the tenth revision of 
the International Classification of Diseases (ICD-10) for 
this condition [92].

Currently, several different terms are being used for 
post-COVID-19 conditions, such as post-acute sequelae 
of SARS-CoV-2 infection (PASC), post-acute COVID-19 
syndrome (PACS), long COVID, persisting COVID, and 
post-COVID syndrome, among others [12]. The post-acute 
manifestations of COVID-19 are quite diverse, including, 
but not limited to, systemic, neurological, cardiovascular, 
respiratory, gastrointestinal, renal, immunological, and 
musculoskeletal dysfunctions [93].

Prevalence and duration of long COVID

The overall global prevalence of PACS has been reported 
to be 0.37 at 30 days, 0.25 at 60 days, 0.32 at 90 days, and 
0.49 at 120 days postinfection, according to a recent meta-
analysis [94]. Higher prevalence rates of 63.2% at 30 days, 
71.9% at 60 days, and 45.9% at ≥ 90 days after onset of ill-
ness have also been reported [95].

In a large electronic health record review of more than 
200,000 patients diagnosed with COVID-19, it was found 
that 33.62% of these patients presented with neurological 
or psychiatric sequelae within 6 months of acute infection 
[96]. It is important to note that there may be substantial 
overlap of acute and post-acute neurological manifestations 
of COVID-19. Therefore it is important to exclude acute 
infection in order to identify post-infectious sequelae [12].

The average duration from acute COVID-19 infection 
to post-infectious neurological sequelae has been found 
in a meta-analysis of 55 such cases to be 33.2 days. The 

sensorium) and atypical presentations (like seizure, akinetic 
mutism, psychosis, oculocephalic reflex, catatonia, coma) 
[42, 78–82].

New-onset seizures are one of the important acute-phase 
manifestations of neurological dysfunction reported dur-
ing SARS-CoV-2 infection. A recent study concluded that 
acute seizures occurred in less than 5% of the hospitalized 
COVID-19 patients [72]. Acute stroke or encephalitis are 
frequently associated with seizures. Various studies have 
concluded that most of these seizures developed in the 
absence of a prior diagnosis of epilepsy [83].

An association between COVID-19 and cerebrovas-
cular disease has been convincingly demonstrated, with 
manifestations including ischemic stroke, intracerebral 
thrombosis, and intracerebral haemorrhage. These manifes-
tations have been observed not only in older patients with 
multiple significant cerebrovascular risk factors but also in 
young patients without any comorbidities. A meta-analy-
sis involving 18,258 COVID-19 patients showed that the 
pooled prevalence of cerebral ischemia was 2.9% and that 
of cerebral thrombosis was 2.2% [62]. Morassi et al., in a 
case series, reported biochemical evidence of coagulopathy 
in more than 65% of patients with COVID-19 [84]. Stroke 
usually developed within a month of onset of the symptoms 
of COVID-19. In different studies, it was seen that SARS-
CoV-2 infection was an independent risk factor for stroke in 
hospitalized patients [85–88].

Psychiatric disorders have been one of the significant 
CNS disturbances described during the pandemic. A study 
from the United States retrospectively reported psychiat-
ric manifestations in COVID-19 patients within the first 3 
months of infection. These patients did not have any previ-
ous history of psychiatric disorders. The most frequent dis-
orders reported in that study were insomnia, anxiety, and 
dementia. Ten to 38% of cases of depression and/or anxiety 
associated with SARS-CoV-2 infection occurred during the 
acute phase of illness. In 5–13% of the cases, symptoms 
persisted even after the resolution of the infection [71–73, 
89].

Post-acute neurological manifestations

A few months into the SARS-CoV-2 pandemic, anecdotal 
reports from survivors of the illness started to emerge from 
social media and patient support groups, complaining of 
non-resolution of symptoms or protracted course of illness 
for weeks to months [90]. In the initial reports, the constel-
lation of persistent symptoms in COVID-19 survivors was 
labelled as “long-haul COVID” or “long-tail COVID” by 
the mainstream media. It was reported that after the resolu-
tion of acute respiratory and febrile illness, patients suffered 
from a wide spectrum of systemic and organ-system-specific 
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The course of acute COVID-19 infection also affects 
the probability of developing long COVID. In particular, 
a severe acute illness, longer hospitalization, and ICU stay 
are important predictors of the occurrence of long COVID 
[105, 107, 109–111, 113, 114, 116, 117]. The occurrence 
of neurological complications, such as myalgia, tachycar-
dia, dyspnoea, chest pain, congestion, and depression dur-
ing acute infection is a predictor of long COVID [105, 107, 
112, 117]. Administration of corticosteroids, antibiotics, or 
intravenous immunoglobulins has also been found to be 
associated with increased incidence of long COVID [105, 
112, 116, 117].

