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Improving the efficiency 
of RMSProp optimizer by utilizing 
Nestrove in deep learning
Reham Elshamy *, Osama Abu‑Elnasr , Mohamed Elhoseny  & Samir Elmougy 

There are several methods that have been discovered to improve the performance of Deep Learning 
(DL). Many of these methods reached the best performance of their models by tuning several 
parameters such as Transfer Learning, Data augmentation, Dropout, and Batch Normalization, 
while other selects the best optimizer and the best architecture for their model. This paper is mainly 
concerned with the optimization algorithms in DL. It proposes a modified version of Root Mean 
Squared Propagation (RMSProp) algorithm, called NRMSProp, to improve the speed of convergence, 
and to find the minimum of the loss function quicker than the original RMSProp optimizer. Moreover, 
NRMSProp takes the original algorithm, RMSProp, a step further by using the advantages of Nesterov 
Accelerated Gradient (NAG). It also takes in consideration the direction of the gradient at the next 
step, with respect to the history of the previous gradients, and adapts the value of the learning rate. 
As a result, this modification helps NRMSProp to convergence quicker than the original RMSProp, 
without any increase in the complexity of the RMSProp. In this work, many experiments had been 
conducted to evaluate the performance of NRMSProp with performing several tests with deep 
Convolution Neural Networks (CNNs) using different datasets on RMSProp, Adam, and NRMSProp 
optimizers. The experimental results showed that NRMSProp has achieved effective performance, 
and accuracy up to 0.97 in most cases, in comparison to RMSProp and Adam optimizers, without any 
increase in the complexity of the algorithm and with fine amount of memory and time.

When deciding to build a structure in Deep Learning (DL)1 to solve a specific problem, many questions arise for 
creating a powerful structure with great accuracy, and optimal training time. The most popular questions are: 
which hyper parameters, such as learning rate2, batch size3, momentum4, and weight decay5, should be used? How 
to tune them to achieve the desired result? Which optimizer is the optimal one to answer the research problem? 
Actually, there are no specific guidelines for setting up an optimal DL structure with these parameters suitable 
for solving all problems or all data sets. Recently, there have been many researches interested in investigating 
hyper parameters and finding out the suitable values of these parameters for solving different problems. However, 
this paper focuses on the work mechanism of optimizers, and how to enhance their performance with regard 
to solving specific problems.

The aim of any optimizer is to minimize the loss function6, which is the difference between the actual output 
from the structure, and the desired output. There are many types of optimizers that can be used to achieve the 
minimum value for the loss function. Many papers have proposed new enhancement techniques on the tradi-
tional optimizers such as Stochastic Gradient Descen (SGD)7, AdaGrad8, AdaDelta9, Nadam10, Adam11, and 
RmsProp12. They include modification of many aspects such as the momentum, and learning rate. This paper 
proposed an algorithm, NRMSProp, to improve the performance of RmsProp optimizer, by adding a further 
step that involves calculating the Nestrove for a further point, with respect to the average of the past squared 
gradients for the current point. The performance of NRMSProp model is compared with the performance of the 
RMSProp and Adam optimizers under the same conditions.

The remainder of this paper is divided into five sections. The second section contains the “Literature review”. 
Section "Proposed Model NRMSProp" discusses the proposed optimizer in detail. Section "Experiments" presents 
the experiments on different datasets. Finally, section “Conclusion” concludes the work.
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Literature review
Background.  In this subsection, the focus is on the idea of how the optimizers work in Deep Neural Net-
works (DNNs). It presents some previous enhancement techniques of different traditional optimizers that deal 
with DL problems. Then, some modified versions of these optimizers are presented, with discussing how they 
work on different problems under different conditions. Training deep models is effectively remaining one of the 
most required tasks for researchers and practitioners in both real-world DL research, and application work. So 
far, the vast majority of the deep model training is based on the back propagation algorithm, which propagates 
the errors from the output layer backward, and uses gradient descent-based optimization algorithms to update 
the parameters layer by layer. Therefore, in order to achieve an effective model, the suitable optimizer to handle 
the problem should be chosen. There are different types of optimizers, such as Gradient Descent based Learn-
ing (GD), Momentum based Learning, Adaptive Gradient based Learning, and Momentum Adaptive Gradient 
based Learning Algorithms.

