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High-dimensional analysis of 16 SARS-CoV-2 
vaccine combinations reveals lymphocyte 
signatures correlating with immunogenicity

Nicolás Gonzalo Nuñez    1,8,9,10  , Jonas Schmid    1,10, Laura Power1,10, 
Chiara Alberti1, Sinduya Krishnarajah    1, Stefanie Kreutmair    1, 
Susanne Unger1, Sebastián Blanco2, Brenda Konigheim2, Constanza Marín    3,4, 
Luisina Onofrio    3,4, Jenny Christine Kienzler    1, Sara Costa-Pereira1, 
Florian Ingelfinger1, InmunoCovidCba*, InViV working group*, 
Marina E. Pasinovich5, Juan M. Castelli5, Carla Vizzotti5, Maximilian Schaefer    1, 
Juan Villar-Vesga1, Sarah Mundt1, Carla Helena Merten1, Aakriti Sethi1, 
Tobias Wertheimer1, Mirjam Lutz1, Danusia Vanoaica1, Claudia Sotomayor3,4, 
Adriana Gruppi3,4, Christian Münz    1, Diego Cardozo6, Gabriela Barbás6, 
Laura Lopez6, Paula Carreño6, Gonzalo Castro6, Elias Raboy6, Sandra Gallego2,7,11, 
Gabriel Morón    3,4,11, Laura Cervi3,4,11, Eva V. Acosta Rodriguez    3,4,11, 
Belkys A. Maletto3,4,11, Mariana Maccioni    3,4,11   & Burkhard Becher    1,11 

The range of vaccines developed against severe acute respiratory syndrome 
coronavirus 2 (SARS‑CoV‑2) provides a unique opportunity to study 
immunization across different platforms. In a single-center cohort, we 
analyzed the humoral and cellular immune compartments following five 
coronavirus disease 2019 (COVID-19) vaccines spanning three technologies 
(adenoviral, mRNA and inactivated virus) administered in 16 combinations. 
For adenoviral and inactivated-virus vaccines, heterologous combinations 
were generally more immunogenic compared to homologous regimens. 
The mRNA vaccine as the second dose resulted in the strongest antibody 
response and induced the highest frequency of spike-binding memory  
B cells irrespective of the priming vaccine. Priming with the inactivated- 
virus vaccine increased the SARS-CoV-2-specific T cell response, whereas 
boosting did not. Distinct immune signatures were elicited by the different 
vaccine combinations, demonstrating that the immune response is shaped 
by the type of vaccines applied and the order in which they are delivered. 
These data provide a framework for improving future vaccine strategies 
against pathogens and cancer.

The management of the coronavirus disease 2019 (COVID-19) pan‑
demic has relied heavily on the development and global deployment 
of vaccines that protect against severe acute respiratory syndrome 
coronavirus 2 (SARS‑CoV‑2). Numerous homologous prime-boost 

vaccination regimens were shown to stimulate robust cellular and 
humoral immune responses and have been approved for clinical use1. 
The many different vaccines and vaccine technologies employed dur‑
ing this pandemic provide a unique opportunity to study their effects 
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Through the application of high-dimensional single-cell analy‑
sis, we identified a stronger IgM expression among spike-binding 
memory B cells, a higher frequency of CD4−CD8− T cell clusters as well 
as a strong spike-specific T cell response in vaccine combinations that 
included priming with the inactivated virus vaccine BBIBP. Addition‑
ally, regimens that induced spike-binding memory B cells skewed to a 
switched-activated (CD21−CD38−/lo) phenotype and a downregulation 
of CXCR5 were associated with higher antibody titers and stronger 
serum-neutralizing activity. Cells with a comparable expression profile 
have previously been described to transiently arise after influenza vac‑
cination and to be potential precursors of long-lived plasma cells20,21. 
Our study paves the way to further our understanding of the immune 
response to different vaccine strategies and supports the rationale for 
combining different technologies for future development of improved 
vaccines against pathogens and cancer.

Results
Study cohort and reactogenicity
To compare the immune profiles resulting from different COVID-19 vac‑
cination regimens, we enrolled participants to be vaccinated with the 
regimens listed in Fig. 1. Individuals were given a priming dose (dose 1)  
followed by a homologous or heterologous booster dose (dose 2) 4–12 
weeks later, resulting in a total of 16 combinatorial vaccination regi‑
mens. The interval between dose 1 and dose 2 depended on the first 
vaccine administered: 4 weeks for individuals primed with mRNA-1273 
or BBIBP, 9–10 weeks after priming with AZD or 12 weeks after prim‑
ing with Sput-26. Blood samples were collected from each volunteer 
at the day of dose 2 administration (T1), 14 ± 2 d after dose 2 (T2) and 
28 ± 1 d after dose 2 (T3; Table 1). The T1–T2 and T2–T3 intervals were 
approximately 2 weeks for all groups (Table 1). Serum and plasma 
were collected at all timepoints, and peripheral blood mononuclear 
cells (PBMCs) were isolated at T1 and T3. In total, 1,491 samples from  
497 individuals were included in the analysis. Characteristics of the 
whole cohort and the vaccine groups are summarized in Table 1. 
Individuals with a prior history of COVID-19 or a positive SARS-CoV-2 
nucleocapsid protein IgG ELISA result at T1 were excluded. The vaccine 
groups were comparable in number of participants and sex distribution.

All study participants were monitored for up to 6 months after 
dose 2 to assess reactogenicity. Pain at the site of injection was the most 
frequent local adverse event after dose 1 (Extended Data Fig. 1a) and 
dose 2 (Extended Data Fig. 1b). There was no systematic clinical follow 
up of the cohort in terms of SARS-CoV-2 infections. Until July 2022, 

and dissect the immune responses associated with each regimen. 
Different reports have shown that certain heterologous prime-boost 
regimens provide enhanced immunogenicity against SARS-CoV-2  
(refs. 2–5; https://www.who.int/publications/i/item/WHO-2019-nCoV- 
vaccines-SAGE-recommendation-heterologous-schedules), in line 
with preclinical data comparing heterologous versus homologous 
vaccination regimens against numerous other pathogens6–11. Neverthe‑
less, little is known about specific differences in the cellular immune 
response to different types of vaccines and their mix-and-match com‑
binations as well as the cellular phenotypes that are associated with 
potent immunization, not only in the context of SARS-CoV-2 but also 
other infectious diseases. The variety of vaccines against COVID-19  
offers a unique opportunity to characterize the human immune 
response to a range of vaccine technologies.

The primary COVID-19 vaccination regimens approved for clinical 
use include viral-vector-based approaches such as AZD1222 (two-dose 
homologous prime-boost, henceforth termed AZD), developed by 
the University of Oxford in collaboration with AstraZeneca12; Sputnik 
V (prime-boost heterologous human adenoviral vectors, serotypes  
26 (henceforth Sput-26) and 5 (Sput-5)) by the Gamaleya Research Insti‑
tute1,13 and Ad5-nCoV-S (a single-dose viral vector vaccine, henceforth 
Ad5) by CanSino Biologics14. Moreover, inactivated vaccines are also 
approved such as BBIBP-CorV (henceforth BBIBP), developed by Sinop‑
harm15, and mRNA-based vaccines such as mRNA-1273 by Moderna16, as 
well as protein subunit vaccines such as NVX-CoV2373, a recombinant 
spike protein nanoparticle vaccine by Novavax17 (the latter was not part 
of this study). These vaccines are being widely administered on a global 
scale (https://covid19.trackvaccines.org/agency/who/).

In 2021, the Argentine Ministry of Public Health began a multi‑
center study (ECEHeVac, NCT04988048) to systematically compare 
the immune responses to homologous and heterologous COVID-19 
vaccination regimens in Argentina18. In the present study, we specifi‑
cally analyzed samples from one cohort located at a clinical center in 
the city of Córdoba (REPIS-Cba 4371). The individuals recruited for 
the trial were first vaccinated with one dose of AZD, BBIBP, Sput-26 
or mRNA-1273, followed by a randomized second dose of AZD, BBIBP, 
Sput-26, Sput-5, mRNA-1273 or Ad5, resulting in a total of 16 different 
homologous or heterologous prime-boost regimens. We conducted a 
head-to-head comparison of the immune responses to these COVID-19 
vaccine regimens and interrogated antibody and cellular responses, 
which are known to act in tandem to provide protection against 
SARS-CoV-2 (ref. 19).
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Fig. 1 | Schematic of vaccination regimens and data analysis pipeline. 
Participants were vaccinated with one of sixteen COVID-19 vaccine combination 
regimens and donated blood at timepoints T1 (4–12 weeks after dose 1),  
T2 (2 weeks after dose 2) and T3 (4 weeks after dose 2). PBMCs collected at  
T1 and T3 were used for IFNγ ELISpot assays and high-dimensional spectral flow 

cytometry analysis. Sera and plasma collected at T1, T2 and T3 were analyzed 
for anti-S-RBD IgG levels and NAb titers, respectively. Anti-S-RBD IgA levels 
were measured at T3. Participants were monitored for adverse events. The 
data collected were analyzed using dimensionality reduction, FlowSOM-based 
clustering algorithms and statistical testing. IFNγ, interferon-gamma.
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however, no deaths were reported among the volunteers. The most 
common systemic adverse manifestations were fever, arthromyalgia 
and headache. In general, the spectrum of reported adverse events 
was comparable across all groups. Of note, the use of mRNA-1273 or  
Sput-26 as dose 2 in heterologous regimens, and the combination of 
AZD/Ad5 (dose 1/dose 2), increased the frequency of reported cumu‑
lative adverse events compared to homologous regimens. All reacto‑
genicity symptoms were short lived, and there were no hospitalizations 
due to adverse events. Thus, all vaccine regimens were considered 
collectively well-tolerated.

