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Bulk and single‑cell transcriptome 
profiling reveal the metabolic 
heterogeneity in gastric cancer
Guoqiang Tao 1,2, Xiangyu Wen 1,2, Xingxing Wang 1,2 & Qi Zhou 1*

Metabolic reprogramming has been defined as a key hall mark of human tumors. However, metabolic 
heterogeneity in gastric cancer has not been elucidated. Here we separated the TCGA‑STAD dataset 
into two metabolic subtypes. The differences between subtypes were elaborated in terms of 
transcriptomics, genomics, tumor‑infiltrating cells, and single‑cell resolution. We found that metabolic 
subtype 1 is predominantly characterized by low metabolism, high immune cell infiltration. Subtype 
2 is mainly characterized by high metabolism and low immune cell infiltration. From single‑cell 
resolution, we found that the high metabolism of subtype 2 is dominated by epithelial cells. Not only 
epithelial cells, but also various immune cells and stromal cells showed high metabolism in subtype 
2 and low metabolism in subtype 1. Our study established a classification of gastric cancer metabolic 
subtypes and explored the differences between subtypes from multiple dimensions, especially the 
single‑cell resolution.

Abbreviations
GC  Gastric cancer
ICIs  Immune checkpoints targeting immunotherapies
GEO  Gene-Expression Omnibus
TCGA   The Cancer Genome Atlas
TPM  Transcripts per million
DMPs  Differentially methylated probes
SVM  Support vector machines
KEGG  Kyoto Encyclopedia of Genes and Genomes
GSEA  Gene set enrichment analysis
ssGSEA  Single sample gene set enrichment analysis
FDR  False discovery rate
KM  Kaplan–Meier
ROC  Receiver operating characteristic
AUC   The area under the curve
IC50  The half maximal inhibitory concentration
OS  Overall survival
TIDE  Tumor Immune Dysfunction and Exclusion
CGP  The Cancer Genome Project

Gastric cancer (GC) is the sixth most common cancer and the third leading cause of cancer-related deaths 
 worldwide1. Early screening for GC currently relies on gastroscopy; however, this examination is not yet per-
formed annually in many regions, resulting in many GC patients being diagnosed at later stages. Treatment 
strategies for GC have mainly relied on clinicopathological assessments of tumors, including surgery, various 
chemotherapy treatments, and immunotherapies targeting immune checkpoints (ICIs). However, since GC is a 
heterogeneous disease, these treatments only show efficacy in some patients. Currently, the classification of gastric 
cancer mainly relies on AJCC staging, Lauren classification, and grade, which have limitations. Therefore, it is 
necessary to classify tumors according to their intrinsic heterogeneity, determine their relationship with tumor 
treatment, and optimize tumor treatment strategies accordingly.

Metabolic reprogramming has been considered a key hallmark of human  tumors2,3, as cancer cells require 
change in their metabolic processes to meet the demands of their rapidly growing biomass and energy  needs4,5. 
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Metabolic reprogramming plays a crucial role in various tumor processes, including tumor progression, chemo-
therapy resistance, immune response and epithelial–mesenchymal  transition6–10. Identification of distinct meta-
bolic isoforms in cancer can aid in patient selection of investigational metabolic inhibitors and new therapeutic 
 targets11. Many previous studies have categorized tumors into different metabolic  subtypes12–15. However, tumor 
cells exist in a microenvironment composed of stromal cells such as tumor-associated fibroblasts, immune cells, 
and endothelial cells. Each cell type plays an active role in tumor cell proliferation, and each has unique metabolic 
needs to perform specific functions. By employing single-cell sequencing technology, we can understand the 
metabolic characteristics of various types of cells in tumor tissue at the single-cell resolution.

Here, we have initially divided gastric cancer into two subgroups based on bulk sequencing data. We have 
explored the differences between subtypes from various perspectives, including metabolic subtype, which showed 
varying responses to various chemotherapeutic agents and immune checkpoint-targeting therapies. Finally, 
we have explored the metabolic differences in multiple cell types across subtypes from a single-cell dimension.