Gradient descent based learning (GD) algorithms.  GD13 is utilized to reduce some functions by iteratively mov-
ing in the direction of steepest descent as defined by the negative of the gradient. It is used to update the param-
eters’ model in DL. In addition; there are multiple types of GD, such as the stochastic gradient batch (vanilla)14, 
gradient descent, or mini-batch gradient descent. The main difference between Batch Gradient Descent (BGD)15 
and Stochastic Gradient Descent (SGD)16 is the cost of one example for each procedure in SGD is only com-
puted. In contrast, in BGD, the cost for all training examples in the dataset has to be computed. This extremely 
quickens the neural networks. Basically, this is what stimulates utilizing SGD. SGD is utilized to update param-
eters in a DL, as shown in Eq. (1). Besides, this equation is employed to update parameters in a backwards pass, 
with the help of back propagation17, to compute the gradient. Each parameter, θ, is taken and updated by getting 
the original parameter and subtracting the learning rate times the ratio of change.

It is noteworthy that in order to solve these drawbacks of SGD, an enhancement should be done. Mini Batch 
Gradient Descent18 would be adopted because it has the best of the two approaches. It also executes an update 
for each batch of n training examples in every batch. The following sub-section is devoted for discussing the 
other types of optimization algorithms.

Momentum based learning algorithms.  Instead of depending only on the gradient of the current step to steer 
the search, momentum, the gradient of the previous steps is considers19. The gradient descent equations are 
changed as given in Eq. (2).

In the end, the parameters are updated through θτ + 1 = θτ − µτ. Thus, this allows us to fine-tune the updates 
to the slopes of our error function, which speeds up SGD, as shown in Figure 1 which illustrates how Momentum 
speeds up the SGD in training process20. Moreover, it helps adapt the updates to every individual parameter to 
execute larger or smaller updates relying on their impact. In the sub-section below, some adaptive algorithms 
are introduced.

The Nesterov Momentum update21 is a significantly modified adaptation of the momentum update that has 
recently gained popularity. It has higher efficiency convergence promises for convex functions. It also performs 
slightly better in practice than the ordinary momentum. When the current parameter vector is at x, it is interfered 
from the momentum update above that the momentum term alone is about to nudge the parameter vector by 
µu*υ. Therefore, to compute the gradient, the future approximate position, x + µ u*υ, should be considered as a 
looked-ahead22 at a further point to stop at. As a result, instead of computing the gradient at the previous posi-
tion, x, compute it at x + µu*υ as clarified in Fig. 2.

Adaptive gradient based learning algorithms.  This subsection investigates a group of learning algorithms, such 
as Adagrad, Adadelta, and RMSProp,that use adaptive learning rates to update variables. Adagrad23 is a tech-
nique that permits the learning rate to adapt depending on the parameters. Thus, it provides big updates for 
infrequent parameters, and small updates for frequent parameters. Also, it is well known for being appropriate 
for handling sparse data. This technique utilizes a different learning rate for each parameter at a time step based 
on the past gradients that were calculated for that parameter. Adadelta24 is considered to be an expansion of 
AdaGrad that lean towards to eliminate the decay caused by the learning rate. This strategy limits the window of 
collected past gradients to few settled estimate weights rather than pressing the entire squared first-order deriva-
tive by using a decay average. RMSProp can be thought of as an extension of AdaGrad which uses a moving 

(1)θ = θ − η · ∇F (θ)

(2)µ(τ) = ϒµ(τ − 1)+ η∇F(θ)

SGD without Momentum SGD with Momentum

Figure 1.   SGD without momentum via with momentum.
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average (MA) of the partial derivatives instead of the sum in the calculation of the η for each instance as clarified 
in Eqs. (3) and (4) where S is the squared of decay average.

It is available to compute learning rates for every parameter. Moreover, individual changes for every parameter 
could be calculated and packed independently.