Strength of antibody response varies between vaccines
We evaluated the antibody response to the 16 prime-boost regi‑
mens by measuring participants’ serum levels of IgG specific for the 
receptor-binding domain (RBD) of the SARS-CoV-2 spike protein 
(anti-S-RBD IgG) and their SARS-CoV-2-neutralizing antibody (NAb) 
titers at timepoints T1, T2 and T3 for all vaccination groups, as well 
as anti-S-RBD IgA serum levels at T3 (Fig. 2a–e). All study participants 
had detectable anti-S-RBD IgG levels (>50 AU ml−1) after dose 2, and 
anti-S-RBD IgG levels increased substantially from T1 to T3 in all groups 
except for AZD/BBIBP (Fig. 2a). At T3, anti-S-RBD IgG and IgA levels as 
well as NAb titers were highest in individuals that received homologous 
mRNA-1273/mRNA-1273 vaccination, followed by the heterologous 
groups that included mRNA-1273 as dose 2 and BBIBP/Sput-26 for IgA 
(Fig. 2c–e). While in the homologous mRNA-1273/mRNA-1273 group the 
fold change from the first to the second dose was moderate in compari‑
son (7.4-fold for anti-S-RBD IgG and 19.3-fold for NAb) due to already 
higher values after the first dose, both of these humoral responses were 
most strongly enhanced by mRNA-1273 in the heterologous combina‑
tions (AZD/mRNA-1273: 51.4-fold and 33.5-fold; BBIBP/mRNA-1273: 
70-fold and 72.2-fold; Sput-26/mRNA-1273: 33.1-fold and 41.5-fold), 
except after priming with AZD, where boosting with Ad5 led to the 
greatest increase (41.1-fold) in NAb titers (Extended Data Fig. 2a,b). 
Anti-S-RBD IgG levels were positively correlated with NAb titers at T3 
(except for AZD/Ad5; Extended Data Fig. 2c). Thus, heterologous vac‑
cine combinations generally elicited enhanced antibody responses 
compared to homologous combinations, except when BBIBP was 
administered as dose 2, and mRNA-1273 as dose 2 induced the strong‑
est antibody responses, regardless of the vaccine used as dose 1.

mRNA booster potently expands spike-binding memory  
B cells
B cells contribute to immunological memory against many viral infec‑
tions and are important in protecting against COVID-19 (ref. 22). The 
ability of COVID-19 vaccines to induce memory B cell (mBC) expansion 
is therefore critical for their effectiveness. Hence, we generated a mul‑
tiparametric flow cytometry panel to interrogate postvaccination B 
cell dynamics, using fluorescently labeled wild-type SARS-CoV-2 spike 
multimer probes23 to identify mBCs specific for the SARS-CoV-2 spike 
protein. Data were projected using Uniform Manifold Approximation 
and Projection (UMAP) in conjunction with FlowSOM clustering to 
evaluate the canonical B cell populations and identify spike-binding 
mBCs (Fig. 3a and Extended Data Fig. 3a). The proportions of all canoni‑
cal B cell populations were similar among the 16 vaccinated groups at 
T3 (Fig. 3b). This suggests that general vaccination strategies do not 
impact canonical B cell frequencies in the first weeks postvaccina‑
tion, regardless of the vaccine strategy used. One month after dose 2 
(T3), we observed a significant increase in the frequency of the specific 
spike-binding mBCs in all vaccine groups, except for those with BBIBP 
as dose 2 (Fig. 3c). The most pronounced increase in spike-binding 
mBCs and the highest frequencies at T3 were observed in individu‑
als who received mRNA-1273 as dose 2 (Fig. 3c,d and Extended Data  
Fig. 3b). We found that the frequency of spike-binding mBCs correlated 
with the levels of anti-S-RBD IgG, anti-S-RBD IgA and NAbs for some 
(but not all) vaccine groups (Fig. 3e). We did not observe a correlation Ta

bl
e 

1 |
 C

oh
or

t c
ha

ra
ct

er
is

tic
s.

 A
ge

, g
en

de
r a

nd
 d

os
e 

in
te

rv
al

s f
or

 e
ac

h 
va

cc
in

e 
co

m
bi

na
tio

n

D
os

e 
1

A
ZD

BB
IB

P
m

RN
A-

12
73

Sp
ut

-2
6

D
os

e 
2

O
ve

ra
ll,

 
n =

 4
97

A
d5

,  
n =

 20
A

ZD
,  

n =
 4

1
BB

IB
P,

 
 n

 = 2
5

m
RN

A-
12

73
,  

n =
 3

2
Sp

ut
-2

6,
  

n =
 29

A
ZD

,  
n =

 25
BB

IB
P,

  
n =

 4
0

m
RN

A-
12

73
,  

n =
 3

0
Sp

ut
-2

6,
  

n =
 3

3
m

RN
A-

12
73

,  
n =

 20
A

d5
,  

n =
 29

A
ZD

,  
n =

 3
6

BB
IB

P,
 

n =
 3

4
m

RN
A-

12
73

,  
n =

 4
2

Sp
ut

-2
6,

 
n =

 25
Sp

ut
-5

, 
n =

 3
6

Ag
e

41
.8

 ± 
15

.6
32

.6
 ± 

9.
4

50
.9

 ± 
12

.9
39

.1 
± 1

0.
4

43
.4

 ± 
10

.9
46

.2
 ± 

11
.5

26
.2

 ± 
13

.5
29

.1 
± 1

3.
0

26
.8

 ± 
11

.8
32

.4
 ± 

14
.2

26
.9

 ± 
10

.3
39

.2
 ± 

14
.8

53
.2

 ± 
11

.0
52

.1 
± 1

2.
3

54
.7

±9
.2

47
.7

 ±
10

.8
49

.5
 ±

13
.1

G
en

de
r

F
25

2 (
51

%
)

10
 (5

0%
)

21
 (5

1%
)

12
 (4

8%
)

14
 (4

4%
)

14
 (4

8%
)

13
 (5

2%
)

19
 (4

8%
)

16
 (5

3%
)

18
 (5

5%
)

11
 (5

5%
)

20
 (6

9%
)

16
 (4

4%
)

13
 (3

8%
)

23
 (5

5%
)

12
 (4

8%
)

20
 (5

6%
)

M
24

5 (
49

%
)

10
 (5

0%
)

20
 (4

9%
)

13
 (5

2%
)

18
 (5

6%
)

15
 (5

2%
)

12
 (4

8%
)

21
 (5

2%
)

14
 (4

7%
)

15
 (4

5%
)

9 
(4

5%
)

9 
(3

1%
)

20
 (5

6%
)

21
 (6

2%
)

19
 (4

5%
)

13
 (5

2%
)

16
 (4

4%
)

T1
 (d

ay
s a

fte
r d

os
e 

1)
64

.8
 ± 

23
.7

73
.6

 ± 
9.

6
65

.7
 ± 

6.
9

65
.2

 ± 
3.

1
66

.9
 ± 

16
.9

62
.4

 ± 
7.7

33
.3

 ± 
3.

1
45

.8
 ± 

17
.6

35
.1 

± 4
.7

38
.9

 ± 
12

.9
32

.9
 ± 

2.
8

79
.0

 ± 
12

.7
82

.9
 ± 

18
.9

85
.0

 ± 
27

.0
84

.8
 ± 

17
.3

82
.4

 ± 
8.

0
83

.6
 ± 

18
.4

T2
 (d

ay
s a

fte
r d

os
e 

2)
14

.3
 ± 

1.5
 

(n
 = 4

37
)

14
.2

 ± 
0.

5 
(n

 = 1
8)

14
.2

 ± 
0.

6 
(n

 = 3
5)

14
.3

 ± 
0.

7  
(n

 = 2
3)

14
.5

 ± 
2.

6 
(n

 = 2
9)

14
.1 

± 0
.4

  
(n

 = 2
8)

14
.4

 ± 
0.

