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Identification of PLOD3 and LRRN3 as potential biomarkers
for Parkinson’s disease based on integrative analysis
Xing Guo1,2,4, Wenjun Hu3,4, Zijie Gao1,2,4, Yang Fan1,2, Qianqian Wu1 and Weiguo Li1,2✉

Parkinson’s disease (PD) is one of the most prevalent movement disorders and its diagnosis relies heavily on the typical clinical
manifestations in the late stages. This study aims to screen and identify biomarkers of PD for earlier intervention. We performed a
differential analysis of postmortem brain transcriptome studies. Weighted Gene Co-expression Network Analysis (WGCNA) was used
to identify biomarkers related to Braak stage. We found 58 genes with significantly different expression in both PD brain tissue and
blood samples. PD gene signature and risk score model consisting of nine genes were constructed using least absolute shrinkage
and selection operator regression (LASSO) and logistic regression. PLOD3 and LRRN3 in gene signature were identified to serve as
key genes as well as potential risk factors in PD. Gene function enrichment analysis and evaluation of immune cell infiltration
revealed that PLOD3 was implicated in suppression of cellular metabolic function and inflammatory cell infiltration, whereas LRRN3
exhibited an inverse trend. The cellular subpopulation expression of the PLOD3 and LRRN3 has significant distributional variability.
The expression of PLOD3 was more enriched in inflammatory cell subpopulations, such as microglia, whereas LRRN3 was more
enriched in neurons and oligodendrocyte progenitor cells clusters (OPC). Additionally, the expression of PLOD3 and LRRN3 in Qilu
cohort was verified to be consistent with previous results. Collectively, we screened and identified the functions of PLOD3 and
LRRN3 based the integrated study. The combined detection of PLOD3 and LRRN3 expression in blood samples can improve the early
detection of PD.

npj Parkinson’s Disease            (2023) 9:82 ; https://doi.org/10.1038/s41531-023-00527-8

INTRODUCTION
Parkinson’s disease (PD) is a common progressive neurodegen-
erative disorder, characterized clinically by bradykinesia, rigidity,
tremor and posture instability, which seriously affecting patients’
quality of life1. With the aging of society, the population of PD is
increasing rapidly and the social burden is aggravating. So far, the
treatment strategy and overall management of PD are improved,
including medication, rehabilitation therapy, exercise and sur-
gery2. Previous studies indicated that earlier diagnosis and
intervention may slowing the course of PD progression3. Although
clinical diagnosis of PD is well defined depending on core
manifestations and course of disease, there is still no objective
biomarkers to assist detect the earliest phases of PD, especially for
sporadic PD with atypical symptoms4. Therefore, identification and
validation of reliable biomarkers for assistant diagnosis are
urgently needed and important in the management and earlier
intervention of PD.
Recently, comprehensive transcriptomics analysis based on

blood and postmortem substantia nigra (SN) samples were
performed respectively to identify potential biomarker or reg-
ulator of PD5. For postmortem SN transcriptome analysis, Qian
Wang et al. employed a multiscale network biology approach and
identified STMN2 as a key regulator of PD pathogenic pathways6.
For blood sample transcriptome analysis, differentially gene
expression between PD and normal control were screened and
two optimal gene biomarker panels (CS, PRKCD, RHOG, VAMP2
and GPX3, LRRN3, POLR1D) were identified as potential predictor
to diagnosis PD7,8. Besides, Marcelo et al. performed gene meta-
analysis of blood samples and identified a gene-set by classifica-
tion algorithms to accurately predict idiopathic PD9. As PD is a

progressive disease, to some extent, the biomarkers improved
earlier and accurate diagnosis of PD combined with clinical
symptoms. However, the specificity of the biomarkers based on
blood sample are poor, because it is influenced by the general
condition. In addition, the biomarkers based on SN samples lack
sensitivity, because SN tissue cannot be obtained from clinic and
the blood sample hardly reflect the degeneration of SN.
In this study, we performed an integrative analysis of tissue and

blood sample biopsies in order to screen and identify biomarkers
which can balance the specificity of SN tissue and sensitivity of
blood samples for diagnosis of PD.