Materials and methods
Data acquisition and processing. We systematically searched publicly available gene expression datasets 
for GC. Samples without complete prognosis information were removed from further evaluation. In total, 9 
datasets from the Gene-Expression Omnibus (GEO; https:// www. ncbi. nlm. nih. gov/ gds/) (GEO:  GSE6225416, 
 GSE1545917,  GSE5730318,  GSE3494219,  GSE8443720,  GSE2694221,  GSE2927222,  GSE2854121 and  GSE1386123) and 
one RNA-sequencing dataset (TCGA-STAD) from The Cancer Genome Atlas (TCGA; https:// portal. gdc. cancer. 
gov/) were found. Because of the large number of datasets on the GPL570 platform, four datasets (GSE62254, 
GSE15459, GSE57303 and GSE34942) from the GPL570 platform were merged as one dataset named as GPL570 
meta-dataset using “oligo” package in  R24. We used the oligo package in R software for quality control analysis 
and the “ComBat” function in R to remove the batch effect (Fig. S1)25. GSE29272, GSE28541 and GSE13861 
were removed due to small sample size. All microarray data included in our study were log2 transformed. Data 
files of counts expression of TCGA-STAD and clinical data were downloaded by using “TCGAbiolinks” package 
in  R26. The data downloaded from TCGA were converted into transcripts per million (TPM) value. TCGA-
STAD somatic mutation and DNA methylation profiles with illumina human methylation 450 platform were 
downloaded using the package “TCGAbiolinks” in R. Somatic mutation data were analysed using R package 
“maftools”27. The chi-square test was used to assess the mutational difference between the two groups. Methyla-
tion profiles were analysed using R package “ChAMP”28. The beta values were calculated to assess the methyla-
tion level of each CpG site in each sample. It is generally considered that β value greater than 0.6 is fully methyl-
ated, 0.2–0.6 is partially methylated, and less than 0.2 is completely unmethylated. For differentially methylated 
probes (DMPs) analysis, we first removed CpG sites that were both fully methylated and fully unmethylated in 
both clusters. The |diffBeta| was set as 0.15.

Single cell-seq data from GSE183904 were selected for further  analysis29. This is the largest number size study 
to date for single-cell sequencing of gastric cancer. Due to the large sample size, the working upper limit of our 
equipment was exceeded. Therefore, we divided gastric cancer samples into three subgroups according to Lauren 
classification, and randomly selected one third of the samples from each group, and finally obtained 8 gastric 
cancer single-cell sequencing samples, and subsequent single-cell analysis was based on these 8 samples. Each 
sample was considered for genes/features shared by three or more cells, and cells showing 300 or more features. 
Cells with mitochondrial RNA percentages of > 20 were filtered out. We use the “DoubletFinder” package to 
remove the "doublets cell"30. Tumor specimens also inevitably contain normal epithelial cells. So, “CopyKAT” 
package was used to predict malignant cells in epithelial  cells31.

Metabolic subgroup classification. Metabolite and protein interactions profile was obtained from a pre-
vious  study12. After processing the profile, we input it into Cytoscape software (version 3.6.1) to extract the pro-
teins with more than 5°32 (details in Table S1). In the previous step, we obtained 1202 metabolism-related genes. 
In order to better classify the malignant metabolic characteristics of tumors, we extracted the metabolic genes 
related to prognosis by “survival” package (P < 0.05). Consensus clustering with 1000 iterations and resampling 
of 80% was performed based on the expression levels of these genes using “ConsensusClusterPlus”  package33. We 
use CDF plot and PAC methods to confirm the best K value.

The single-cell sequencing used was not accompanied by bulk sequencing. We can think of bulk sequencing 
as measuring the total expression of each gene in all cells in a tumor tissue. Therefore, after the quality control 
of the single-cell expression matrix was completed, the average expression matrix of all cells in each sample was 
calculated to estimate the bulk-level expression of a single sample. We have built a metabolic subtype classifier 
in the TCGA-STAD dataset. The TCGA-STAD dataset is randomly divided into training dataset and test dataset 
according to 7:3. Metabolic classification model was trained based on prognostic-relevant metabolic genes in the 
training dataset using support vector machines (SVM) algorithm, and validated in the test dataset. Single-cell 
samples are classified according to the established classification model.