Momentum and adaptive gradient based learning algorithms.  This subsection discusses some learning algo-
rithms that incorporate the benefits of the previous two algorithms such as Adaptive Moment Estimation 
(Adam)25 which can be defined as another approach which calculates the adaptive learning rates for every 
parameter. Besides, it keeps the average of all past squared gradients, such as AdaDelta. Adam is one of the 
effective optimization approaches in adaptive algorithms. It is an SGD algorithm that relies on the concept of 
momentum to quickly and effectively arrive at the loss function’s global minimum. This aids in efficiently modi-
fying the learning rate for each parameter, hastening the time to convergence to the minimum. Adam calculates 
distinct adaptive learning rates based on the first and second moment values for various parameters as clarified 
in Eqs. (5) and (6).

where µ is the mean and υ is the variance of the first- order derivative in the same order. Equation (7) gives the 
final step of updating θ.

Adam performs well in practice, and provides results that can be favorably compared to other optimization 
algorithms since it achieves the optima fast, and its performance is quiet quick and so effective. The technique 
of adaptive algorithms has the ability to also correct and fix each issue that can be confronted in other optimiza-
tion algorithms that may cause fluctuation in the loss function adaptive techniques. There is an issue concerning 
the learning rate to be "just right", which is so tricky. If it is selected too small, there will be no progress. On the 
other hand, if it is too large, the solution will fluctuate, and be in the worst condition; it may even diverge. So, if 
is specified and selected automatically, or even this step is avoided, the second order techniques, which search 
not only for the value and gradient of the objective but also for its curvature, can be beneficial in this case.

Related work.  Dozat26 improved Adam and explained and pointed out how to regenerate of Nesterov Accel-
erated Gradient (NAG) to be more direct and precise concerning performance. In this work, he had not executed 
the step of modifying the parameters with just the momentum procedure to compute the gradient in order to get 
back to the main parameter state. After that, the momentum procedure continues again during the real authentic 
update. Furthermore, the time of the momentum procedure can be applied only one time during the update of 
the previous time phase. Tato and Nkambou27 introduced additional hyperparameters to Adam optimizer that 
preserves the direction of the gradient through ingrained optimization execution. On the other hand, Keskar 
and Socher28 created a modified version of Adam (AAdam) to accelerate and quicken its performance. They 
aim to obtain a better minimum for the loss function, in comparison with the main algorithm, by extracting 
some thoughts from the momentum relying on the optimizer and exponential decay methodology. The clari-
fied also that the procedure magnitude is produced by Adam to adjust the parameters. It is the way that the new 
procedure takes into account both of the direction of the gradient and the modification applied to the previous 
procedures. The authors also used MNIST data set for evaluation. The results showed that AAdam achieves the 
best results particularly on the validation set, even in the cases that require more memory. Also, they showed 
that it surpasses and outturns Adam and NAdam in decreasing training, and validation loss, and achieve better 
accuracy than the other methodologies.

(3)St = β1St−1 + (1− β1)g
2

(4)θt+1 = θt −
η√

st + ǫ
gt

(5)µ̂t =
µt

1− β1
t

(6)v̂t =
vt

1− β2
t

(7)θt+1 = θt −
η√

v̂t + ǫ
µ̂t

Figure 2.   The effect of Nestrove on the Gradient step.
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Reddi et al.29 introduced a combined hybrid methodology that begins with a flexible technique and then 
switches to SGD when convenient. They also presented SWATS which is considered as a simple methodology 
that converts from Adam to SGD, when a triggering case is satisfied. The case which is introduced is related to 
the projection of the Adam procedures on the gradient subspace. The cost of the observation procedure of this 
case is very low, and does not expand the number of hyperparameters in the optimizer. Furthermore, the authors 
created both switchover point and learning rate for SGD after the switch is assigned as a part of the algorithm. 
Due to these requirements, no convenient effort is added. Additionally, the authors demonstrated the adequacy 
of this methodology on ImageNet data sets. The results clarified that the proposed methodology compared with 
to SGD, while retaining the beneficial qualities of Adam such as the insensitivity, and quick initial advance of 
the hyperparameter. Hoseini et al.30 proposed an algorithm to enable the training model in DCNN to switch 
between RMSprop and Nestrove optimizers to grantee that the AdaptAhead optimizer does not make any change 
of the structure of RMSprop and Nestrove algorithms. AdaptAhead built three switches; the first is responsible 
for a set the value of hyper-parameter norms, which corresponds to norm-1, Euclidean norm, and max-norm. 
The second switch determines whether gradients whether in the normal or in the Nesterov method. The third 
switch determines when the learning rate works whether by applying the calculated norm in an adaptive manner, 
or in the normal manner based on Nesterov method. Xue et al.31 suggested an approach to enhance the train-
ing of feed-forward NNs, which integrates the advantages of Differential Evolution and Adam. This approach 
explores the search space using a population-based method and adaptively modifies the learning rate to hasten 
convergence. Their results show that this proposed approach exhibited impressive outcomes in terms of accuracy 
and convergence speed across.