RESULTS
Integrated analysis of tissue and blood samples from PD and
control patients
The detection of biomarkers only from circulating body fluids such
as blood is often limited in the clinical application of Parkinson’s
disease (PD) diagnosis due to poor specificity10. The genes
upregulated in substantia nigra (SN) tissue of PD patients may
serve as key drivers of the disease; however, detection of
pathogenic genes is not yet possible due to the inaccessibility
of brain tissue samples. It has been reported that disease-related
molecules such as circulating tumor DNA (ctDNA) can be detected
by liquid biopsy, which greatly improves the accuracy of early
diagnosis of disease11,12. However, the studies using pathogenic
cell-free RNA present in circulating body fluids for early diagnosis
of PD are scarce.
To simultaneously improve the sensitivity and specificity of

biomarkers for the diagnosis of PD, we used an integrated analysis
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based on biopsy of tissue and blood samples data. The overall
research workflow is illustrated in Fig. 1. Firstly, we screened the
Gene Expression Omnibus (GEO, https://www.ncbi.nlm.nih.gov/
geo/) database and six independent studies were identified, which
contained RNA sequence data from human substantia nigra (SN).
We then integrated data from six studies using the “ComBat”
algorithm to correct for non-biotechnical biases that contribute to
batch effects. Next, we performed differential analysis between
the PD and control group (PD: 59; Control: 58), and obtained 921
differentially expressed genes (DEGs) (Fig. 2a). The Braak staging
system represented the spread of Lewy pathology13, which is
corelated with evolution of clinical symptoms in PD patients, such
as bradykinesia, rigidity, cognitive decline etc14. We further
introduced GSE49036 which contains information on the Braak
stage for 28 samples. Weighted Correlation Network analysis
(WGCNA) was performed with the obtained 921 DEGs. Blue and
turquoise module (822 genes) that significantly correlated with
Braak stage were identified as the “Braak stage-related module in
PD” (Fig. 2b). Additionally, a blood-based gene expression
profiling study (GSE99039) was enrolled in our research. We
identified 1,001 DEGs between blood samples from PD and
controls (Fig. 2c). Then we took the intersection of the 1001 DEGs
and “Braak stage-related module” and finally obtained over-
lapping 58 genes for further analysis (Fig. 2d, e).

Identification of a PD gene signature consisting 9 biomarker
genes
To determine the key biomarkers in PD blood, we further
performed least absolute shrinkage and selection operator
(LASSO) regression algorithm for dimensionality reduction. The
438 participants of GSE99039 were randomly divided into two
parts (7:3) for the training set and test set, respectively. The 58
genes were entered into LASSO regression analysis and 9 genes
(ABHD2, BASP1, CTBP2, GCM1, GMPR2, GPX3, LRRN3, PLOD3, and
RBM38) were finally selected using an optimal λ value (λ.1se=
0.0498) (Fig. 3a). We further performed multivariate logistic
regression analysis and constructed a risk score model using the
“predict” function based on the nine genes for training and test
sets (Fig. 3b and Supplementary Figure 1). The risk scores of PD
patients were significantly higher than those of control patients in
both the training and test sets (Fig. 3c). In addition, we further
compared the risk scores of 28 PD patients with different Braak
stages in the GSE49036 dataset. Although patients with PD in
Braak stage 5/6 appeared to be higher than the other groups, the
statistical results were not significant due to the limitations of the
sample size (Fig. 3d). ROC analysis demonstrated that the
predictive capacity of risk score was powerful, whereas, the AUC
values were 0.702 and 0.746 in training and test sets, respectively
(Fig. 3e). Calibration curves of risk score in training set and test set
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Fig. 1 Flow chart of our research. The flow chart showing the collection of multiple data sets, dimensionality reduction, gene signature
model construction and evaluation, and validation of key biomarkers.
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were close to the ideal performance (45-degree gray line), which
indicated the predictive stability of risk score (Fig. 3f). Based on the
expression of nine genes in GSE99039 and merged tissue samples,
we performed correlation analysis and visualized using network
plot (Supplementary Figure 1). Collectively, a PD gene signature
consisting nine genes was identified and the risk score model
could predict the risk of PD incidence with a higher degree of
accuracy.

Identification of two key biomarkers PLOD3 and LRRN3
When in comparison of the nine key genes expression between
different Braak stages groups, we observed that only PLOD3 and
LRRN3 were significantly associated with Braak stages (Supple-
mentary Figure 2 and Fig. 3i). Additionally, the expression
differences of PLOD3 and LRRN3 between PD and control groups
were consistent in both blood and SN tissue samples (Supple-
mentary Fig. 2 and Fig. 3g, h). That is, PLOD3 expression was up-
regulated not only in blood samples but also in SN tissues of PD
patients, whereas the expression of LRRN3 was down-regulated in