Pathway enrichment analyses. We download the latest Kyoto Encyclopedia of Genes and Genomes 
(KEGG) pathway data using R package “KEGGREST” and made the required “gmt” format  file34–36. We down-
loaded the GSEA software (version 4.3) from the gene set enrichment analysis (GSEA: http:// softw are. broad 
insti tute. org/ gsea/ index. jsp) website. NOM p-value < 0.05 were considered statistically significant. Single sample 
gene set enrichment analysis (ssGSEA) was used to estimate KEGG pathway enrichment level in a single sample 
or cell based on “GSVA”  package37.

https://www.ncbi.nlm.nih.gov/gds/
https://portal.gdc.cancer.gov/
https://portal.gdc.cancer.gov/
http://software.broadinstitute.org/gsea/index.jsp
http://software.broadinstitute.org/gsea/index.jsp
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Evaluation of infiltrating immune cells in the TME. The proportions of 22 immune cell types in GC 
samples were estimated using the CIBERSORT algorithm (https:// ciber sortx. stanf ord. edu/) with batch-cor-
rected mode, relative mode and 1000 permutations of b  mode38. The estimation of stromal and immune cells 
in tumor tissues was performed by ESTIMATE  algorithm39. The wilcoxon test was used to find the significantly 
different immune cells among different groups.

Metabolic subtype characteristic score construction. According to the consensus clustering, we 
could successfully classify patients into two clusters. Differentially expressed genes were determined by using 
the package “DESeq2”  package40. The significance criteria for determining DEGs were set as a false discov-
ery rate (FDR) < 0.01 and |log2 fold change (FC)|  > 1.0. In methylation analysis, differential expression analy-
sis between cluster 1 and cluster 2 was also taken to take the above parameters. TCGA-STAD, GPL570 meta-
dataset, GSE84437 and GSE26942 were Z-score transformed for subsequent analysis. To remove the effect of 
low-level expressed genes, we removed genes with average TPM value of less than 2 across all samples. Then, 
LASSO-Cox regression analysis based on the “glmnet” package in R was applied to build an optimal metabo-
lism classification-related gene signature for  GC41. The metabolic subtype characteristic score of our model for 
each sample was defined by the relative expression of each gene and its associated Cox coefficient. The optimal 
cutoff value was confirmed by “maxstat” package. The patients were divided into high-score group and low-
score group, and the Kaplan–Meier (KM) method with logrank test was used to further analyze the prognostic 
differences between the two groups. The prognostic or predictive accuracy of gene signature was assessed using 
time-dependent receiver operating characteristic (ROC) analysis. The area under the curve (AUC) at different 
cutoff times was used to measure the accuracy of prognosis or prediction. The model was then validated on three 
additional independent datasets.

Additional bioinformatic and statistical analyses. The half maximal inhibitory concentration (IC50) 
is estimated by R package “pRRophetic”42. The Connectivity Map (CMap, https:// clue. io/) was used to predict 
the small candidate molecules based on differentially expressed genes. The TIDE algorithm was used to predict 
ICB responses (http:// tide. dfci. harva rd. edu)43. All of the above analyses were performed using the R software 
(version 4.0.2, http:// www. rproj ect. org). Statistical differences not specifically stated were set at P < 0.05.

Result
Metabolism‑associated genes and subtypes identification. 98 metabolic related genes (the origin 
of these genes has been described in the “Materials and methods” section) obtained are significantly enriched in 
metabolic pathways, including arachidonic acid metabolism, chemical carcinogenesis, drug metabolism—other 
enzymes and pentose/ glucuronate interconversions, etc. (Fig. 1I). Based on the expression values of these 98 
genes, we divided the TCGA-STAD cohort into two clusters, with the optimal k of 2 (Figs. 1A, S2). Our analy-
sis revealed a significant prognostic difference between the two metabolic subtypes (Fig.  1E). Kaplan–Meier 
analysis showed that patients who were divided into cluster 1 suffered inferior overall survival (OS) (Fig. 1E). 
Importantly, our clustering result was also verified in the other three cohorts (GPL570 meta-dataset, GSE26942 
and GSE84437) (Fig. 1B–D). Furthermore, the difference in prognosis was also observed in these three cohorts 
(Fig. 1F–H). These results confirmed the metabolic heterogeneity of gastric cancer and its prognostic signifi-
cance.