Wang et al.32 presented architecture for communication-efficient compressed federated adaptive gradient 
optimization, FedCAMS, which tackles the adaptively problem in federated optimization techniques while sub-
stantially reducing communication overhead. He suggested a universal adaptive federated optimization frame-
work, FedAMS, as a base for FedCAMS. FedAMS, that includes different iterations of Adam characteristic max 
stabilization techniques. They offer an enhanced theoretical examination of the convergence of adaptive federated 
optimization, based on which they demonstrate that their suggested FedCAMS accomplishes the same conver-
gence rate as its uncompressed counterpart FedAMS with a number of magnitude less communication cost in 
the no convex stochastic optimization context.

Proposed model NRMSProp
The main contribution of this work is to propose a model to enhance the performance of Adaptive Gradient based 
Learning algorithms in different ways such as the time and the accuracy. The proposed NRMSprop model gains 
its power from the advantages of Nestrove approach and the way in which RMSprop is calculating the gradients. 
The steps of NRMSprop are shown in Algorithm 1.

Algorithm 1. NRMSProp

η: the learning rate
β1, β2: smoothing parameters
f(θ): the objective function with parameter θ

While: f(θ) does not converged do

Step 1: τ = τ + 1

Step 2: compute the gradient at step τ gt = ∇f (θt−1) (8)

Step 3: calculate Nestrove momentum vector µt = β t
2
µt−1 + (1− β t

2
)gt (9)

Step 4: calculate the square of exponential moving 
average with term (gt − µt)

st = β t
1
st−1 + (1− β t

1
)(gt − µt )

2 (10)

Step 5: correction of Bias µ̂t = µt

1−β2
t

(11)

Step 6: Apply the update of θ θt+1 = θt − η√
st+ǫ

µ̂ (12)

End While

As clarified in Algorithm 1, Step 1 allocates the initial time, τ, and Step 2 calculates the initial gradient gt 
which is the main parameter that optimizers of DL used to update the overall weights and the other parameters 
of the optimization process as the end of the process in Step 6. In the first iteration, gt, is computed depending 
on initial random point as a start point. As the goal of optimization process is reducing the difference between 
this start point and the actual target minima NRMSprop computes the Nestrove vector µ in Step 3 and adding βt

2 
to its computations that can effectively affect on how to apply look-ahead technique by calculating the gradients 
not at the current point, but with respect to the approximate future point. In Step 4, NRMSprop keeps the value 
of all past gradients as a history parameter of each movement and calculates the exponential moving average 
(s). Keeping this history helps NRMSprop to be more stable and prevents overshoots when the target minima is 
very close. As in adaptive learning technique, the step size is not a static value for all iterations, NRmsprop takes 
care of the step size and adapts it for the optimal value depending on the distance between the current position 
and the minima, so there is a need to penalty the gradient with µ in term gt − µt to reduce the step size if the 
target point is near to the current position. To decide the next step and choose the right direction, NRMSprop 
calculates the correction of Bias µ̂t in step 5. Finally in step 6 we update the weights θ by the form of Eq. (12) 
with adding Nestrove by replacing ( µ̂t−1 ) of the earlier step by ( µ̂t ) of the current momentum vector to get 
θt+1 as the last step of NRMSprop. To examine this proposed method we did experiments on Fashion-MNIST, 
CIFAR-10 and Tiny- ImageNet datasets using three Adam, RMSProp and the proposed optimizer NRMSPROP 



5

Vol.:(0123456789)

Scientific Reports |         (2023) 13:8814  | https://doi.org/10.1038/s41598-023-35663-x

www.nature.com/scientificreports/

under same environment to compare the result of NRMSProp with the others optimizers, the next subsection 
show the experiments.