both blood and SN tissue samples. PLOD3 and LRRN3 may act as
PD-driven and PD-suppressed molecules, respectively, which are
also important biomarkers detected in blood samples. The protein
encoded by PLOD3 is a membrane-bound enzyme that is localized
to the cisternae of the rough endoplasmic reticulum. PLOD3 has
been widely studied in gastric cancer15, non-small cell lung
cancer16 and triple-negative breast cancer17. In addition, a recent
study reported that PLOD3 is associated with immune cell
infiltration in colorectal cancer18. However, studies on the
biomarker significance and pathogenic mechanisms of PLOD3 in
PD are not available. LRRN3 was identified as a potential
diagnostic biomarker for PD patients’ blood samples8. As CSF is
a biological fluid that surrounds the brain and spinal cord and can
provide valuable information about the nervous system’s func-
tioning, we further utilized GSE141578 data to analyze biomarkers
in CSF. The results showed that PLOD3 and LRRN3 were expressed
relatively low in CSF, and these expressions were not significantly
different between control and PD groups (Supplementary Fig. 2).
However, more exploration needs to be taken to investigate the
role of PLOD3 and LRRN3 in CSF for PD diagnosis. Our results
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Fig. 2 Integrated analysis of tissue and blood samples from PD and control patients. a Heat map visualization of 921 differentially
expressed genes (DEGs) between PD and control nigrostriatal (SN) RNA. b The weighted gene co-expression network analysis (WGCNA) was
performed with the DEGs expression data to identify the Braak stage related models. c Volcano map visualization of 1001 DEGs between PD
and control blood samples of GSE99039. d, e Venn diagrams and scatter plots show the distribution of the overlapping 58 genes.
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indicated that LRRN3 expression was downregulated in both
blood and SN tissue samples from PD patients. Taken together,
the above results suggest that PLOD3 and LRRN3 are not only
implicated in the diagnostic significance of PD, but also may be
involved in the physiological mechanisms of PD pathogenesis.

Correlation analysis of PLOD3 and LRRN3 with immune cell
infiltration in PD
Further analysis was performed to define the function of PLOD3
and LRRN3 in PD. As inflammation and immune microenvironment
were reported to play a determinant role in the pathogenesis of
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PD, we focused on the difference of immune state between PD
and control. To evaluate the immune status of SN tissue, we
calculated the immune score, stromal score and estimate score
using “estimate” package. PD patients exhibited higher immune
scores and estimated scores compared to control patients, and the
estimated scores were positively correlated with Braak stages
(Supplementary Fig. 3). We further performed ssGSEA to evaluate
the immune cells infiltration. The results demonstrated that pDCs,
T helper cells, TIL etc. were higher infiltrated in SN tissue of PD
patients than control. The infiltration of B cells, neutrophils, TIL,
and Treg were positively correlated with Braak stages, while CD8 T
cells were negatively correlated (Supplementary Fig. 3).
Based on the median values of PLOD3 and LRRN3 expression,

we stratified the PD patients into high and low groups. PD patients
with higher PLOD3 expression exhibited higher stromal score,
immune score and estimate score, whereas PD patients with
higher LRRN3 expression exhibited the opposite immune score
profile (Supplementary Fig. 4). Additionally, PD patients with
higher PLOD3 expression showed significantly higher infiltration of
pDCs, T helper cells, TIL, macrophages, while PD patients with
higher LRRN3 expression showed the opposite immune cell
infiltration profile (Supplementary Fig. 4). Totally, our results
demonstrated that PLOD3 was implicated in immune response
activation status and higher inflammatory cell infiltration, whereas
LRRN3 was implicated in relative immune response suppression
status.

The expression of PLOD3 and LRRN3 exhibited differential
distribution of cell subpopulations
We leveraged a single-cell nuclear transcriptomics data
(GSE184950) of human SN to analyze the cell subpopulation
expression distribution of PLOD3 and LRRN3. We determined and
annotated the cell types of these cell clusters by examining the
expression of known gene markers of brain cell type. A total of
seven cell types were identified, which consisted oligodendro-
cytes (Oli), neurons (Neu), microglia (Mic), astrocytes (Ast),
endothelial cells (End), oligodendrocyte progenitor cells (OPC),
and myeloid. As the Braak stages increased, the proportion of
microglia and oligodendrocytes significantly increased, while the
proportion of neuronal cells decreased significantly compared to
the control group (Fig. 4a, b). We further examined the expression
distribution of PLOD3 and LRRN3. PLOD3 expression was more
abundant in astrocytes, microglia and oligodendrocyte popula-
tions, whereas LRRN3 was more enriched in neuronal and
oligodendrocyte progenitor cell populations (Fig. 4c, d). The
above results consisted with our previous results that PLOD3 was
implicated in higher inflammatory cell infiltration, while LRRN3
was implicated in relative immune suppression status. The GSEA
analysis also demonstrated that PLOD3 was negative correlated
with cellular metabolism-related functions such as tricarboxylic
acid cycle and oxidative phosphorylation (Fig. 4e, f), whereas
LRRN3 was positively correlated with cellular metabolic functions

such as cellular respiration and respiratory electron transport
chain (Fig. 4g, h). We concluded that PLOD3 was implicated in
suppression of cellular metabolic function and inflammatory cell
infiltration, whereas LRRN3 exhibited opposite effects.