Metabolic classifier‑specific gene enrichment pathway of gastric cancers. To understand the 
metabolic differences and functional differences among various metabolic subtypes, we performed ssGSEA and 
GSEA analysis. First, the scores of all patient-related pathways were obtained based on the ssGSEA algorithm. 
We discovered that 4 of the 5 signaling pathways related to tumor metabolism regulation differed between the 
2 clusters, which explain the sources of metabolic differences between the 2 clusters (Fig. 2A). Additionally, we 
observed that 7 of the 10 oncogenic signaling pathways significantly differed between the two clusters, thereby 
demonstrating the dissimilarities in tumor characteristics between the groups (Fig. 2B).

We then used the GSEA method to analyze the metabolic subtype-specific KEGG pathway. Both subtypes 
had a considerable number of specific signaling pathways (details in Table S2). Among the metabolic pathways, 
3 pathways were significantly enriched in cluster 1, while 30 pathways were enriched in cluster 2 (Fig. 2C). In 
cluster 1, multiple intercellular communication-related signaling pathways were activated (Table S2). In addition 
to the activation of a considerable number of metabolic pathways, cluster 2 also showed activation of nucleotide 
processing and repair-related pathways (Table S2).

Metabolic classifier‑specific mutation, DNA methylation and immune cell infiltration char‑
acteristics of gastric cancers. Oncogene mutations have been shown to induce reprogramming of cell-
autonomous metabolism. To further investigate whether there is evidence of the disparity in the genomic layer 
between the two metabolic subtypes, we analyzed somatic mutations in the TCGA-STAD cohort. Top 20 most 
frequently mutated genes in two subtypes were illustrated in Fig. 3A. And we also analyzed genes that were 
differentially mutated in the two subtypes (Fig. 3B). The top 5 most frequently mutated genes in gastric cancer 
patients are TTN, TP53, MUC16, LRP1B and SYNE1 (Fig. 3A). Among them, TTN and SYNE1 are different 
between the two metabolic subtypes (Fig. 3B). The top 20 differentially mutated genes were more frequently 
mutated in the cluster 2, indicating that the formation of metabolic subtypes may be related to genes mutations. 
We found that chromosomal instability (CIN) and Epstein–Barr virus (EBV) subtypes had consistent distribu-
tion between cluster 1 and cluster 2, but cluster 1 had more genomically stable (GS) subtype, while cluster 2 had 

https://cibersortx.stanford.edu/
https://clue.io/
http://tide.dfci.harvard.edu
http://www.rproject.org
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more microsatellite instability (MSI) subtype (Fig. 3C). We also found that cluster 2 subtype also had signifi-
cantly higher tumor mutational burden (TMB) levels (Fig. 3D).

We removed CpG sites that have no corresponding gene, as well as the completely unmethylated or fully 
methylated CpG sites in both metabolic subtypes, leaving us with 71,648 CpG sites with P < 0.05. After apply-
ing a delaBeta of 0.15 to further screen for differential CpG sites, we identified 1431 hypomethylated genes in 
cluster 1 and 2410 hypomethylated genes in cluster 2. Among the hypomethylated genes in cluster 1, 480 genes 
were highly expressed, while among those in cluster 2, only 25 genes were highly expressed. The results of the 
enrichment analysis of these genes are shown in Fig. 3E,F. Interestingly, genes with hypomethylation and high 
expression in cluster 1 were enriched in oncogenic signaling pathways, suggesting that abnormal methylation 
may lead to the activation of oncogenic signaling pathways in cluster 1. Genes with hypomethylation and high 
expression in cluster 2 were enriched in HIF-1 signaling pathway, indicating that cluster 2 characteristics may be 
associated with hypoxia. Interactions between tumor cells and surrounding infiltrating cells, especially stromal 
cells and immune cells, can either promote or inhibit tumor  progression44. We calculated the score of stromal and 
immune using ESTIMATE algorithm. The three scores in the cluster 1 group were significantly higher than those 
in the cluster 2 group (Fig. 3G), suggesting that the samples in cluster 1 had more non-tumor cell components. 
To further explore the differences of immune cell composition, CIBERSORT algorithm was implemented to 