8 
 

(n
 = 2

2)
14

.8
 ± 

1.8
 

(n
 = 2

6)
14

.2
 ± 

0.
7 

(n
 = 2

7)
15

.1 
± 2

.7
  

(n
 = 2

7)
14

.1 
± 0

.3
 

(n
 = 1

4)
14

.3
 ± 

0.
7 

 
(n

 = 2
7)

14
.7

±3
.3

 
(n

 = 3
3)

14
.1±

0.
6 

(n
 = 3

4)
14

.0
± 

0.
0 

(n
 = 3

9)
14

.2
± 

0.
7 

(n
 = 2

3)
14

.1 
± 0

.6
 

(n
 = 3

2

T3
 (d

ay
s a

fte
r d

os
e 

2)
28

.4
 ± 

1.2
 

(n
 = 4

20
)

29
.3

 ± 
0.

9 
(n

 = 1
9)

28
.6

 ± 
1.6

 
(n

 = 3
0)

28
.4

 ± 
0.

9 
 

(n
 = 2

0)
28

.1 
± 0

.8
 

(n
 = 2

7)
28

.2
 ± 

0.
9 

 
(n

 = 2
7)

28
.1 

± 0
.3

  
(n

 = 2
2)

28
.8

 ± 
1.6

 
(n

 = 2
6)

28
.0

 ± 
0.

0 
(n

 = 2
3)

28
.2

 ± 
1.4

  
(n

 = 2
6)

28
.7

 ± 
1.4

 
(n

 = 1
3)

29
.2

 ± 
1.6

  
(n

 = 2
6)

28
.2

 ± 
0.

9 
(n

 = 3
1)

28
.5

 ± 
1.7

 
(n

 = 3
4)

28
.1 

± 0
.3

 
(n

 = 3
8)

28
.0

 ± 
0.

0 
(n

 = 2
3)

28
.2

 ± 
1.1

 
(n

 = 3
5)

M
ea

n 
± s

.d
. n

um
be

r o
f d

ay
s 

an
d 

st
an

da
rd

 d
ev

ia
tio

n 
af

te
r d

os
e 

1 o
r d

os
e 

2 
w

er
e 

ca
lc

ul
at

ed
 fr

om
 a

 s
ub

se
t o

f t
he

 to
ta

l p
ar

tic
ip

an
ts

, a
s 

in
di

ca
te

d 
be

lo
w

 e
ac

h 
m

ea
n.

http://www.nature.com/natureimmunology


Nature Immunology | Volume 24 | June 2023 | 941–954 944

Article https://doi.org/10.1038/s41590-023-01499-w

1.4 × 10
−5

1.7 × 10
−2

3.6 × 10
−6

4.2 × 10
−6

5.0

2 × 10
−2

5.8 × 10
−8

1.8 × 10
−5

3.2 × 10
−11

3.6 × 10
−2

3.2 × 10
−11

7.5

10.0

12.5

15.0

lo
g 2(

An
ti-

S-
RB

D
 Ig

G
 (A

U
 m

l−1
))

AZD mRNA
-1273BBIBP

AZD AZDBBIBP BBIBPmRNA
-1273

Sput
26

mRNA
-1273

Sput
26

Sput
26

mRNA
-1273

mRNA
-1273

Dose 1

Dose 2 Ad5Sput
5

Sput 26

Anti-spike RBD IgG (T3) Anti-spike RBD IgA (T3)

Neutralizing antibodies (T3)

AZD mRNA
-1273 Sput 26BBIBP

AZD AZD AZDAd5BBIBP BBIBP

BBIBP AZDAd5

BBIBPmRNA
-1273

Sput
26

mRNA
-1273

Sput
26

Sput
26

mRNA
-1273

mRNA
-1273

Dose 1

Dose 2 Ad5 Sput
5

c d

3.7 × 10
−6

3.5 × 10
−2

2.9 × 10
−4

1.9 × 10
−5

9.3 × 10
−7

7.1 × 10
−5

2.1 × 10
−9

5.3 × 10
−9

0

2.5

5.0

7.5

10.0

lo
g 2 (

tit
er

)

a

Ad5
AZD

BBIBP
m

RN
A-1273

Sput 26
Sput 5

D
ose 2

Dose 1
AZD Sput 26BBIBP mRNA-1273

Anti-spike RBD IgG Neutralizing antibodiesb
Ad5

AZD
BBIBP

m
RN

A-1273
Sput 26

Sput 5
D

ose 2
Dose 1

AZD Sput 26BBIBP mRNA-1273

6.4 × 10−8
3.1 × 10−8

4.5 × 10−10
1.2 × 10−8

4.5 × 10−10
5.0 × 10−10

4.5 × 10−9

2.7 × 10−8

1.3 × 10−8
1.1 × 10−8

3.5 × 10−6

6.8 × 10−5

1.7 × 10−10
4.5 × 10−10

1.5 × 10−9
2.9 × 10−8

2 × 10−6
3.5 × 10−6

1.5 × 10−6
1.2 × 10−6

9.2 × 10−9

6 × 10−7

3.5 × 10−2

6 × 10−13
5.1 × 10−13

1 × 10−6
5.1 × 10−7

7.3 × 10−9
9.2 × 10−9

T1 T2 T3

2

20

200

2

20

200

2

20

200

2

20

200

2

20

200

2

20

200

Time

N
Ab

 ti
te

r

2.6 × 10−10
1.5 × 10−10

1.3 × 10−13
2.8 × 10−11

3.2 × 10−2

2.6 × 10−10

6 × 10−10

4.8 × 10−2

8.7 × 10−10
1.5 × 10−9

1.8 × 10−11
3.6 × 10−12

5.5 × 10−8
4.2 × 10−7

3.6 × 10−10
1.6 × 10−9

5.6 × 10−10
1.7 × 10−9

3.8 × 10−6
2.9 × 10−5

6.5 × 10−7
5.6 × 10−6

1.3 × 10−9
1.2 × 10−8

5 × 10−3
1.5 × 10−2

1.5 × 10−13

3.9 × 10−21

8 × 10−3

2.6 × 10−8
1.2 × 10−7

1.3 × 10−13
1.4 × 10−13

10
100

1,000
10,000

1
10

100
1,000

10,000

1
10

100
1,000

10,000

1
10

100
1,000

10,000

1
10

100
1,000

10,000

100

1,000

10,000

An
ti-

sp
ik

 e
 R

BD
 Ig

G
 (A

U
 m

l−1
)

Time
T1 T2 T3 T1 T2 T3 T1 T2 T3 T1 T2 T3 T1 T2 T3 T1 T2 T3 T1 T2 T3

AZD mRNA
-1273BBIBP

AZD AZDBBIBP BBIBPmRNA
-1273

Sput
26

mRNA
-1273

Sput
26

Sput
26

mRNA
-1273

mRNA
-1273

Dose 1

Dose 2 Ad5 Sput
5

Sput 26

BBIBP AZDAd5

3 × 10
−2

9.2 × 10
−4

9.7 × 10
−3

3 × 10
−4

3 × 10
−2

0

1
2
3
4
5

10

20

C
on

c.
 (n

g 
m

l−1
)

e

Fig. 2 | Antibody response in participants after vaccination with various 
regimens. a,b, Longitudinal (a) anti-S-RBD IgG levels (n = 1354) and (b) NAb titers 
(n = 1355) measured at timepoints T1, T2 and T3. Black lines show the median.  
c–e, Anti-S-RBD IgG levels (n = 420) (c), anti-S-RBD IgA levels (n = 349) (d) and 
NAb titers (n = 421) at T3 (e). Large black dots depict the median of each group, 
and the vertical line spans the interquartile range. The horizontal line shows the 

overall mean of all participants, and P values indicate differences between the 
respective group and the overall mean of all participants (c–e). P values were 
calculated using the Mann–Whitney–Wilcoxon test and corrected for multiple 
hypothesis testing with the Benjamini–Hochberg method. Only statistically 
significant P values (P < 0.05) are shown.
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between other B cell subsets and the antibody response in most of the 
vaccine groups (Extended Data Fig. 3c).