Validation the expression of PLOD3 an LRRN3 in blood
samples
To further validate the diagnostic efficacy of PLOD3 and LRRN3 for
PD, we collected blood samples derived from 35 patients with a
clinical diagnosis of PD and 23 controls. qRT-PCR was performed
to examine the relative expression of PLOD3 and LRRN3. As the
results demonstrated, in PD and control cohorts, a greatly
increased level of PLOD3 was observed to be more common in
PD blood samples than in control (Fig. 5a, b). In contrast, samples
with higher LRRN3 expression were more numerous in the control
group than in the PD group (Fig. 5c, d). Then the ROC analysis was
performed to assess the predictive accuracy of PLOD3 and LRRN3,
with AUC values of 0.7189 and 0.7017 for PLOD3 and LRRN3,
respectively. (Fig. 5e). The calibration curves of PLOD3 and LRRN3
were close to the ideal performance, which indicated a powerful
and robust predictive capacity of PLOD3 and LRRN3 for PD (Fig. 5f).
We constructed a nomogram model by integrating PLOD3 and
LRRN3 expression together to further improve the diagnostic
efficacy of PD (Fig. 5g). Density plot was used to visualize the
nomoRisk score and PD patients exhibited a significantly higher
nomoRisk score than control (Fig. 5h). Unified Parkinson’s Disease
Rating Scale (UPDRS) score is widely used to assess cognitive
function, motor function and linguistic function of PD patients. In
addition, UPDRS improvement rates after dopamine challenge test
can be used to assess the sensitivity to anti-PD drugs and
outcomes for Deep Brain Electrical Stimulation (DBS) surgery for
PD patients.
Our results showed that PD patients with higher UPDRS

improvement rates after dopamine challenge test had lower
PLOD3 and higher LRRN3 in their blood samples, which further
reveals the significance of examining PLOD3 and LRRN3 (Fig. 5i).
Collectively, we enrolled Qilu cohort to validate the expression of
PLOD3 and LRRN3 in blood samples, which exhibited excellent
predictive efficiency.

DISCUSSION
As a progressive neurodegenerative disorder, clinical symptoms of
PD appearance lag behind the pathology onset of SN. The current
diagnostic criteria of PD relying on clinical symptoms go against
the detection and intervention of early stage. In order to screen
and identify biomarkers of PD for early intervention and slowing
disease progression, we performed a differential analysis based on
six merged cohorts of SN transcriptome and a single-cell atlas of
SN transcriptome, combined with blood sample transcriptome. In
addition, WGCNA was used to identify biomarkers related to Braak
stage of PD. LASSO and logistic regression were used to construct

Fig. 3 Identification of a PD gene signature consisting 9 biomarker genes. a Least absolute shrinkage and selection operator (LASSO)
coefficient profiles (y-axis) of the 58 overlapping genes (left panel). The dashed line on the left represents the optimal value of λ, which
corresponds to the number of genes on the x-axis (right panel). b Multivariate logistic regression model analysis, which included the nine
genes in the training set of GSE99039. The forest plot displays the odds ratio (OR) values and their 95% confidence intervals from various
genes. Each square represents a gene, with the position of the square indicating the OR value and the horizontal line representing the 95%
confidence interval. c The differences of risk score between PD and control groups for training set and test set of GSE99039. d The differences
of risk score between different braak stage PD patients of GSE49036 e Receiver operating characteristic (ROC) curves for the risk score model
both in the training and test sets. f The calibration curves of risk score predictions for the training and test sets are close to the ideal
performance (45 degrees line). g, h The differences of PLOD3 and LRRN3 expression between PD and control groups of GSE99039 (g) and
merged SN tissue samples (h), respectively. i The differences of PLOD3 and LRRN3 expression between different Braak stages groups of
GSE49036. Boxplots summarize the distribution of the data. The box represents the interquartile range, with the horizontal line inside the box
indicating the median. The whiskers extend to the minimum and maximum values within 90% of the data range and the shape of the violin
provides insights into the data distribution.
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a novel 9 genes-set signature. Two key biomarkers PLOD3 and
LRRN3 were identified as potential predictors to diagnosis PD.
Finally, PLOD3 and LRRN3 were verified in our hospital PD cohort
of blood samples and may be related to clinical sensitivity to anti-
PD drugs.