Figure 1.  Gastric cancers exhibit metabolic heterogeneity. (A–D) The consensus matrix shows patients with 
two metabolic subtypes in TCGA-STAD, GPL570 meta-dataset, GSE26942 and GSE84437. (E–H) Kaplan–Meier 
curves for overall survival based on metabolic subtypes (Log-rank test) in TCGA-STAD, GPL570 meta-dataset, 
GSE26942 and GSE84437. (I) KEGG enrichment results of 98 prognosis-related metabolic genes.
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Figure 2.  Analysis of signaling pathways between metabolic subtypes. (A) Five tumor metabolism-related 
pathway differences between two metabolic subtypes. (B) Ten oncogenic-related pathway differences between 
two metabolic subtypes. (C) Metabolic pathways in two metabolic subtypes using Gene set enrichment analysis. 
SIZE represents the number of genes in the corresponding gene set. NES represents corrected normalized 
enrichment score. *P < 0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001.
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Figure 3.  Differences between metabolic subtypes. (A) Top 20 mutated genes in all gastric cancer patients 
of TCGA-STAD cohort. (B) Top 20 differentially mutated genes in all gastric cancer patients of TCGA-STAD 
cohort. (C) Comparison of TCGA gastric cancer subtypes among two metabolic subtypes. (D) comparison of 
tumor mutation burden among two metabolic subtypes. (E) KEGG signaling pathway enriched for genes with 
low methylation and high expression in cluster 2. (F) KEGG signaling pathway enriched for genes with low 
methylation and high expression in cluster 1. (G) Stromal score, Immune score and ESTIMATE score between 
two metabolic subtypes. (H) Relative proportion of 22 infiltrating immune cells estimated by CIBERSORT 
between two metabolic subtypes of TCGA-STAD cohort. *P < 0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001.
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assess the composition of 22 immune cells in the TCGA-STAD cohort (Fig. 3H). The samples by CIBERSORT 
that generated P-values greater than 0.05 were removed. Only 7 immune cells (T cells CD4 memory activated, 
T cells follicular helper, T cells regulatory (Tregs), Macrophages M0, Dendritic cells activated, Eosinophils and 
Neutrophils) did not differ between the two groups. All diverse immune signatures, except NK cells resting and 
Mast cells activated, were increased in the cluster 1 subgroup. The above results indicated that the tumor immune 
microenvironment may be associated with gastric cancer metabolic subtypes.

Metabolic subtype‑associated treatment strategy for gastric cancer. To assess the association 
of metabolic subtypes with immunotherapy, we adopted Tumor Immune Dysfunction and Exclusion (TIDE; 
http:// tide. dfci. harva rd. edu/) for TCGA-STAD cohort. The cluster 1 subgroup had higher TIDE scores, indicat-
ing that the cluster 1 subgroup had a higher probability of immune escape and thus lower benefit from immu-
notherapy (Fig. 4A). We also compared the n T cell dysfunction scores and T cell exclusion scores between the 
two subgroups, which supported the above conclusion (Fig. 4B,C). The above analysis suggested that cluster 2 
subgroup may have a better response to immunotherapy.

The previous findings showed that metabolic subtypes were associated with drug metabolism signaling path-
ways, which led us to explore their potential as a marker for predicting drug response. The Cancer Genome 
Project (CGP) database was used to predict chemotherapeutic response. We found 5 drugs commonly used in 
gastric cancer chemotherapy in the CGP database, and the estimated IC50 of these 5 drugs were significantly 
differed between the two subgroups (Fig. 4D–H). The patients with metabolic subtype-2 were more sensitive to 
the anticancer drugs 5-fluorouraci, docetaxel, mitomycin C and paclitaxel. The patients with metabolic subtype-1 
were more sensitive to cisplatin.

Furthermore, we screened the CMap database for small-molecule drugs with therapeutic effects on gastric 
cancer, based on differentially expressed genes between the two metabolic subtypes. As a result, we identified 
three potential small molecule drugs for gastric cancer (dimercaptosuccinic-acid, lapatinib, tracazolate).