Vaccine regimens elicit distinct memory B cell phenotypes
To better understand the effect of various vaccine regimens on the 
phenotype of spike-binding mBCs, we evaluated the expression of 
differentiation markers and trafficking molecules on these cells at T3 
(Fig. 4a). Spike-binding mBCs from mRNA-1273-boosted individuals 
showed a low expression of CD21, CD38 and CXCR5, while these mark‑
ers were highly expressed in BBIBP-boosted individuals. Furthermore, 

spike-binding mBCs from BBIBP-primed groups showed the lowest 
relative expression of IgG and the highest of IgM. The highest intensity 
of IgA was found in spike-binding mBCs from individuals vaccinated 
with mRNA-1273/mRNA-1273 (Fig. 4a), which also resulted in the highest 
concentrations of anti-SARS-CoV-2 S-RBD IgA in the sera of participants 
(Fig. 2d). Next, we examined whether these phenotypes were indica‑
tive of the strength of the antibody response (Fig. 4b,c and Extended 
Data Fig. 3d). We found strong negative correlations between antibody 
response (anti-S-RBD IgG levels and NAb titers) and the expression of 
CD21, CD38 and CXCR5 on spike-specific mBCs, while IgA and CXCR3 
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different vaccine regimens. a, UMAP showing the FlowSOM-guided manual 
metaclustering of nonnaive B cells (IgD−/IgM−) for all vaccine groups (n = 799). The 
heatmap indicates the median intensity of normalized marker expression (range: 
0–1) for the identified B cell subsets. b, Relative frequencies of B cell subsets from 
each vaccine regimen at T3 (n = 347). c, Longitudinal analysis of spike-binding 
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spans the interquartile range. The horizontal line indicates the overall mean of 
all participants. P values (shown above groups) indicate differences between the 
respective group and the overall mean of all participants (n = 347). e, Correlations 
of spike-binding mBC frequencies with anti-S-RBD IgG levels, anti-S-RBD IgA levels 
and NAb titers for each vaccine regimen at T3 (n = 347). P values were calculated 
using the Mann–Whitney–Wilcoxon test and corrected for multiple hypothesis 
testing with the Benjamini–Hochberg method (c and d). Only statistically 
significant P values (P < 0.05) are displayed. Color indicates Spearman’s rank 
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were positively correlated with antibody response (Fig. 4b). Thus, not 
only the frequency but also the phenotype of antigen-specific mBCs can 
reflect the strength of the antibody response after COVID-19 vaccina‑
tion (Fig. 4c). To assess the applicability of these findings, we divided 
the cohort into positive and negative responders for NAbs (positive 
responders were defined as NAb titer ≥ 10). Positive responders showed 
a lower expression of CD21, CD38 and CXCR5 on spike-binding mBCs, 
thus corroborating their role as B cell markers for a potent antibody 
response (Fig. 4d and Extended Data Fig. 3e). Additionally, we found 
that Ad5, mRNA-1273 and Sput-5 led to a positive response for NAbs in 
100% of individuals receiving these vaccines as dose 2 (Fig. 4e), whereas 
the other regimens did not induce detectable NAb titers in all individu‑
als, that is AZD/AZD (no detectable NAb in 2/20 participants), Sput-26/
AZD (1/23), AZD/BBIBP (10/20), BBIBP/BBIBP (5/24), Sput-26/BBIBP 
(9/23), AZD/Sput-26 (1/22), BBIBP/Sput-26 (2/24) and Sput-26/Sput-26 
(2/23; Fig. 4e). Equally, none of the booster vaccines converted 100% 
of individuals to anti-S-RBD IgA positivity (Fig. 4f). We did not find any 
differences between positive and negative anti-S-RBD IgA responders 
(cut-off: 0.32 ng ml−1) for the spike-binding mBC markers described 
above (Extended Data Fig. 3f).

Overall, our results highlight two key points. First, boosting 
with BBIBP resulted in mBCs compatible with a switched-resting 
(CD21+CD27+CD38+/low) or preswitched (IgM+CD21+CD27+CD38+/low) 
phenotype and induced the lowest antibody titers and neutralizing 
activity in the cohort. Boosting with mRNA-1273, meanwhile, induced 
phenotypes indicating switched-activated (IgG/IgA+CD21-CD27+CD38−) 
or atypical (IgG/IgA+CD21−CD27−CD38low) mBCs24 and led to the strong‑
est antibody response. Thus, the B cell immune landscape in vaccinated 
individuals clearly mirrors the antibody profile seen in the serum shortly 
after vaccination. Second, spike-binding mBCs from BBIBP-primed 
individuals showed expression profiles suggesting different isotype 
switching (indicated by higher IgM expression), representing a char‑
acteristic memory B cell signature that persists after dose 2.

BBIBP priming enhances SARS-CoV-2-specific T cell response
Increased frequencies of interferon-gamma (IFNγ)-secreting T cells 
against SARS-CoV-2 spike, nucleoprotein and matrix proteins are known 
to predict protection after vaccination from COVID-19 (refs. 1,25). To 
assess the cellular immune response upon antigen re-encounter, we 
stimulated PBMCs from timepoints T1 and T3 with SARS-CoV-2 spike 
and nucleocapsid peptide pools and measured IFNγ production with an 
ELISpot assay (Fig. 5a–c). BBIBP-primed individuals showed significant 
increases in spike-induced IFN-γ production with all booster vaccines. 
For Sput-26-primed individuals, only Sput-5 (2.7-fold) as dose 2 resulted 
in a significant increase of spike-specific responses at T3 (Fig. 5a and 
Extended Data Fig. 4a). At T3, the strongest response in AZD-primed 
individuals was observed in the AZD/Ad5 group, while BBIBP-primed 
individuals reached high levels with all vaccine combinations  
(Fig. 5c). Meanwhile, the nucleocapsid-induced IFNγ production 
at T3 in BBIBP-primed participants was highest after boosting with  
mRNA-1273, BBIBP or AZD (Extended Data Fig. 4b).

Overall, BBIBP-primed individuals showed the highest 
spike-induced IFNγ production, independent of dose 2. BBIBP is the 

only vaccine in the study that targets the whole SARS-CoV-2 virus 
rather than solely the spike protein15. Therefore, as expected, this was 
the only vaccine that induced median IFNγ production levels above 
the cut-off threshold when stimulated with nucleocapsid peptides 
(Extended Data Fig. 4b). Interestingly, we did not detect responses 
above the threshold level against both antigens when BBIBP was 
given as dose 2 in heterologous regimens. However, we also observed 
nucleocapsid-specific IFNγ production in a small proportion of par‑
ticipants vaccinated with vaccines only targeting the spike protein, 
potentially reflecting previously reported cross-reactive T cell immu‑
nity against SARS-CoV-2 nucleocapsid in individuals without prior 
SARS-CoV-2 infection or vaccination26. In sum, these results reveal that 
T-cell-mediated responses against SARS-CoV-2 spike and nucleocapsid 
peptides are stronger when BBIBP is administered as dose 1, regardless 
of the vaccine used as dose 2.

T cell phenotypes correlate with spike-specific IFNγ response
Given the differences in the T cell responses, we interrogated overall 
T cell dynamics to determine whether the frequencies of some T cell 
subsets are indicative of strong spike-specific cellular responses upon 
antigen re-encounter. We began by generating a lymphocyte-focused 
panel for single-cell analysis and defined 15 canonical T cell sub‑
populations using naive/memory-associated markers (Extended Data 
Fig. 5a–c). No significant differences were observed in the relative 
frequencies of these subsets among the vaccinated groups at T3 
(Extended Data Fig. 5d), and none of the subsets showed a strong 
correlation (|rs| > 0.25 and P < 0.05) with spike-induced IFNγ pro‑
duction (Extended Data Fig. 5e). To investigate the T cell subsets 
more deeply, we reclustered the samples using 27 functional and 
lineage-specific spectral flow parameters (Extended Data Fig. 5a) 
and performed FlowSOM clustering on the T cell compartment. The 
frequencies of four of the resulting T cell clusters correlated with 
the levels of spike-induced IFNγ production detected in the ELISpot 
assay (|rs| > 0.25 and P < 0.05; Supplementary Table 1, Fig. 5d–e and 
Extended Data Fig. 5f). The phenotypes of the correlating clusters 
are depicted in Fig. 6a. The clusters that positively correlated (CM 
CD4+ cluster 9, EM CD8+ clusters 71&72 and CD4−CD8− clusters 3&8), 
respectively, expressed high levels of CD38, KLRG1 and CD27 com‑
pared to the canonical T cell populations (Fig. 6b). Next, we compared 
the frequency of these T cell clusters across the 16 vaccine regimens, 
finding that BBIBP-primed combinations showed higher frequencies 
of CD4−CD8− clusters 3&8 compared to the other groups (Fig. 5f). We 
then investigated differences between positive (≥1.03 normalized 
ELISpot response) and negative (<1.03) responders independent 
of the vaccine group. In general, positive responders were signifi‑
cantly higher for the described positively correlating T cell clusters, 
higher anti-S-RBD IgG and NAb titers as well as a lower expression of 
CD21 and CD38 on spike-binding mBCs (Fig. 6c and Extended Data 
Fig. 5g). The proportion of positive responders at T3 was highest 
after priming with BBIBP (Fig. 6d). In sum, we identified postvacci‑
nation T cell clusters that are markers for an antigen-specific T cell 
response upon antigen re-encounter and are differentially expressed 
in BBIBP-primed individuals.