Over the past decade, multiple studies focused on diagnostic
biomarkers of PD and proved the potential cerebrospinal fluid
(CSF) and blood biomarkers could reflect the pathophysiology of
PD19. Species of α-synuclein as central regulation molecules in the
pathophysiological mechanisms were commonly measured
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Fig. 4 Single-cell RNA analysis reveals the functions of PLOD3 and LRRN3. a UMAPs of control and different Braak stages PD brain samples.
b Cluster composition of myeloid, oligodendrocyte progenitor cells (OPC), endothelial cells (End), neurons (Neu), astrocytes (Ast),
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differential expression in CSF and blood of PD compared with
control. The diagnostic accuracy of α-synuclein in the blood was
disturbed by red blood cell contamination, which caused
inconsistence results of serum and plasma from different scholars.
Although the measurement of α-synuclein in CSF exclude the red
blood cell contamination, unsatisfactory diagnostic accuracy of α-
synuclein in CSF for PD patient was obtained. Therefore, reliable
blood biomarker as a non-invasive tool still be necessary for early
diagnosis of PD in clinic. Biomarkers are measurable indicators of
biological processes or disease states. In the future, the use of
biomarkers in blood and cerebrospinal fluid or a combination of
both may become more widespread and refined. Advances in
technology and analytical methods will allow for the identification
of new biomarkers and improved sensitivity and specificity of
existing biomarkers. Biomarkers may also be used to identify
subtypes of diseases, allowing for personalized treatment
strategies. Additionally, biomarkers may be used to monitor
treatment response, allowing for early identification of treatment
effectiveness or the need for alternative therapies. In this study, on
the one hand, we integrated the transcriptome of SN to screen
accurate and stable biomarkers which correlated with the
progressive pathology of Braak stage. On the other hand, we
chose the co-differential expressed biomarkers in blood and SN,
which may accurately reflect the pathophysiology of PD. Based on
the co-differential expressed biomarkers, a PD gene signature
consisting 9 key genes was identified, including LRRN3 and PLOD3.
The risk score of the gene signature could predict the risk of PD
incidence with a higher degree of accuracy.
Leucine-rich repeat neuronal protein 3 (LRRN3) enriched in the

cerebral cortex participated in regulating the synaptic connec-
tion20. The expression of LRRN3 were lower in PD compared with
control and reported to decline with age21, indicating progression
of neurodegeneration may influence LRRN3 expression. Recently,
whole-blood transcriptome analysis revealed that LRRN3 was top
smoking-related highly expressed genes in smokers. More
interestingly, plenty clinical studies showed that smoking took a
causally protective effect on the risk of PD22,23, indicating the
potential etiology role of LRRN3 in PD. Procollagen-lysine,
2-oxoglutarate 5-dioxygenase 3 (PLOD3), one of the lysyl
hydroxylases family, involved in catalyze the formation of collagen
cross-link and deposition24. Overexpression of PLOD3 were
detected in many human diseases, including collagen-related
diseases and cancers. Recent research reported that the extra-
cellular matrix consisted more collagen in prefrontal cortex of PD
compared with control. The increasing PLOD3 expression may
resulting in the enrichment of collagen of SN of PD, and
associated with the pathogenesis of PD. In this study, the
potential biomarkers of LRRN3 and PLOD3 were respectively
proved to be highly and lowly expressed in blood consistence
with SN of PD. Furthermore, we confirmed the diagnostic efficacy
of PLOD3 and LRRN3 for PD via collected blood samples derived
from 35 patients with a clinical diagnosis of PD and 23 controls in
our hospital. Moreover, the expression of PLOD3 and LRRN3
correlated with the UPDRS improvement rates after dopamine
challenge test, which indicated the potential prognostic value for
PD patients. However, the detail function of LRRN3 and PLOD3 in
PD progression is not elucidated clearly.
Dysregulation of the immune microenvironment plays a

determinant role in the pathogenesis of Parkinson’s disease.
Neuroinflammation has been treated as a hallmark of PD and
plays a critical role in PD pathogenesis through triggering
neuronal dysfunction and death25. Specifically, microglia can be
activated and further migrate to the brain through a compromised
BBB, and contribute to disease progression by mediating the
immune pathways and interacting with α-synuclein. Therefore, the
innate immune responses triggered by microglia can cause
neuronal death and disease progression. Our further analysis
showed that PD exhibited activation status of immune response

and higher immune cell infiltration. Besides, our results demon-
strated that PLOD3 was implicated in immune response activation
status, whereas LRRN3 was implicated in immune response
suppression status. More importantly, according to single-cell
transcriptome analysis, PLOD3 was enriched in microglia cells of
PD contrast to control, indicating the potential role of PLOD3 in
immune response regulated by microglia during the pathological
progression of PD. Vice versa, LRRN3 was mainly expressed in
neurons, hinting the decreasing expression of LRRN3 correlated
with the infiltration of immune cells was unfavorable for the
protection of neurons. Meanwhile, the latest bioinformatic studies
showed that PLOD3 and LRRN3 composed the gene signature of
immune cell infiltration26,27. As the potential regulation role
during the progressive pathology of PD, the PLOD3 and LRRN3
may have the early diagnosis value for PD.
In conclusion, our study constructed an accuracy 9-genes PD