Metabolic subtype‑associated signature is a prognostic indicator for gastric cancer. Multi-
ple datasets demonstrated significant prognostic differences between two metabolic subtypes. Therefore, we 
explored whether a metabolic subtype-related signature could be used to predict patient outcomes. First, we 
performed differential analysis to obtain a list of differentially expressed genes between metabolic subtypes. Sub-
sequently, LASSO Cox algorithm with 0.07 of the optimal λ value in the model was applied to identify the most 
robust prognostic genes based on differentially expressed genes profiles after Z-score transformed (Fig. S3A,B). 
KM analysis revealed that patients with a low metabolic subtype-associated signature score demonstrated a 

Figure 4.  The estimation of immunotherapy response, chemotherapy response and potential therapeutic drugs 
for gastric cancer. (A) TIDE scores of two metabolic subtypes in the TCGA-STAD cohort. (B) T cell dysfunction 
scores of two metabolic subtypes in the TCGA-STAD cohort. (C) T cell exclusion scores of two metabolic 
subtypes in the TCGA-STAD cohort. (D–H) The chemotherapy response of two metabolic subtypes for 5 
common chemotherapy drugs.

http://tide.dfci.harvard.edu/
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prominent survival benefit (log-rank test, p = 5.7e−7; Fig.  5A). Furthermore, ROC analysis also showed that 
this model can accurately predicted patient survival time (Fig. 5B). We also performed KM analysis on these 11 
genes separately, and found that the expression levels of nine genes were associated with the prognosis of gastric 
cancer patients (Fig. S4A–K).

In order to validate the stability of the model, we performed analyses in three additional cohorts. The 
results revealed that the low metabolic subtype-associated signature score group still had better survival in the 
three cohorts (GPL570 meta-dataset: HR = 1.74, 95% CI = 1.39–2.19, p = 1.2e−6; GSE26942: HR = 2.48, 95% 
CI = 1.63–3.77, p = 1.2e−5; GSE84437: HR = 1.61, 95% CI = 1.14–2.28, p = 6.9e−3; Fig. 5E–G).

Metabolic features of epithelial cells in the single‑cell resolution. Tumor tissue contains a variety 
of non-tumor cells that play an important role. Therefore, we aimed to explore the differences between meta-
bolic subtypes at a single-cell resolution. Among the eight gastric cancer samples analyzed, four were intestinal-
type, two were diffuse-type, and one was mixed-type (Table S3). After quality control processing, there were 
16,397 cells left, and we normalized the count data using “LogNormalize” method built into "Seurat" package. 
Subsequently, we utilized a classification model to perform metabolic classification of patients with single-cell 
sequencing. First, we calculated a matrix of average expression values of all genes in all cells of a single patient. 
We divided TCGA-STAD into training set and test set, and the SVM classification model showed extremely 
high accuracy in both training set and test set (the train set: AUC = 0.9498, 95% CI = 0.9268–0.9728; the test set: 
AUC = 0.9231, 95% CI = 0.8777–0.9684; Fig. 6A,B). We then classified the 8 patients into 2 metabolic subgroups 
according to this classification model (details in Table S4). The expression data of the above SVM analysis have 
been transformed by Z-score. The ssGSEA algorithm was used to assess the relevant KEGG signaling pathway 
levels in 8 single-cell sequencing samples. The results were the same to those obtained from bulk sequencing, 
with the high-level pathways in bulk cluster 1 subtype activated in single-cell cluster 1 subtype (Fig. S5A), and 

Figure 5.  Construction of metabolic subtype specific prognostic model. (A,B) Patients were divided into high-
risk and low-risk subgroup based best cutoff, Kaplan–Meier analysis demonstrated that patients with higher 
metabolic subtype-associated signature score exhibited worse overall survival in TCGA-STAD, ROC curves 
showing the predictive efficiency of the model on the 1-, 3-, and 5-years survival rate. (C–E) the prognostic 
difference was validated in 3 independent cohorts.
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Figure 6.  Analysis of metabolic subtypes in the single-cell dimension. (A,B) Performance of metabolic 
subtype classification models on training and test datasets. (C) Quantitative distribution of the five major cell 
types between the two metabolic subtypes. (D) The UMAP plot of all cells, which are color-coded based on 
their associated clusters. (E) Differences among the three metabolic pathways enriched in cluster 1 at the bulk 
dimension among the five types of cells. (F–H) Differences among the 30 metabolic pathways enriched in 
cluster 2 at the bulk dimension among the five types of cells. *P < 0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001.
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similarly for the pathways enriched in cluster 2 subtypes (Fig. S5B). Although the p-value was insignificant due 
to the small sample size, there was a clear trend in the results from Fig. S5A,B, indicating the robustness of the 
single-cell sample classification.