Experiments
Datasets description.  Fashion-MNIST33 consists of 60,000 28 × 28 grayscale images of 10 fashion cate-
gories, along with a test set of 10,000 images. Figure 3 shows these 10 categories34. CIFAR-10 data35 includes 
6000 images per class in 10 classes totaling 60,000 32 × 32 colour images; sample of this dataset are shown in 
Fig. 4. These images are splitting into 10,000 test photos and 50,000 training images are available. Tiny ImageNet 
dataset36 is a version of Image Net dataset. It is a container of 200 categories in which there are 100,000 images 
in these categories and 10,000 images for each validation and test processes. Sample of this dataset are shown 
in Fig. 5.

Figure 3.   Class names and example images in Fashion-MNIST dataset34.

Figure 4.   Class names and example images in CIFAR-10 dataset35.
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Accuracy (ACC), Precision (PREC), Recall (REC), and F1-score (F1) criteria, presented in Eqs. (13), (14), 
and (15), are used to evaluate NRMSProp, and to compare it with Adam and the original RmsProp optimizers38.

The model structure.  To examine NRMSProp, we used two models: a simple Convolution Neural Network 
(CNN)39 model and ResNet model. Figure 6 illustrates the structure of CNN layers40,41.

Table 1 illustrates the structure of NRMSProp model and its layers with 50 epochs for training, where the 
values of the hyper parameters are: η is the learning rate (the default is 10-3), β1 and β2 are the smoothing 
parameters (β1 = 0.9, and β2 = 0.999), and ϵ is a small number and tis usually set as 10−7.

Residual Network (ResNet)42 is a group of DNN models that has attained outstanding results on a variety 
of tasks associated with computer vision, including segmentation based on semantics, recognizing objects, and 
classification of images. The introduction of residual links, which enables the network to develop residual map-
pings that may be quickly optimized using gradient-based approaches, is the primary improvement of the ResNet 
models. The difference between the input and output of a group of convolutional layers, which is then added 
back to the input, is used for computing these residual mappings. Instead of trying to learn the complete map-
ping from scratching the network can learn to concentrate on the disparities between the input and the desired 
output in this manner. There are many depths of ResNet models, ranging from the original ResNet-18 to the far 
deeper ResNet-152. These models have already been trained using massive datasets like ImageNet. Here, ResNet 

(13)ACC = TP+ TN

TP+ TN+ FP+ FN

(14)PREC = TP

TP+ FP

(15)REC = TP

TP+ FN

(16)F1 = 2TP

2 TP+ FP+ FN

Figure 5.   Sample of images in Tiny ImageNet dataset37.
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V2 model is used to perform the experiments on NRMSporop. Figure 7 illustrates the structure of ResNet_V2 
layers. The results of the two models on the three datasets are illustrated in the next section.

Results of the experiments.  Table  2 illustrates the overall performance of Adam on Fashion-MNIST 
dataset in which it achieves precision 98% which belongs to Class Trouser and Sandal, where 97% recall is the 
highest rate belongs to Class Sneaker and Bag. On the other hand, achieving 97% F1-score is the highest value 
belongs to Class Trouser. We present the classes of Fashion-MNIST dataset as (Class 1 refer to T-shirt/top, Class 
2 refer to Trouser, Class 3 refer to Pullover, Class 4 refer to Dress, Class 5 refer to Coat, Class 6 refer to Sandal, 
Class 7 refer to Shirt, Class 8 refer to Sneaker, Class 9 refer to Bag and Class 10 refer to Ankle boot).

Figure 6.   CNN layers.

Table 1.   The structure of the proposed CNN Model.

CNN Model

Layer (type) Output shape Param

conv2d14 (conv2d) (None, 26, 26, 32) 320

(maxpooling) (None, 13, 13, 32) 0

flatten18 (flatten) (None, 5408) 0

dense37 (dense) (None, 128) 692,352

dense38 (dense) (None, 10) 1290

Total params: 693,962
Trainable params: 693,962
Non-trainable params:

Figure 7.   ResNet_V2 layers.
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Table 3 illustrates the overall performance of RMSPRop on Fashion-MNIST dataset in which it achieves 
precision 99% which belongs to Class Sandal, where 97% recall is the highest rate belongs to Class Trouser. On 
the other hand, achieving 98% F1-score is the highest value belongs to Class Trouser.