signature model to predicted the risk of PD. Among the 9 genes,
PLOD3 and LRRN3 were identified and validated to be reliable
biomarkers for diagnosis of PD in blood samples. According to the
functional enrichment analysis, PLOD3 and LRRN3 correlated with
immune infiltration of SN in PD. In the future, the potential role
and mechanism of PLOD3 and LRRN3 in regulating immune
infiltration during the progression of PD could be focused on
research.

METHODS
Data collection and processing
For human substantia nigra (SN) RNA sequencing profiles, a total
of six independent GEO datasets (GSE20141, GSE20163, GSE20164,
GSE20292, GSE24378, and GSE7621) were enrolled to this study
and the “ComBat” algorithm was used to correct for non-
biotechnical biases that contribute to batch effects. GSE49036
was used to identify biomarkers related to Braak stage based. For
human blood samples of PD and controls, GSE99039 was enrolled.
For single-cell RNA sequencing analysis, GSE184950 was enrolled.
For qRT-PCR of blood samples in Qilu cohort, 35 patients with a

clinical diagnosis of PD and 23 controls with no history of major
brain illness from June 2021 to December 2022 in Department of
Functional Neurosurgery were included.

Differential analysis
The “limma” R package was leveraged to identify differential
expressed genes (DEGs) between PD and control groups. The
significance criterion for DEGs was p-value < 0.01.

Weighted Correlation Network analysis (WGCNA)
WGCNA was used to construct a scale-free co-expression network
using the R package ‘WGCNA’ and to identify a gene module that
is mostly correlated with Braak stage. The obtained DEGs between
PD and control groups were involved in WGCNA to identify “Braak
stage-related module” in PD.

Immune status and immune cell infiltration analysis
ESTIMATE was used to calculate the immune score, stromal score
and estimate score according to the R package “Estimate”. single-
sample gene set enrichment analysis (ssGSEA) was used to
identify tumor immune-infiltrating cell abundance in SN tissues of
PD patients. The markers of 28 immune-related cells and types
were obtained from the dataset of Bindea et al.28.

Gene functional annotation based on gene set enrichment
analysis
To analyze the differences in biological processes of PLOD3 and
LRRN3, gene set enrichment analysis (GSEA) enrichment was
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performed via the “GSEA_4.1.0” software. We downloaded the
gene set “c5.go.bp.v7.4” as well as “c2.cp.kegg.v7.4” from the
Molecular Signatures Database (MSigDB, https://www.gsea-
msigdb.org/gsea/msigdb/index.jsp) for GSEA.

Single Cell nuclear RNA sequencing analysis
The single-cell RNA-sequencing of gliomas were downloaded from
Gene Expression Omnibus (GEO, https://www.ncbi.nlm.nih.gov/
geo/, GSE184950) and analyzed using R package “Seurat 4.1.0”.
Method “UMAP” was applied for the visualization of different cell
clusters.

Real-time quantitative RT-PCR (qRT-PCR)
The total RNA was extracted by TRIzol (Invitrogen, USA) following
manufacturer’s protocol. We performed reverse transcription
using high-capacity-cDNA Reverse Transcription Kit (Toyobo,
China) according to the protocol. The PCR primer pairs’ sequences
were: 5′-CAGAGATGGAGCACTACGGC-3′ (forward) and 5′-CTTGGT
GTGGTAACCGGGAA-3′ (reverse) for PLOD3; 5′-CCCATCAGGTG
TGACTGTGT-3′ (forward) and 5′-GCCGAACATTCTGACCTTGG-3′
(reverse) for LRRN3. Mx-3000P Quantitative PCR System (Applied
Biosystems, USA) was leveraged for qRT-PCR.

Statistical analysis
We leveraged R 4.1.3 to perform all statistical analysis. We
performed Pearson correlation algorithm to evaluate the
correlation between different groups. The normality of distribu-
tion and the homogeneity of variance were proved by
Shapiro–Wilk normality test and Bartlett test, respectively.
Student’s t test and one-way ANOVA were performed to compare
the certified data (significance > 0.1) between two groups and
more than two groups, respectively. P-value < 0.05 were
accepted as statistically significant (*p-value < 0.05; **p-value <
0.01; ***p-value < 0.001).