Fig. 4 | Phenotypes of spike-binding mBCs from participants receiving 
different vaccine regimens. a, Scaled expression of phenotypic markers by 
spike-binding mBCs at T3 for each group. P values indicate differences between 
the respective group and the overall mean of all participants for each marker 
(n = 347). *P < 0.05, **P < 0.01, ***P < 0.001. b, Correlations between phenotypic 
marker expression by spike-binding mBCs and antibody response (anti-S-RBD 
IgG levels, anti-S-RBD IgA levels and NAb titers) across all vaccine regimens at T3. 
Color indicates Spearman’s rank correlation coefficient (rs), and the bubble size 
indicates the P value (n = 347). c, Spearman’s rank correlations between CD21, 
CD38 and CXCR5 expression and anti-S-RBD antibodies and NAb titers (n = 339). 
d, Participants were classified as negative (<10) or positive (≥10) for NAb titers 

and mean antibody levels. Spike-binding mBC marker expression was compared 
between negative and positive participants (n = 347). Boxes bound the IQR 
divided by the median, and Tukey-style whiskers extend to a maximum of 1.5× 
IQR beyond the box. Dots are participant data points. P values were calculated 
using the Mann–Whitney–Wilcoxon test and corrected for multiple hypothesis 
testing with the Benjamini–Hochberg method (a and d). Only statistically 
significant P values (P < 0.05) are displayed. e, The count and percentage of 
participants at T1 and T3 classified as negative or positive responders, grouped 
by vaccine regimen (n = 407 at T1, n = 347 at T3). f, Counts and percentages of 
participants negative or positive for anti-S RBD IgA at T3 per vaccine regimen 
(n = 349). IQR, interquartile range.
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Immune signatures segregate four major vaccination groups
Side-by-side analysis of our humoral and cellular immunogenicity 
data (Figs. 2c–e, 3d and 5c) revealed that BBIBP/mRNA-1273 induced 

especially high responses in both immune compartments (Fig. 7a). Only 
for Sput-26/Ad5 did antibody responses correlate with T cell responses 
after COVID-19 vaccination (Extended Data Fig. 6a).
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We then combined the mBC response markers from Fig. 4b,c and 
the T cell clusters shown in Fig. 6b to better characterize the specific  
cellular immune profiles associated with the 16 vaccine regimens. 

K-means clustering resulted in the segregation of four main vaccine 
regimen signatures (that is, boost BBIBP, viral vector, boost mRNA and 
prime BBIBP) clearly separated through the comparison of 11 parameters  
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(Fig. 7b). Differences in immune signatures were striking between prim‑
ing and boosting with BBIBP. The prime BBIBP signature was found to 
have a comparably high frequency of the CM CD4+ cluster 9, CD4−CD8− 
clusters 3&8 and the EM CD8+ clusters 71&72. On the contrary, the 
immune signature of boost BBIBP was characterized by spike-binding 
mBCs with a higher expression of CD21, which is associated with a rest‑
ing mBC phenotype, while the immune signature of boost mRNA was 
characterized by lower CD21 expression by spike-binding mBCs, mark‑
ing activated or atypical mBCs (depending on CD27 expression)27–29. 
In addition, we observed a lower expression of CXCR5 in the boost 
mRNA compared to the boost BBIBP group, a receptor for participating 
in germinal center reactions that is typically downregulated in non‑
classical mBC subsets20,30–32. We compared antibody production and 
cellular immune responses to SARS-CoV-2 among these four immune 
signature groups. The signature group ‘boost mRNA’ induced the high‑
est anti-RBD-IgG and NAb response, while ‘priming BBIBP’ led to the 
strongest anti-RBD-IgA and antigen-specific T cell responses (Fig. 7b,c). 
Finally, to visualize their distinct characteristics, principal component 
analysis with the same 11 parameters shows the clear separation of the 
vaccine signatures (Fig. 7d). Our analysis thus allows the extraction 
of vaccine regimen-driven immune signatures, which are linked to 
immunogenicity. These results provide insights into the underlying 
immunological mechanisms of vaccine-induced immune responses.

Discussion
The plethora of different COVID-19 vaccines available offers an unprec‑
edented opportunity to study human immune responses to immu‑
nization. Here we present the most comprehensive head-to-head 
immunophenotyping comparison of vaccine protocols to date, cov‑
ering adenoviral-vector, inactivated virus and mRNA platforms. We 
show that several heterologous vaccine combinations have similar or 
superior humoral and cellular immunogenicity compared to homolo‑
gous regimens. In addition, we detected B and T cell phenotypes that 
correlated with the humoral and cellular immune response, respec‑
tively, and classified the 16 vaccine combinations into four distinct 
groups based on differing humoral and cellular immune signatures 
induced in vaccinated individuals.

Our finding that the heterologous regimens AZD/mRNA-1273 and 
AZD/Ad5 induced stronger humoral and cellular responses compared 
to AZD/AZD agrees with preliminary reports showing improved immu‑
nogenicity for AZD when combined with mRNA vaccines (mRNA-1273 
or BNT162b2)2,3,5. In BBIBP-primed individuals, all heterologous com‑
binations led to stronger immune responses than the homologous 
regimen. These findings corroborate the results of antibody analyses 
from the complete ECEHeVac cohort (which included three additional 
centers in Argentina)18. In general, the administration of mRNA-1273 as 
dose 2 clearly improved immunogenicity in all assessed conditions. 
Combinations such as AZD/Ad5, BBIBP/Sput-26 and BBIBP/AZD also 
proved to be highly immunogenic. Together, these results provide a 
strong rationale for the superiority of heterologous vaccine regimens 
against SARS-CoV-2 among non-mRNA-based vaccines, suggesting that 
this strategy could improve the efficiency of vaccination programs, 
particularly in regions with limited vaccine supply. Interestingly, the 
order of vaccine administration in heterologous regimens also appears 
to be important—in line with other studies33,34; we observed that BBIBP 
induced strong immune responses as dose 1 but not as dose 2.

SARS-CoV-2 spike-binding mBC phenotypes differed among the 
vaccine combinations—boosting with BBIBP induced a resting phe‑
notype, while boosting with mRNA-1273 led to a switched-activated 
or atypical phenotype of SARS-CoV-2 spike-specific mBCs24. The 
exact mechanisms underlying these differences in specific mBC 
induction remain unclear, but differential interactions between 
antigen-specific B cells and membrane-bound versus soluble anti‑
gens may be responsible35. Furthermore, we found that boosting with 
BBIBP coincided with the highest proportions of CXCR5hiCXCR3lo 

spike-specific mBCs, a phenotype reminiscent of naive B cells. As in 
our study, Zhang et al. reported a correlation between NAb titers and 
CXCR3 expression by SARS-CoV-2 spike-specific mBCs in individuals 
who received an adenovirus-based COVID-19 vaccine36. Atypical mBCs 
(CD19+CD21−CD27−) have been shown to be activated in response to 
membrane-associated antigen and to be able to present antigen to 
T cells as well as to differentiate into plasma cells37. A subset of CD21lo 
antigen-specific B cells has been described to transiently arise 14–28 d 
after influenza vaccination. These cells potentially emerge from ger‑
minal centers, are refractory to further germ center differentiation (as 
indicated by downregulation of CXCR4 and CXCR5 that are associated 
with trafficking to and within germinal centers) and primed to differ‑
entiate into long-lived plasma cells20. Our data indicate SARS-CoV-2 
spike-specific mBCs with a comparable phenotype (CD21loCD38loCX‑
CR5lo) to be associated with stronger antibody response, suggesting 
that potent vaccine regimens induce this subset that then gives rise to 
antibody-producing plasma cells. However, BBIBP-boosted individu‑
als showed a higher expression of CD21, CXCR4 and CXCR5 as well as a 
predominantly IgM+ spike-binding memory B-cell phenotype, resulting 
in a weaker antibody response but hypothetically retaining the ability 
of the antigen-specific memory B cells to re-enter germinal centers and 
thus a potentially broader immune response.

mBCs are of particular interest in the context of new SARS-CoV-2 
variants, as these cells undergo fewer somatic hypermutations than 
plasma cells and are potentially more flexible in responding to differ‑
ent viral subtypes38. IgM+ mBCs tend to migrate to B cell follicles and 
re-initiate germinal center reactions upon rechallenge, thus potentially 
increasing the breadth of the antibody response; meanwhile, IgG+ mBCs 
preferentially differentiate into plasma cells to rapidly induce specific 
antibody production21. In our study, IgM expression of spike-binding 
mBCs was higher in BBIBP-primed individuals at T3, independent of the 
booster vaccine. Conversely, priming with the other vaccines resulted 
in the generation of primarily IgG+ spike-binding mBCs. IgM+ mBCs 
have been shown to provide a broader recognition of viral variants, 
as seen in a mouse model of immunization with dengue virus variant 
proteins35,39. In humans, a study of homologous versus heterologous 
vaccine combinations showed that BBIBP/mRNA-1273 had the highest 
neutralizing activity against the Omicron variant18. Thus, a vaccine 
response that induces a higher IgM expression among mBCs appears 
to deliver a broader immune response, potentially increasing immu‑
nity against viral variants. In addition, we found mRNA-1273/mRNA-
1273 to most strongly induce an IgA-polarized immune response. 
IgA antibodies were demonstrated to dominate the early humoral 
response to SARS-CoV-2 infection and to have stronger neutralization 
capacities compared with IgG40 and were found even in the absence 
of IgG in individuals after asymptomatic SARS-CoV-2 infection41. We 
speculate that differences in the cytokine response to the vaccine 
regimens may result in differences in IgA/IgG isotype polarization 
of the B cell response. For example, TGFβ is known to be essential for 
T-cell-dependent class-switching to IgA42.