Table 4 illustrates the overall performance of NRMSProp on Fashion-MNIST dataset in which it achieves 
precision 99% which belongs to Class Sandal and Trouser, where 98% recall is the highest rate belongs to Class 
Trouser, Sandal and Bag. On the other hand, achieving 98% F1-score is the highest value belongs to Class Trouser 
and Sneaker.

Next experiment we present classes of CIFAR-10 dataset as (Class 1 refer to Airplane, Class 2 refer to auto-
mobile, Class 3 refer to Bird, Class 4 refer to Cat, Class 5 refer to deer, Class 6 refer to Dog, Class 7 refer to Frog, 
Class 8 refer to horse, Class 9 refer to Ship and Class 10 refer to truck). Table 5 illustrates the overall performance 
of Adam on CIFAR-10 dataset in which it achieves precision 83% which belongs to Class ship, where 81% recall 
is the highest rate belongs to Class truck. On the other hand F1-score is 78% is the highest value belongs to 
Class automobile.

Table 6 illustrates the overall performance of RMSProp on CIFAR-10 dataset in which it achieves precision 
91% which belongs to Class automobile, where 89% recall is the highest rate belongs to Class ship. On the other 
hand F1-score is 81% is the highest value belongs to Class automobile.

Table 7 illustrates the overall performance of NRMSPprop on CIFAR-10 dataset in which it achieves precision 
85% which belongs to Class automobile, where 87% recall is the highest rate belongs to Class ship. On the other 
hand F1-score is 81% is the highest value belongs to Class automobile.

From Figs. 2, 3, 4, 5, 6, 7, the overall performance of NRMSProp is showed to be higher than Adam and 
Rmsprop in reaching high value in most classes of Fashion-MNIST and CIFAR-10 datasets.

The second criteria for the evaluation stage is constructing confusion matrix43, in which it gives an accurate 
assessment of the model’s accuracy in terms of true positives, true negatives, false positives, and false negatives. 
This aids in comprehending the model’s performance and locating potential improvement areas. Also, it offers a 

Table 2.   The Precision, Recall and F1-score of Adam.

Fashion-MNIST dataset

Classes Precision Recall F1-score Support

Class 1 0.83 0.78 0.80 1000

Class 2 0.98 0.96 0.97 1000

Class 3 0.81 0.80 0.80 1000

Class 4 0.84 0.87 0.86 1000

Class 5 0.71 0.88 0.78 1000

Class 6 0.98 0.93 0.95 1000

Class 7 0.71 0.56 0.63 1000

Class 8 0.91 0.97 0.94 1000

Class 9 0.94 0.97 0.96 1000

Class 10 0.95 0.94 0.95 1000

Accuracy 0.87 10,000

Macro avg 0.87 0.87 0.86 10,000

Weighted avg 0.87 0.87 0.86 10,000

Table 3.   The Precision, Recall and F1-score of RMSPRop.

Fashion-MNIST dataset

Class Precision Recall F1-score Support

Class 1 0.74 0.88 0.80 1000

Class 2 0.98 0.97 0.98 1000

Class 3 0.84 0.69 0.76 1000

Class 4 0.86 0.88 0.87 1000

Class 5 0.80 0.72 0.76 1000

Class 6 0.99 0.93 0.95 1000

Class 7 0.58 0.62 0.60 1000

Class 8 0.91 0.96 0.93 1000

Class 9 0.98 0.95 0.96 1000

Class 10 0.94 0.96 0.95 1000

Accuracy 0.86 10,000

Macro avg 0.86 0.86 0.86 10,000

Weighted avg 0.86 0.86 0.86 10,000
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Table 4.   The Precision, Recall and F1-score of NRMSProp.