DATA AVAILABILITY
All of the publicly available data used in this study are listed in Supplementary
Table 1. Written requests for access to the Qilu Parkinson’s cohort data reported in
this paper will be considered upon request to the corresponding author GLW and
first author XG, as long as the appropriateness of data use is determined. If deemed
appropriate, a data sharing agreement will be signed prior to providing a fully de-
identified version of the dataset used for analysis.

CODE AVAILABILITY
R code used for dimensionality reduction is available from the authors upon request.

Received: 1 January 2023; Accepted: 15 May 2023;

REFERENCES
1. Hernandez, D., Reed, X. & Singleton, A. Genetics in Parkinson disease: Mendelian

versus non-Mendelian inheritance. J. Neurochem 139, 59–74 (2016).
2. Armstrong, M. & Okun, M. J. J. Diagnosis and treatment of Parkinson disease.

Review 323, 548–560 (2020).
3. Kulkarni, A., Preeti, K., Pushpa, K., Srivastava, S., Singh, S. & Khatri, D. J. Proteostasis

in Parkinson’s disease: recent development and possible implication in diagnosis
and therapeutics. Ageing Res. Rev. 84, 101816 (2022).

4. Nila, I. et al. Identification of exosomal biomarkers and its optimal isolation and
detection method for the diagnosis of Parkinson’s disease. Syst. Rev. Meta-Anal.
82, 101764 (2022).

5. Chelliah, S., Bhuvanendran, S., Magalingam, K., Kamarudin, M. & Radhakrishnan, A.
J. Identification of blood-based biomarkers for diagnosis and prognosis of Par-
kinson’s disease: a systematic review of proteomics studies. Ageing Res. Rev. 73,
101514 (2022).

6. Wang, Q. et al. The landscape of multiscale transcriptomic networks and key
regulators in Parkinson’s disease. Nat. Commun. 10, 5234 (2019).

7. Lin, Z. et al. Identification of potential genomic biomarkers for Parkinson’s disease
using data pooling of gene expression microarrays. Biomark Med. 15, 585–595
(2021).

8. Jiang, F., Wu, Q., Sun, S., Bi, G. & Guo, L. Identification of potential diagnostic
biomarkers for Parkinson’s disease. FEBS Open Bio 9, 1460–1468 (2019).

9. Falchetti, M., Prediger, R. & Zanotto-Filho, A. J. Classification algorithms applied to
blood-based transcriptome meta-analysis to predict idiopathic Parkinson’s dis-
ease. Comput. Biol. Med. 124, 103925 (2020).

10. Tolosa, E., Garrido, A., Scholz, S. W. & Poewe, W. Challenges in the diagnosis of
Parkinson’s disease. Lancet Neurol. 20, 385–397 (2021).

11. Ignatiadis, M., Sledge, G. & Jeffrey, S. J. Liquid biopsy enters the clinic—imple-
mentation issues and future challenges. Nat. Rev. Clin. Oncol. 18, 297–312 (2021).

12. Wu, X. et al. Circulating tumor DNA as an emerging liquid biopsy biomarker for
early diagnosis and therapeutic monitoring in hepatocellular carcinoma. Int. J.
Biol. Sci. 16, 1551–1562 (2020).

13. Braak, H., Del Tredici, K., Rüb, U., de Vos, R., Jansen Steur, E. & Braak, E. J. Staging
of brain pathology related to sporadic Parkinson’s disease. Neurobiol. Aging 24,
197–211 (2003).

14. Braak, H., Rüb, U. & Del Tredici, K. J. Cognitive decline correlates with neuro-
pathological stage in Parkinson’s disease. J. Neurol. Sci. 248, 255–258 (2006).

15. Chen, Y. et al. PLOD3 contributes to HER-2 therapy resistance in gastric cancer
through FoxO3/Survivin pathway. Cell Death Discov. 8, 321 (2022).

16. Li, W. et al. PLOD3 regulates the expression of YAP1 to affect the progression of
non-small cell lung cancer via the PKCδ/CDK1/LIMD1 signaling pathway. Lab
Invest. 102, 440–451 (2022).

17. Liu, J. et al. Multicenter phase II trial of Camrelizumab combined with Apatinib
and Eribulin in heavily pretreated patients with advanced triple-negative breast
cancer. Nat. Commun. 13, 3011 (2022).

18. Shi, J. et al. PLOD3Integrated profiling identifies as a potential prognostic and
immunotherapy relevant biomarker in colorectal cancer. Front. Immunol. 12,
722807 (2021).

19. Parnetti, L. et al. CSF and blood biomarkers for Parkinson’s disease. Lancet Neurol.
18, 573–586 (2019).

20. Hong, M., Myers, A., Magnusson, P. & Prince, J. J. Transcriptome-wide assessment
of human brain and lymphocyte senescence. PLoS One 3, e3024 (2008). Po.