Regarding the induction of spike-specific T cells, priming with 
BBIBP proved to be an optimal base for a strong IFNγ response. We 
found two T cell clusters (CD4−CD8− clusters 3&8) that consistently 
expanded to a greater extent in the BBIBP-primed groups. These clus‑
ters were similar to the canonical CD4−CD8− T cell subsets but displayed 
higher expression of CD27 and CD45RA, markers associated with naive 
T cells, and lower expression of killer-like-lectin receptor 1 (KLRG1), 
which has been described as a marker of final differentiation and immu‑
nosenescence43. While KLRG1hi T cells are generally considered short 
lived, it has been shown that KLRG1 can be downregulated (ex-KLRG1), 
giving rise to multiple memory populations that contribute to an effec‑
tive antiviral response44. CD4−CD8−(double-negative) T cells make up 
approximately 3–5% of circulating T cells45. They can originate from 
double-positive thymocytes by downregulation of CD4 and CD8 in 
the peripheral blood46. Such double-negative T cells are restricted to 
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either MHC I or MHC II molecules and have been shown to share func‑
tions with different subtypes of effector T cells, such as regulatory 
T cells, T helper (Th) cells or cytotoxic T cells. They were proposed to 
contribute to both innate and adaptive immune responses by modulat‑
ing the functions of macrophages, CD8+ T cells and B cells. As for viral 
infections, Th-like double-negative T cells in natural nonhuman hosts 
of simian immunodeficiency virus were shown to produce Th1, Th2 
and Th17 cytokines and they have been associated with suppression 
of disease progression45. Of note, our data do not show whether the 
described T cell clusters are themselves responsible for the observed 
IFNγ production after stimulation with spike peptides, as the clusters 
were identified through correlative analyses. However, they could 
nonetheless serve as biomarkers for the cellular response after COVID-
19 vaccination. In summary, our results show that priming with the 
inactivated virus vaccine leads to specific characteristics in the B and 
T cell compartments that are maintained even after a booster dose of a 
different vaccine. Differences between vaccines that might contribute 
to the heterogenicity of antibody, B and T cell responses might concern 
the version of the SARS-CoV-2 spike protein used, adjuvants (such as 
aluminum hydroxide in BBIBP47) or the presentation of the antigen 
(as part of an inactivated virus in BBIBP or produced by host cells in 
mRNA/viral-vector based vaccination). Also, the inactivated virus 
vaccine offers a fixed amount of the spike protein, whereas mRNA and 
adenoviral-vector-based vaccines may produce variable quantities of 
the antigen. The exact mechanisms however remain to be explained.

While clinical studies are needed to determine whether the com‑
paratively higher immunogenicity of specific vaccination regimens 
translates to better protection from SARS-CoV-2, the immune signa‑
tures described in our study can serve as a guide for vaccine develop‑
ment. Also, our results suggest that heterologous boosting might 
improve protection in individuals who have received one of the less 
immunogenic COVID-19 vaccines. The data suggest that heterologous 
vaccination may be in general superior and therefore should be con‑
sidered as a valuable strategy for future vaccines against pathogens 
and cancer.

A limitation of this study is the difference in time intervals between 
doses 1 and 2 for some groups. A 12-week interval was previously shown 
to induce higher NAb titers, but weaker T cell responses, compared to 
a 4-week interval for homologous and heterologous combinations of 
AZD and BNT162b2 (ref. 48). Nonetheless, some of the regimens with 
the shortest dosing intervals in our cohort (for example, mRNA-1273/
mRNA-1273) displayed the highest NAb titers among all the groups, and 
the intervals were comparable among individuals receiving the same 
dose 1. Additionally, we did not evaluate the real-world efficacy of the 
different vaccine combinations and the persistence of their immune 
responses over time. Lastly, while high age has been shown to have an 
influence on antibody titers49, which may have a minor influence in 
this study as well, the correlation with the immunophenotype at the 
single-cell level was performed with PBMC samples spanning a patient 
group of 18–59-year-old individuals.

Our results indicate that different types of vaccines induce dis‑
tinct cellular immune responses. With this knowledge, combinato‑
rial approaches might be able to exploit the strengths of different 
vaccine techniques. The identified characteristics in the immune 
response to different types of vaccines expand our understanding of 
vaccine-induced immunity and may be highly valuable for the future 
development and testing of vaccines against infectious diseases as 
well as cancer.
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Methods
Sample donors
Volunteers (age range: 18–82 years) were enrolled in a randomized, 
open Phase IIB clinical trial (ECEHeVac, NCT04988048) aimed at 
comparing the immunogenicity and reactogenicity of heterologous 
and homologous vaccination regimens available in Córdoba, Argen‑
tina. The study received ethical approval from the Registro Provincial 
de Investigación en Salud (Provincial Registry of Health Research, 
REPIS-Cba 4371). The study was conducted in accordance with the 
guidelines of Good Clinical Practice (ICH 1996) and the principles of 
the Declaration of Helsinki. No compensation was provided to the 
study participants.

Eligibility criteria
Eligible participants were healthy volunteers older than 18 years who 
had received a first dose of the AZD, BBIBP, Sput-26 or mRNA-1273 
vaccine 30–120 d before the enrollment date. Exclusion criteria were 
immunocompromised status with underlying disease or immunosup‑
pressive treatment; pregnancy and lactation; having received a major 
surgical intervention in the 30 d before the enrollment date; having had 
a severe allergic reaction (anaphylaxis) to any vaccine; having a visceral 
disease that lead to disability (heart failure, kidney failure, respiratory 
failure, liver failure, intestinal malformations, electro-dependence or 
having had a visceral transplant less than 2 years previously) and hav‑
ing had COVID-19 (symptomatic or asymptomatic). Additionally, all 
participants were tested for anti-SARS-CoV-2 nucleocapsid IgG via ELISA 
on T1 and in case of positive results excluded from the study (except for 
those participants that had been vaccinated with BBIBP as the first dose).

Randomization, consent and follow-up
Participants were randomized with equal group allocation to deter‑
mine the vaccine used as dose 2, and the participant and healthcare 
personnel in charge of vaccination were informed of the result. Each 
participant provided written informed consent to be included in the 
study. All participants filled out a questionnaire to verify personal 
data and health history. In this paper, the day of dose 2 is referred to as 
timepoint 1 (T1). The participants were observed for 15–20 min after 
inoculation. After T1, telephone and face-to-face monitoring of each 
participant was carried out for up to 6 months. The data obtained were 
recorded in the national health information system (www.https://sisa.
msal.gov.ar/sisa/#sisa).

Serum, plasma and PBMC collection
Whole blood samples were collected from participants at the day 
of dose 2 administration immediately before vaccination (T1) and 
at 14 ± 2 (T2) and 28 ± 1 (T3) days after dose 2. Sera and plasma were 
obtained from the whole blood at each timepoint. PBMCs (799 sam‑
ples acquired; after exclusion of samples not meeting the eligibility 
criteria 754 samples from 407 individuals were analyzed; 209 female 
and 198 male; age range: 18–59 years) were isolated from samples at 
T1 and T3 via density-gradient sedimentation using Ficoll-Paque PLUS  
(GE Healthcare). Isolated PBMCs were cryopreserved in 
heat-inactivated FBS (Natocor) containing 10% DMSO (Sigma-Aldrich) 
and stored in liquid nitrogen until use. Plasma samples (1,491 samples 
from 497 individuals; 252 female and 245 male; age range 18–82 years) 
were used for SARS-CoV-2 neutralization assays, sera were used for 
IgG anti-SARS-CoV-2 assays, and PBMC samples were used for flow 
cytometry and functional T cell assays.