All cells were annotated into 5 cell types based on relevant markers (detailed markers in Table S5, Fig. 6D), 
including epithelial cell, T cell, B cell, stromal cell and myeloid cell. The numbers of 5 cells in the two metabolic 
subtypes are shown in Fig. 6C. The ssGSEA algorithm was used to assess the relevant KEGG signaling pathway 
levels in 16,397 cells. We wondered whether epithelial cells dominate the metabolic signaling pathways associ-
ated with metabolic subtypes. Three metabolic signaling pathways were mainly enriched in metabolic subtype 1, 
but only one was dominated by epithelial cells (Fig. 6E). Interestingly, the majority of the 30 metabolic signaling 
pathways enriched in metabolic subtype 2 were still dominated by epithelial cells (Fig. 6F–H).

To make the results more credible, we screened 1144 malignant epithelial cells from epithelial cells using 
the “CopyKAT” algorithm. GSEA analysis was used to analyze the metabolic heterogeneity of various cells in 
different metabolic subtypes. Six metabolic pathways were enriched in malignant epithelial cells of metabolic 
subtype 1, including the Glycosaminoglycan biosynthesis—chondroitin sulfate/dermatan sulfate pathway, which 
was consistent with bulk sequencing analysis (Fig. 6I). Then, 15 metabolic pathways were enriched in malignant 
epithelial cells of metabolic subtype 2, of which 8 were also enriched in subtype 1 of the bulk data (Fig. 6I). In 
addition, we analyzed the metabolic pathways of normal epithelial cells and malignant epithelial cells. The results 
indicated that normal epithelial cells did not show any significant enrichment of metabolic pathways, while 
malignant epithelial cells exhibited activation of 57 metabolic pathways (Table S6). Taken together, our findings 
highlight the metabolic heterogeneity of malignant cells.

Metabolic features of non‑epithelial cells in the single‑cell resolution. The non-epithelial cells 
were classified into 2 metabolic subtypes, based on their metabolic pathways. The four types of non-epithe-
lial cells have specific metabolic pathways and common metabolic pathways (Fig. 7A–D). Metabolic subtype 
2 showed stable activation of central carbon metabolism in cancer pathway and lysine degradation pathway in 
non-epithelial cells. On the other hand, only a small number of metabolic pathways were significantly enriched 
in metabolic subtype 1, specifically in B cells and stromal cells (Fig. 7B,C). These findings indicate that not only 
epithelial cells but also all non-epithelial cells exhibit metabolic characteristics of metabolic subtype 2, which is 
abundant in nature.

Discussion
Due to the heterogeneity of gastric cancer, the existing treatment methods are inevitably ineffective for some 
patients. Therefore, it is urgent to classify gastric cancer patients based on the existing data to discover potential 
subtypes of gastric cancer and facilitate personalized treatment. Metabolic reprogramming of tumor cells is 
required for tumorigenesis and progression. Tumor cells autonomously alter their phenotype through various 
metabolic pathways to meet increased energetic and biosynthetic demands. Therefore, we classified gastric 
cancer patients into two subtypes based on metabolic gene expression and conducted a detailed analysis of their 
differences from the genomic, epigenetic, and single-cell dimensions.

Our analysis classified gastric cancer patients into two metabolic subgroups, with cluster 1 consistently indi-
cating a worse prognosis. We found that metabolic subtype cluster 1 was characterized by low metabolism, 
while cluster 2 was characterized by abundant and higher metabolism. Pentose phosphate pathway, Glycolysis/
Gluconeogenesis pathway and Citrate cycle (TCA cycle) maintained high levels in cluster 2. In addition, cluster 
2 was enriched with multiple amino acid metabolism-related pathways, which also indicated the high metabolic 
feature of cluster 2. Analysis of 5 tumor metabolism-related pathways may partially explain of the metabolic dif-
ferences between the two clustered  subtypes45–49. More of the 10 tumor-related pathways were highly activated 
in cluster 1, indicating that cluster 1 had a higher degree of malignancy and therefore, a shorter survival time.