Which variant of SARS-CoV-2 caused the initial acute 
infection does not appear to affect the development of 
long COVID, as demonstrated in a study involving 57,727 
SARS-CoV-2-positive individuals in which the incidence of 
long COVID was compared between patients infected with 
the Delta and Omicron variants [118].

Neurological manifestations of long COVID

Generalized fatigue, weakness, or malaise have consistently 
been found to be the most common sequelae of SARS-
CoV-2 infection [71, 94, 119]. Additionally, a wide array 
of chronic neurological complications have been reported, 
involving the central nervous system (for example, head-
ache, fatigue, confusion/‘brain fog’, insomnia, or cognitive 
impairment, and neuropsychiatric manifestations such as 
depression and anxiety, dizziness, or dysautonomia) as well 
as the peripheral nervous system (for example, sensorimo-
tor deficits, myopathies, muscle weakness, myalgias, distur-
bances in taste and/or smell, or sensorineural hearing loss/
tinnitus) [12]. The wide spectrum of reported neurological 
and psychiatric symptoms and their variable prevalence 
rates seen in PACS are shown in Online Resource 1.

The progression of post-COVID sequelae over time was 
described in a meta-analysis of 63 studies, which reported 
that, from 3 to 6 months postinfection, fatigue (32%), dys-
pnoea (25%), sleep disorder (24%), and difficulty in concen-
trating (22%) were the most prevalent symptoms, while effort 
intolerance (45%), fatigue (36%), sleep disorder (29%), and 
dyspnoea (25%) were the predominant symptoms observed 
between 6 and 9 months postinfection. Similarly, between 9 
and 12 months postinfection, fatigue (37%) and dyspnoea 
(21%) were the predominant symptoms. Fatigue continued 
to persist in 41% of the patients studied beyond 12 months 
[120]. Consistent with these findings, a cohort study of 121 
hospitalized COVID-19 patients showed that fatigue was 
the most commonly reported symptom (reported by 50% 
of the patients), followed by dyspnoea (42%) and memory 
dysfunction (34%). Several other symptoms were also 

conditions reported to occur, in descending order of fre-
quency, were Guillain-Barre Syndrome (GBS), stroke, optic 
neuritis, and encephalitis. Less frequently, transverse myeli-
tis, neuromyopathy/neuropathy, encephalopathy, Parkin-
sonism, status epilepticus, Bell’s palsy, vestibulocochlear 
neuritis, opsoclonus myoclonus syndrome, and myopathy 
were also reported to occur [97].

Studies have been carried out to evaluate the duration 
of persistence of long COVID symptoms, and it has been 
demonstrated that 37.8% of the patients studied experi-
enced symptoms until the end of one year following acute 
infection [98]. However, the proportion of survivors with 
sequelae has been shown to decrease over time, from 68% 
at 6 months postinfection to 55% at two years postinfection. 
At the end of two years, the health status of these patients 
was seen to deteriorate considerably compared to the gen-
eral population [99]. This long-persisting illness, i.e., at 
12–18 months postinfection, has been dubbed “very long 
COVID” in a study with a reported prevalence of 61% in the 
121 patients studied [100].

Several investigators have compared the incidence of 
persistent manifestations in COVID-19 survivors with other 
control groups, leading to disparate conclusions. A signifi-
cantly higher prevalence of persistent symptoms or worse 
health outcomes has been demonstrated in COVID-19 
patients when compared to uninfected controls, influenza-
virus-infected controls, and controls with other respiratory 
tract infections [96, 101, 102]. In contrast, a few investiga-
tors have found no evidence of varying recovery rates in 
olfactory dysfunction in COVID-19 PCR-positive and PCR-
negative patients [103]. Also, no significant difference in the 
prevalence of neurological and cognitive deficits has been 
seen in COVID-19 cases and uninfected controls [104].

Risk factors for long COVID

Several risk factors associated with the occurrence of post-
infectious sequelae have been identified. As is evident from 
several studies, long COVID has been seen more frequently 
in females than in males [105–116]. An important predic-
tor of the development of long COVID in survivors is the 
older age of the patient [105, 108, 111, 116]. However, there 
are contradictory reports of the rate of long COVID being 
slightly higher in young adults [110, 115]. Several pre-exist-
ing conditions that are associated with long COVID have 
been identified, such as obesity, chronic pulmonary dis-
ease, alcohol or tobacco consumption, constitutional neu-
ropsychiatric symptoms, and others, such as hypertension, 
diabetes, asthma or chronic obstructive pulmonary disease 
(COPD), immunological disorders, hematological disor-
ders, and malignancies [105, 106, 108, 109, 112, 114–116].
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