Detection of anti-SARS-CoV-2 IgG and IgA antibodies
IgG antibodies against the SARS-CoV-2 nucleocapsid protein were 
qualitatively detected on T1 using a chemiluminescent microparticle 
immunoassay (CMIA; ARCHITECT SARS-CoV-2 IgG; 6R86, Abbott) that 
relies on an assay-specific calibrator to report a ratio of specimen to cali‑
brator absorbance (S/C). The interpretation of the result is determined 

by an index value, which is a ratio over the threshold value. An index (S/C) 
of <1.4 was considered negative and ≥1.4 was considered positive. IgG 
antibodies against the RBD of the S1 subunit of the SARS-CoV-2 spike 
protein were evaluated in sera samples collected on T1, T2 and T3 by a 
quantitative CMIA assay (AdviseDx SARS-CoV-2 IgG II; 6S60, Abbott). 
Sera with values ≥50.0 Arbitrary units per milliliter were considered 
positive. IgA antibodies against SARS-CoV-2 S1 RBD were measured 
in sera collected at T3 (samples from 349 individuals; 178 female and 
171 male; age range: 18–59 years) using ELISA (SARS-CoV-2 S1 RBD IgA 
ELISA kit; 4A257R, ImmunoDiagnostics). Sera were diluted tenfold and 
the measurements were performed according to the manufacturer’s 
instructions. The optical density (OD) of a blank well was subtracted 
from the OD of the samples measured at 450 nm. Measured sample 
values above 20 ng ml−1 were set to >20 ng ml−1. The cut-off between IgA 
positive and negative responders (cut-off: 0.32 ng ml−1) was determined 
using a SARS-CoV-2 unexposed prepandemic serum sample.

Detection of neutralizing antibodies against live SARS-CoV-2
Plasma samples from T1, T2 and T3 were tested for their ability to 
neutralize wild-type SARS-CoV-2 B.1 (hCoV-19/Argentina/PAIS-G0001/ 
2020, GISAID accession ID: EPI_ISL_499083) using the plaque reduction 
neutralization test as previously described50. Briefly, this test was per‑
formed with Vero 76 cells (ATCC CRL-1587) that were seeded in 24-well 
plates 48 h before infection. Plasma samples were heat-inactivated by 
incubation at 56 °C for 20 min and centrifuged at 3,000g 30 min before 
use. Treated samples were diluted twofold, and an equal volume of 
virus stock containing 100 plaque-forming units (PFU) was added to 
each corresponding well until reaching final dilutions ranging from 
1:10 to 1:320. Cells were incubated with 0.5% agarose with DMEM sup‑
plemented with 2% FBS for 4 d at 37 °C in a 5% CO2 incubator. After 
4 d, cells were fixed and inactivated using a 10% formaldehyde/PBS 
solution and stained with 1% crystal violet. NAb titers corresponded 
to the maximum dilution of plasma that neutralized 80% of the PFU, 
compared with PFU from the viral controls included in the test.

IFNγ ELISpot assay
IFNγ ELISpot analysis was performed using microplates precoated 
with monoclonal IFNγ-specific antibodies (Human Interferon Gamma 
ELISPOT Kit; Abcam). PBMCs (250,000 cells per well) were separately 
stimulated for 18 h with peptide pools (15mers with 11 amino acids 
overlap, PepMix SARS-CoV-2 spike Glycoprotein and NCAP, JPT Peptide 
Technologies) at a concentration of 1 µg ml−1. Tests were conducted with 
a negative (DMSO, Sigma-Aldrich) and positive control (Dynabeads 
Human T-Activator CD3/CD28, Gibco) for each sample. According to 
the manufacturer’s protocol, we added a biotinylated anti-IFNγ detec‑
tion antibody, followed by a streptavidin-AP conjugate and a 5-bromo-
4-chloro-3-indolyl phosphate/nitro blue tetrazolium substrate (all from 
the Human Interferon Gamma ELISPOT Kit) to visualize bound IFNγ.

Plates were scanned using an AID Classic ELISpot Reader, and spots 
were counted with the AID ELISpot software version 7.0 (AID Autoim‑
mun Diagnostika GmbH), following guidelines for the automated 
ELISpot evaluation51. Samples were excluded if the negative control 
wells had more than 39 or the positive control wells fewer than 40 
spots. Spot counts were multiplied by 4 to evaluate spots per million 
cells and normalized by dividing by the well saturation of the positive 
control (spots per million cells/positive control well saturation) for 
each sample. We used repetitive control samples for both acquisition 
rounds to control for batch effects. The positive cut-off threshold was 
calculated by taking the mean of the normalized IFNγ responses of the 
negative control (DMSO) across all groups.

Flow cytometry and data acquisition
Biotinylated full-length spike and nucleocapsid proteins (R&D Systems) 
were multimerized with streptavidin (SA)-BV421 (200 ng spike with 20 ng 
SA; ~4:1 molar ratio) and SA-PE-Cy5 (50 ng nucleocapsid with 14 ng SA; 
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~4:1 molar ratio), respectively, for 1 h23,52. Staining with SA-BV421 and 
SA-PE-Cy5 alone (without biotinylated spike or nucleocapsid protein) 
as well as fully stained SARS-CoV-2 unexposed prepandemic samples 
were used as controls. For the spike-binding mBC and T cell panels, 
1.5 × 106 and 1.0 × 106 PBMCs, respectively, were washed with PBS and 
blocked using Human TruStain FcX and True-Stain Monocyte Blocker 
(BioLegend). First, for the spike-binding mBC panel, cells were incubated 
for 30 min at 37 °C with the tetramers and antibodies listed in Supple‑
mentary Table 2. For both the spike-binding mBC and T cell panels, cells 
were stained for 25 min at 4 °C with the antibodies listed in Supplemen‑
tary Table 2 or Supplementary Table 3, respectively. Following surface 
staining, cells were fixed with 2% PFA or with Foxp3/transcription factor 
fixation/permeabilization solution (eBioscience) for 15 or 40 min at 
4 °C, respectively, for the spike-binding mBC and T cell panels. For the 
T cell panel, cells were then stained overnight at 4 °C with the antibodies 
listed in Supplementary Table 3, all diluted in 1× permeabilization buffer 
(eBioscience). Data were acquired with Cytek Aurora flow cytometers 
and preprocessed using FlowJo software version 10 (BD Bioscience).

High-dimensional flow cytometry data analysis
For high-dimensional flow cytometry analysis, dead cells, doublets 
and cells stained by fluorochrome aggregates were excluded from the 
analysis via manual gating using FlowJo software. The gating strategy 
is shown in Extended Data Fig. 7a,b. Datasets of different batches were 
corrected using the CytoNorm R package53. To obtain an unbiased over‑
view, we systematically reduced cytometry data to two dimensions by 
applying UMAP54 (umap R package55) to stochastically selected cells. All 
cells were clustered using the FlowSOM algorithm (FlowSOM R pack‑
age56) in conjunction with consensus clustering (ConsensusClusterPlus 
R package57) and were subsequently manually annotated into different 
clusters with distinct phenotypes in terms of median fluorescence 
intensity of the selected surface marker. The expression of each marker 
across all samples was min–max normalized to the range 0–1. The main 
R script was run as described in ref. 58.

Statistical analysis
Comparisons of continuous variable means between groups or to the 
overall mean of all participants were performed using the Wilcoxon–
Mann–Whitney test and corrected for multiple hypothesis testing 
with the Benjamini–Hochberg method (ggpubr R package59); these 
tests were two-tailed and performed on unpaired data. To calculate 
log-transformed data, we added 1 to the value before taking the log2. 
Where the y-axis was scaled, the pseudo_log_trans(base = 2) function 
was used (scales R package60). Spearman’s rank correlation coefficients 
(rs) between continuous variables were calculated with the Hmisc R 
package61, which approximates P values by using asymptotic t distri‑
butions. Scaled expression plots were scaled (values were divided by 
the standard deviation of the group) and centered (the group mean 
was subtracted from the values) per marker or feature. Differential 
expression was calculated by subtracting the expression level of the 
canonical T cell subset from the expression level of the T cell subcluster 
of interest. Fold change was calculated by dividing the participant value 
at T3 by the mean group value at T1. K-means clustering was performed 
on the rows and columns of heatmaps (ComplexHeatmap R package62). 
P < 0.05 was considered statistically significant. All statistical analyses 
were performed using R version 4.0.1 (R Core Team 2020).

Reporting summary
Further information on research design is available in the Nature Port‑
folio Reporting Summary linked to this article.

Data availability
This study did not generate new reagents. Data are available in a public 
repository (https://doi.org/10.5281/zenodo.7734088). Source data are 
provided with this paper.