Fashion-MNIST dataset

Class Precision Recall F1-score Support

Class 1 0.81 0.88 0.85 1000

Class 2 0.99 0.98 0.98 1000

Class 3 0.78 0.86 0.82 1000

Class 4 0.86 0.91 0.89 1000

Class 5 0.83 0.80 0.82 1000

Class 6 0.99 0.98 0.98 1000

Class 7 0.80 0.63 0.71 1000

Class 8 0.95 0.98 0.98 1000

Class 9 0.96 0.98 0.97 1000

Class 10 0.98 0.95 0.97 1000

Accuracy 0.90 10,000

Macro avg 0.90 0.90 0.98 10,000

Weighted avg 0.90 0.90 0.98 10,000

Table 5.   The Precision, Recall and F1-score of Adam.

CIFAR-10 dataset

Class Precision Recall F1-score Support

Class 1 0.68 0.74 0.71 1000

Class 2 0.81 0.75 0.78 1000

Class 3 0.65 0.46 0.54 1000

Class 4 0.45 0.56 0.50 1000

Class 5 0.57 0.66 0.61 1000

Class 6 0.59 0.56 0.58 1000

Class 7 0.77 0.72 0.75 1000

Class 8 0.76 0.70 0.73 1000

Class 9 0.83 0.71 0.77 1000

Class 10 0.67 0.81 0.73 1000

Accuracy 0.67 10,000

Macro avg 0.68 0.67 0.67 10,000

Weighted avg 0.68 0.67 0.67 10,000

Table 6.   The Precision, Recall and F1-score of RMSProp.

CIFAR-10 dataset

Class Precision Recall F1-score Support

Class 1 0.69 0.69 0.69 1000

Class 2 0.91 0.73 0.81 1000

Class 3 0.73 0.49 0.58 1000

Class 4 0.52 0.43 0.62 1000

Class 5 0.73 0.53 0.62 1000

Class 6 0.63 0.60 0.62 1000

Class 7 0.81 0.72 0.76 1000

Class 8 0.57 0.85 0.69 1000

Class 9 0.63 0.89 0.74 1000

Truck 0.69 0.85 0.76 1000

Accuracy 0.68 10,000

Macro avg 0.69 0.68 0.67 10,000

Weighted avg 0.69 0.67 0.67 10,000
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more in-depth and a picture of the model’s performance. It can assist in pinpointing certain instances where the 
model is functioning successfully or incorrectly. The model’s general effectiveness can be improved by detecting 
problem areas with the use of the confusion matrix, which can also be used to guide parameter adjustment and 
refining. Three confusion matrices are constructed for each dataset as given below.

Figures 8, 9, 10 show the confusion matrices for Fashion-MNIST datasets. Figure 8 illustrates that Adam is 
getting confused mostly between similar classes in comparison between actual and predicted values. Some of 
the higher values of negative classification are between these classes: (T-shirt/top and Shirt) (Pullover and Shirt) 
(Coat and Shirt) (Coat and Pullover) with values (117, 68, 165, 105). Figure 9 illustrates that RMSProp is getting 
confused in many classes in comparison between actual and predicted values. Some of the higher values of nega-
tive classification are between these classes: (T-shirt/top and Shirt) (Pullover and Coat) (Dress and Coat) (Coat 
and Pullover) (Shirt and coat) (Shirt and Pullover) with values (224, 66, 52, 92, 154, 168). Figure 10 illustrates 
NRMSprop is getting confused just in very similar classes in comparison between actual and predicted values. 
Some of the higher values of negative classification are between these classes: (T-shirt/top and Shirt) (Pullover 

Table 7.   The Precision, Recall and F1-score of NRMSprop.

CIFAR-10 dataset

Class Precision Recall F1-score Support

Class 1 0.72 0.74 0.73 1000

Class 2 0.85 0.77 0.81 1000

Class 3 0.57 0.63 0.60 1000

Class 4 0.48 0.58 0.53 1000

Class 5 0.74 0.51 0.61 1000

Class 6 0.71 0.49 0.58 1000

Class 7 0.73 0.79 0.76 1000

Class 8 0.71 0.77 0.74 1000

Class 9 0.69 0.87 0.77 1000

Class 10 0.79 0.73 0.76 1000

Accuracy 0.69 10,000

Macro avg 0.70 0.69 0.69 10,000

Weighted avg 0.70 0.69 0.69 10,000

Figure 8.   Confusion matrix of Adam for Fashion-MNIST dataset.
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Figure 9.   Confusion matrix of Rmsprop for Fashion-MNIST dataset.