After conducting genomic analysis, we observed that cluster 2 exhibited a higher incidence of gene mutations, 
which is consistent with the above-mentioned activation of several nucleotide processing and repair-related path-
ways in cluster 2. Epigenetic analysis showed that the hypomethylated genes in cluster 1 were mostly oncogenic 
signaling pathways-related genes, leading us to believe that the high malignancy of cluster 1 may be related to 
gene hypomethylation. Both CIBERSORT and ESTIMATE analyses demonstrated that cluster 1 possessed a more 
abundant immune cell infiltration. Although cluster 1 had more abundant immune cell infiltration, we found 
that naive cells and memory cells, as well as various immune cells with immunosuppressive effects, were more 
abundant in cluster 1. However, the activated cells that exert anti-tumor effects did not differ between the two 
groups. This may explain high immune cell infiltration in cluster 1 but shorter survival time.

Given the notable prognostic differences between the two metabolic subtypes, we explored subtype-specific 
genes as potential prognostic markers. The results were also satisfactory, with the 6-gene prognostic model not 
only showing satisfactory results in the TCGA-STAD cohort, but also performing extremely well in three other 
independent data cohorts.

Based on the above two metabolic subtypes, we explored and discovered different treatment strategies. We 
predicted the therapeutic effects of 5 common chemotherapeutic agents in different metabolic subtypes. Accord-
ing to IC50 estimates, cluster 1 patients were more sensitive to cisplatin, while cluster 2 was more sensitive to 
5-fluorouraci, docetaxel, mitomycin C and paclitaxel. This information enables medical professionals to more 
precisely select a suitable chemotherapy program for their patients. TIDE analysis suggested that cluster 2 patients 
may benefit more from immunotherapy than cluster 1 patients.

In addition, we further explored the metabolic differences of various cells at the single-cell level, focusing 
on different metabolic subtypes. In most subtype-related metabolic pathways, most of them are dominated by 
epithelial cells. To enhance the validity of our findings, we also separated from malignant epithelial cells from 
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Figure 7.  Metabolic pathway analysis of non-epithelial cells in single-cell sequencing. (A) Metabolic pathways 
analysis in T cells of different metabolic subtypes using Gene set enrichment analysis (Only metabolic subtype 2 
had significantly enriched metabolic pathways). (B) Metabolic pathways analysis in B cells of different metabolic 
subtypes using Gene set enrichment analysis. (C) Metabolic pathways analysis in stromal cells of different 
metabolic subtypes using Gene set enrichment analysis. (D) Metabolic pathways analysis in myeloid cells of 
different metabolic subtypes using Gene set enrichment analysis (only metabolic subtype 2 had significantly 
enriched metabolic pathways).
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epithelial cells, as a result, the malignant epithelial cell metabolism is higher. Then, five major types of cells 
(epithelial cells, T cells, B cells, stromal cells and myeloid cells) analysis indicate that various cells in cluster 2 
are in high metabolic level, and the cells in cluster 1 are in a relatively low metabolic level. Therefore, the cluster 
1 subtype is metabolically indolent gastric cancer. The low-metabolic level of immune cells in cluster 1 may be 
associated with its poor prognosis and low immunotherapy response.

Nonetheless, our research has some limitations. Specifically, we did not investigate metabolic subtypes at the 
protein level, which could be an area for future research.

Conclusion
We provide a new perspective on the heterogeneity of gastric cancer from the metabolic. And we reveal the 
characteristics of metabolic subtypes from the genome, DNA methylation and single cells.

Data availability
The data that support the findings of this study are available in GEO (https:// www. ncbi. nlm. nih. gov/ geo/, 
GSE62254, GSE15459, GSE57303, GSE34942, GSE84437, GSE26942 and GSE183904), TCGA (https:// portal. 
gdc. cancer. gov/ repos itory, TCGA-STAD), and the Supporting Information.
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