Code availability
This study did not generate new codes. The codes that support these 
findings have been previously described53–62.
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Extended Data Fig. 1 | Local and systemic adverse events following vaccination. Reported adverse events and percentage of participants experiencing them are 
reported per vaccination group a, after the first vaccine dose and b, after the second dose (n = 497). Shaded areas indicate the homologous vaccine combinations.
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Extended Data Fig. 2 | See next page for caption.
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Extended Data Fig. 2 | Anti-S-RBD IgG levels and neutralizing antibody titers 
are correlated and respond differently to various vaccine combinations. Fold 
change in a, anti-S-RBD IgG levels (n = 420) and b, neutralizing antibody titers 
(n = 421) at T3 compared to the mean per group at T1. Large black dots depict  
the median of the group, and the vertical line spans the interquartile range. 
P-values were calculated using the Mann-Whitney-Wilcoxon test and the 

Benjamini-Hochberg method to correct for multiple hypothesis testing.  
Only significant P values (P < 0.05) are displayed. c, Correlation between the  
anti-S-RBD IgG levels and neutralizing antibody titers for every group (n = 420). 
The log transformation was performed by adding 1 to the value before taking 
the log2. The Spearman’s rank correlation coefficients (rs) and P values (P) are 
indicated.
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Extended Data Fig. 3 | See next page for caption.
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Extended Data Fig. 3 | Analysis of the B cell compartment after vaccination.  
a, UMAP showing the distribution of markers expressed by non-naïve B cells  
(IgD-/IgM-) among all vaccine groups (n = 799). b, Fold change of spike-binding 
mBC frequencies at T3 compared to the mean per group at T1 (n = 347). Large 
black dots show the median, and the vertical line spans the interquartile range. 
P-values were calculated using the Mann-Whitney-Wilcoxon test between  
groups with the same dose 1 and the Benjamini-Hochberg method to correct for 
multiple hypothesis testing. Only significant P values (P < 0.05) are displayed.  
c, Correlation among B cell subsets and antibody responses (anti-S-RBD IgG 
levels, anti-S-RBD IgA levels and neutralizing antibody titers) (n = 347).  
d, Correlation among spike-binding mBC marker expression levels and antibody 

responses. Color indicates the Spearman’s rank correlation coefficient (rs),  
and the circle size indicates the P value (n = 347). e, Participants were classified  
as negative (< 10) or positive (≥ 10) for neutralizing antibodies (n = 347).  
f, Participants were positive (>0.32 ng/ml) or negative for anti-S RBD IgA  
(n = 345). (e,f) The means of each listed parameter were compared between 
negative and positive responders using the Mann-Whitney-Wilcoxon test  
and corrected for multiple hypothesis testing with the Benjamini-Hochberg 
method. Boxes bound the interquartile range (IQR) divided by the median, and 
Tukey-style whiskers extend to a maximum of 1.5 × IQR beyond the box. Dots are 
participant data points.
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Extended Data Fig. 4 | Spike- and nucleocapsid-specific cellular IFNγ 
responses to antigen re-encounter after different prime-boost vaccine 
combinations. a, Fold change (value at T3/group mean at T1) of the IFNγ 
response after stimulation of PBMCs with SARS-CoV-2 spike peptide pool, 
measured by ELISpot assay. Statistical tests were performed between groups with 
the same dose 1 (n = 255). b, Normalized IFNγ responses at T3 after stimulation of 
PBMCs with SARS-CoV-2 nucleocapsid peptide pool, measured by ELISpot assay 

(n = 254). The horizontal line indicates the cut-off threshold.  
P values indicate differences between the respective group and the overall 
mean of all participants. (a-b) P-values were calculated using the Mann-Whitney-
Wilcoxon test and the Benjamini-Hochberg method to correct for multiple 
hypothesis testing. Only significant P values (P < 0.05) are displayed.  
Large black dots depict the median of the group, and the vertical line  
spans the interquartile range.
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Extended Data Fig. 5 | See next page for caption.
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Extended Data Fig. 5 | Canonical T cell subsets and T cell subclusters related 
to the spike-specific IFNγ response. a, UMAP showing the distribution of 
markers expressed by T cells among all vaccine groups (n = 799). b, UMAP 
showing the FlowSOM-guided manual metaclustering of T cells (CD3 + ) for 
all vaccine groups combined. c, Heatmap showing the median intensity of 
normalized marker expression (range 0-1) for each canonical T cell subset 
(n = 799). d, Frequencies of canonical T cell subsets relative to the total T cells 
for each vaccine regimen (n = 347). e, Spearman’s rank correlations (rs) of spike 

peptide-induced T cell response (IFNγ release) with the frequencies of (e) the 
canonical T cell subsets and f, T cell subclusters (n = 255). g, Participants were 
classified as negative (< 1.03, the cut-off threshold) or positive (> 1.03) for IFNγ 
response (n = 255). The means of each listed parameter were compared between 
negative and positive responders using the Mann-Whitney-Wilcoxon test and 
corrected for multiple hypothesis testing with the Benjamini-Hochberg method. 
Only significant P values (P < 0.05) are displayed.
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Extended Data Fig. 6 | Immune parameters associated with positive and negative humoral and cellular responses. Spearman’s rank correlations (rs)  
of the top humoral and cellular immune features with the neutralizing antibody (NAb) titers, anti-S-RBD IgG levels and SARS-CoV-2 spike peptide- induced T cell IFNγ  
response (n = 347).
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Extended Data Fig. 7 | Data cleaning for high dimensional flow cytometry data analysis. Representative flow cytometry gating strategy for data cleaning  
of a, B and b, T cell panels.
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Reporting on sex and gender Data relating to the gender was collected on the open Phase IIB clinical trial - ECEHeVac, NCT04988048

Population characteristics 497 volunteers (age range 18-82 years old) were enrolled in a randomized, open Phase IIB clinical trial (ECEHeVac, 
NCT04988048) aimed at comparing the immunogenicity and reactogenicity of heterologous and homologous vaccination 
regimens available in Córdoba, Argentina.

Recruitment Eligible participants were healthy volunteers older than 18 years who had received a first dose of the AZD, BBIBP, Sput 26, or 
mRNA-1273 vaccine 30-120 days prior to the enrolment date. Exclusion criteria were: immunocompromised status with 
underlying disease or immunosuppressive treatment; pregnancy and lactation; having received a major surgical intervention 
in the 30 days prior to the enrolment date; having had a severe allergic reaction (anaphylaxis) to any vaccine; having a 
visceral disease that lead to disability (heart failure, kidney failure, respiratory failure, liver failure, intestinal malformations, 
electro-dependence, or having had a visceral transplant less than 2 years previously); and having had COVID-19 (symptomatic 
or asymptomatic) or a positive anti-nucleocapsid IgG via ELISA on T1 (except for those subjects that had been vaccinated with 
BBIBP as the first dose). 
Randomization was performed centrally at the Epidemiology Area of the Ministry of Health of the Province of Córdoba by 
assigning codes to the participants at the time of their registration, anonymizing their personal information to avoid possible 
biases. 
Randomization methodology: A list was prepared with participants who met inclusion criteria and did not present exclusion 
criteria. Randomization was performed with a equal group allocation using random permuted block stratification. 
Randomization was stratified by age for the groups of 18 to 59 years or 60 and over, and according to the time since the 
application of the first dose of vaccine (0 to 30 days and 30 to 60 days).

Ethics oversight The study received ethical approval by the Registro Provincial de Investigación en Salud (Provincial Registry of Health 
Research, REPIS-Cba #4371)
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Sample size No sample size calculation was performed. We used all the samples available in each dataset. 

Data exclusions For FACS, samples with fewer than 1000 live cells were excluded. For ELISpot, samples were excluded if the negative control wells had more 
than 39 or the positive control wells fewer than 40 spots. 

Replication All experiments have multiple replicates. All results were performed in at least 2 independent experiments.

Randomization Participants were randomized with equal group allocation to determine the vaccine used as Dose 2

Blinding All investigators and collaborators were blinded to clinical results when performing measurements and assays.
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Methods
n/a Involved in the study

ChIP-seq

Flow cytometry

MRI-based neuroimaging

Antibodies
Antibodies used The antibodies are listed in Extended data table 2 and Extended data table 3.

Validation All the antibodies have been validated by the manufacturer and then titrated in house (human PBMCs). Please see clones, 
fluorochromes and company webpages for specific validation. 

Eukaryotic cell lines
Policy information about cell lines and Sex and Gender in Research

Cell line source(s) Vero 76 cells (ATCC CRL-1587)

Authentication No authentication for the commercially available cell line.

Mycoplasma contamination Vero 76 cell line was tested negative for mycoplasma contamination. 

Commonly misidentified lines
(See ICLAC register)

No commonly misidentified cell lines were used

Flow Cytometry

Plots
Confirm that:
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Methodology

Sample preparation Cryopreserved PBMCs  were stored in liquid nitrogen. Then, for spectral flow analysis and ELISpot, cells were thawed using 
Cryo thaw devices (Medax). PBMCs were resuspended in cell culture medium supplemented with 2U/ml benzonase by 
centrifugation (300 r.c.f.; 7 min; 24C). Cell count was calculated using an automated cell counter (Bio-Rad).For the spike-
binding mBC and T cell panels, 1.5x106 and 1.0x106 PBMCs respectively were washed with PBS and blocked using Human 
TruStain FcX and True-Stain Monocyte Blocker (BioLegend).

Instrument Cytek Aurora (Cytek)

Software SpectroFlo Software

Cell population abundance Expressed as a frequency of the selected population
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Gating strategy Gating strategy is provided in Extended data 7. For high-dimensional flow cytometry analysis, dead cells, doublets, or cells 

stained by fluorochrome aggregates were excluded from the analysis via manual gating using FlowJo. Datasets of different 
batches were corrected using the CytoNorm R package

Tick this box to confirm that a figure exemplifying the gating strategy is provided in the Supplementary Information.
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