21. Kochunov, P. et al. Transcriptomics of cortical gray matter thickness decline
during normal aging. Neuroimage 82, 273–283 (2013).

22. Mappin-Kasirer, B. et al. Tobacco smoking and the risk of Parkinson disease: a 65-
year follow-up of 30,000 male British doctors. Neurology 94, e2132–e2138 (2020).

23. Heilbron, K. et al. Unhealthy behaviours and risk of Parkinson’s disease. Mendel.
Randomisation Study 11, 1981–1993 (2021).

24. Qi, Y. & Xu, R. J. Roles of PLODs in collagen synthesis and cancer progression.
Front. Cell Dev. Biol. 6, 66 (2018).

25. Zhu, B., Yin, D., Zhao, H. & Zhang, L. The immunology of Parkinson’s disease.
Semin. Immunopathol. 44, 659–672 (2022).

26. Duo, M. et al. Integrative bioinformatics analysis to explore a robust diagnostic
signature and landscape of immune cell infiltration in sarcoidosis. Front. Med.
(Lausanne) 9, 942177 (2022).

27. Wu, X. et al. A bioinformatic analysis study of mG regulator-mediated methylation
modification patterns and tumor microenvironment infiltration in glioblastoma.
Front. Med. 22, 729 (2022).

28. Bindea, G. et al. Spatiotemporal dynamics of intratumoral immune cells reveal the
immune landscape in human cancer. Immunity 39, 782–795 (2013).

ACKNOWLEDGEMENTS
This work was supported by the Natural Science Foundation of Shandong Province of
China (ZR2019BH057) and Shandong University Horizontal Research Funds
(26010112671732).

AUTHOR CONTRIBUTIONS
W.G.L. supervised the project. X.G., W.J.H., and Z.J.G. designed the research and
performed all experiment. X.G., W.J.H., and Z.J.G. made the first draft of the
manuscript. X.G., Z.J.G., and Y.F. contributed to the interpretation of the data and
performed statistical analysis. X.G., Z.J.G., W.J.H., Q.Q.W., and X.Y.M. helped to revise
the manuscript. W.G.L. and X.Y.M. helped advise on this research design. All authors
read and approved the final manuscript.

COMPETING INTERESTS
The authors declare no competing interests.

X. Guo et al.

9

Published in partnership with the Parkinson’s Foundation npj Parkinson’s Disease (2023)    82 

https://www.gsea-msigdb.org/gsea/msigdb/index.jsp
https://www.gsea-msigdb.org/gsea/msigdb/index.jsp
https://www.ncbi.nlm.nih.gov/geo/
https://www.ncbi.nlm.nih.gov/geo/


ADDITIONAL INFORMATION
Supplementary information The online version contains supplementary material
available at https://doi.org/10.1038/s41531-023-00527-8.

Correspondence and requests for materials should be addressed to Weiguo Li.

Reprints and permission information is available at http://www.nature.com/
reprints

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims
in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing,

adaptation, distribution and reproduction in anymedium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative
Commons license, and indicate if changes were made. The images or other third party
material in this article are included in the article’s Creative Commons license, unless
indicated otherwise in a credit line to the material. If material is not included in the
article’s Creative Commons license and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly
from the copyright holder. To view a copy of this license, visit http://
creativecommons.org/licenses/by/4.0/.

© The Author(s) 2023

X. Guo et al.

10

npj Parkinson’s Disease (2023)    82 Published in partnership with the Parkinson’s Foundation

https://doi.org/10.1038/s41531-023-00527-8
http://www.nature.com/reprints
http://www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

	Identification of PLOD3 and LRRN3 as potential biomarkers for Parkinson&#x02019;s disease based on integrative analysis
	Introduction
	Results
	Integrated analysis of tissue and blood samples from PD and control patients
	Identification of a PD gene signature consisting 9 biomarker genes
	Identification of two key biomarkers PLOD3 and LRRN3
	Correlation analysis of PLOD3 and LRRN3 with immune cell infiltration in PD
	The expression of PLOD3 and LRRN3 exhibited differential distribution of cell subpopulations
	Validation the expression of PLOD3 an LRRN3 in blood samples

	Discussion
	Methods
	Data collection and processing
	Differential analysis
	Weighted Correlation Network analysis (WGCNA)
	Immune status and immune cell infiltration analysis
	Gene functional annotation based on gene set enrichment analysis
	Single Cell nuclear RNA sequencing analysis
	Real-time quantitative RT-PCR (qRT-PCR)
	Statistical analysis

	DATA AVAILABILITY
	References
	Acknowledgements
	Author contributions
	Competing interests
	ADDITIONAL INFORMATION




