Skip to main content
. 2023 May 31;13:8823. doi: 10.1038/s41598-023-35431-x

Table 6.

The following table compares how accurate the extracted features are and how computationally complex they are. Computing times are an average of three training runs using various TL models.

TL network Dataset Accuracy Runtime-training Runtime-test (s) Computational complexity
Inception v4 Kather texture 2016 97.31 20 min, 58 s 0.36 Low
NCT-CRC-HE-100K 98.47 7 h, 16 min, 29 s 0.38
VGG-16 Kather texture 2016 97.93 23 min, 44 s 0.33 Medium
NCT-CRC-HE-100K 98.86 8 h, 09 min, 27 s 0.34
VGG-19 Kather texture 2016 98.08 27 min, 51 s 0.46 High
NCT-CRC-HE-100K 99.17 9 h, 33 min, 12 s 0.43
DenseNet-169 Kather texture 2016 98.48 50 min, 38 s 0.76 High
NCT-CRC-HE-100K 99.57 19 h, 40 min, 30 s 0.72
DenseNet-201 Kather texture 2016 98.54 1 h min, 16 s 1.12 High
NCT-CRC-HE-100K 99.68 22 h, 06 min, 13 s 1.43
ResNet-101 Kather texture 2016 98.30 49 min, 26 s 0.61 Low
NCT-CRC-HE-100K 99.29 18 h, 36 min, 44 s 0.64
ResNet-110 Kather texture 2016 98.43 54 min, 12 s 0.67 Low
NCT-CRC-HE-100K 99.35 20 h, 54 min, 21 s 0.72
ResNet-152 Kather texture 2016 98.64 1 h, 17 min, 28 s 0.75 Medium
NCT-CRC-HE-100K 99.42 23 h, 35 min, 37 s 0.78
ResNet-164 Kather texture 2016 98.73 1 h, 32 min, 20 s 0.83 High
NCT-CRC-HE-100K 99.63 26 h, 03 min, 41 s 0.89
dResNet-101 Kather texture 2016 98.80 1 h, 07 min, 04 s 0.66 Medium
NCT-CRC-HE-100K 99.79 21 h, 23 min, 31 s 0.69