Figure 10.   Confusion matrix of NRMSprop for Fashion-MNIST dataset.



12

Vol:.(1234567890)

Scientific Reports |         (2023) 13:8814  | https://doi.org/10.1038/s41598-023-35663-x

www.nature.com/scientificreports/

and Coat) (Pullover and Shirt) with values (147, 123,92). Depending on these experiments on Fashion-MNIST 
dataset, NRMSprop is shown to be the less confusion degree than Adam and Rmsprop.

Figures 11, 12, 13 show the confusion matrices for CIFAR-10 datasets. Figure 11 illustrates that Adam is 
getting confused in many classes in comparison between actual and predicted values. By focus on some of 
higher values of negative classification are between these classes we found many classes have high confusion 
value like (airplanes, cats, deer, dogs, and trucks). Figure 12 illustrates that that RMSProp is getting confused in 
many classes in comparison between actual and predicted values. By analyzing the behavior or RMSProp, the 
most of values are shown to be very close to each other and RMSProp is hardly distinguished images between 

Figure 11.   Confusion matrix of Adam for CIFAR-10.

Figure 12.   Confusion matrix of Rmsprop for CIFAR-10.
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overall classes in dataset. Figure 13 illustrates that NRMSProp is getting confused in less number of classes in 
comparison between actual and predicted values compared with Adam and RMSProp. NRMSProp. By focus on 
some of higher values of negative classification are between these classes we found that classes with have high 
confusion values are (birds, cats, ships). Depending on these experiments on CIFAR-10 dataset, NRMSprop is 
shown to be the less confusion degree than Adam and RMSProp.

From Table 8, Figs. 14, 15, 16, it is clear that the proposed NRMSProp achieves good results in comparison 
with the other optimizers under all measurement criteria. The overall performance of the NRMSProp optimizer 
is more efficient after adding the Nestrove term to its steps. Therefore, the power of Nestrove can be utilized 
in to enhance the accuracy and to speed up the process of the optimizer in general. Moreover, NRMSProp has 
an effect feature that keeps the history of the current point to be more efficient in speeding up the process of 
taking the decision of which direction should be chosen. When adding Nestrove to NRMSProp’s steps, it gives 

Figure 13.   Confusion matrix of NRMSprop or CIFAR-10.

Table 8.   The accuracy results of Adam, RMSProp, and NRMSProp.

Dataset Adam RMSProp NRMSProp

Fashion-MNIST 0.91 0.86 0.97

CIFAR-10 0.71 0.82 0.84

Tiny ImagNET 0.69 0.70 0.72

                                          Fashion-MNIST dataset
RMSPRop Adam NRMSProp

Figure 14.   The accuracy of training and test curves of RMSPRop, Adam, and NRMSProp on Fashion-MNIST 
dataset.
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NRMSProp the power to take a big step in the right direction by look ahead for projected positions not only the 
actual position and by adapting the learning step for each iteration depend on the minima position.

Conclusion
This paper proposed NRMSProp as a modified version of the Adaptive optimizer to increase its efficiency. It takes 
RMSProp algorithm one step further since the efficiency of the Nestrove technique is combined with RMSProp 
optimizer. Moreover, to examine the proposed algorithm NRMSProp, experiments are conducted on the Adam, 
RMSProp, and NRMSProp optimizers on Fashion-MNIST, CIFAR-10 and Tiny-ImagNet datasets. Accuracy, 
Precision, Recall, F1-score, and confusion matrix are used to evaluate NRMSProp and compare its performance 
with Adam and RMSProp optimizers on different datasets. The results showed that the NRMSProp achieved high 
accuracy udder all measurements with fast convergence without noticeably increasing complexity.

Data availability
The datasets (Fashion-MNIST, cifar and ImagNet) used during the current study available in the following links 
respectively: Xiao et al.33. Available: arXiv:​1708.​07747, https://​www.​cs.​toron​to.​edu/​~kriz/​cifar.​html, https://​tiny-​
image​net.​herok​uapp.​com.
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