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Abstract

There are significant correlations among different types of genetic, genomic and epigenomic features within the genome.
These correlations make the in silico feature prediction possible through statistical or machine learning models. With the
accumulation of a vast amount of high-throughput data, feature prediction has gained significant interest lately, and a
plethora of papers have been published in the past few years. Here we provide a comprehensive review on these published
works, categorized by the prediction targets, including protein binding site, enhancer, DNA methylation, chromatin
structure and gene expression. We also provide discussions on some important points and possible future directions.
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Introduction
Genome is a complicated yet coordinated system. A variety
of genome-wide features (including genomic, epigenomic and
transcriptomic) works in harmony to achieve complex functions.
Advances in high-throughput technologies allow the profiling
of different features on the whole genome scale. During the
past decade, tremendous amount of different types of high-
throughput omics data have been generated to measure these
features, for example, by large consortia such as NIH Roadmap
Epigenomic Consortium [1, 2] and ENCODE [3]. Analyses of these
data greatly enhance our understanding of how genome works
and provide opportunities for identifying diagnostic biomarkers
and therapeutic targets.

Generally speaking, features in the genome can be categorized
into two classes: the static features and the dynamic features.
The static features are the ones defined by DNA sequence (with-
out considering genetic variants) and genome annotation, thus
do not change across cell types within one individual. These
features only need to be measured once, then they can be applied
for different biological conditions. Examples of static features
are the following:

i. DNA sequence composition (GC content, CpG density,
k-mer, etc.)

ii. DNA motifs (protein specific)
iii. gene annotation (coordinates of genes, exons, introns,

untranslated regions (UTRs) and other regulatory regions)
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iv. CpG island
v. sequence conservation.

Dynamic features are the ones that vary across individuals, cell
types or under different biological conditions. They are closely
related to the diverse functions of the cells, for example, differ-
ent cell types from the same individual. Examples of dynamic
features are the following:

i. DNA sequence variants such as the single nucleotide poly-
morphisms (SNPs)

ii. gene expression
iii. DNA methylation
iv. histone modification
v. protein–DNA interaction

vi. replication timing
vii. chromatin structure (spatial organization, open/close chro-

matin and nucleosome positioning).

Among these, the genetic features (ones defined by the DNA
sequence and annotation) are mostly static. The only exception
is the genetic variants, which are variable across individuals.
Most of the genomic, epigenomic and transcriptomic features
are dynamic. They are different not only across individuals but
also across different cell types within the same individual. When
studying a specific biological or clinical condition, it is ideal
that all these features are measured. However, it’s prohibitively
expensive and laborious in practice. Analyses of existing high-
throughput data reveal strong correlations among different fea-
tures, for example, the binding of certain transcription factors
(TFs) at the gene promoter regions are correlated with the gene
expression. Even though the correlations do not necessarily
imply any causal relationship, these intrinsic correlations, along
with the availability of large amount of public high-throughput
data, make it possible to predict the features. The prediction can
fill gaps of experimental data and provide insight of how dif-
ferent genome features work as a coordinated system. Over the
past several years, there have been great interests in computa-
tional genome-wide feature prediction, and a number of papers
have been published. Here, we provide a rather comprehensive
survey of existing works in this field, where the methods are
grouped based on the targets of the prediction, including protein
binding site, enhancer, DNA methylation, chromatin structure
and gene expression. Within each group, the detailed nature
and characteristics of the target, together with the rationale
behind the selection of predictors and models, will be discussed
in detail.

Prediction of protein binding sites
Predicting the binding sites of DNA-binding proteins such as
TFs is useful due to the fact that experimental methods (such
as chromatin immunoprecipitation sequencing (ChIP-seq)) can
only determine the true binding sites of one type of protein,
under one condition (tissue, cell, treatment/disease, etc.) at a
time. It is impossible to profile the combinations of all TFs and
cell conditions experimentally. Thus, computational prediction
has become popular, where one can use existing data to learn the
rules of TF binding and then impute the binding profile under a
new biological condition without actually doing the experiment.

In general, there are a number of genomic features associated
with protein binding, including DNA sequence motifs, chromatin
accessibility, histone modification and DNA methylation status.
Before the availability of high-throughput data, DNA sequence
motif is the most widely used feature to predict transcription
factor binding sites (TFBSs) in silico. The binding motifs can be

found in databases such as JASPAR [4], TRANSFAC [5], ORegAnno
[6], PAZAR [7] and Factorbook [8]. However, motif-based methods
usually perform poorly for multicellular eukaryotic organisms
such as human and mouse, because the static genome sequence
features alone are unable to predict the cell type-specific binding
events. Moreover, the sequence motif could vary in different cell
types even for the same protein [9]. A recent study also shows
that on individual level, the repository of TF binding activities
may be affected by one’s genetic variation [10]. In this section,
we will not discuss existing prediction methods based on DNA
sequence alone. Instead, we will focus on how sequence motifs
can be combined with other genome features to predict in vivo
binding site.

Prediction methods using histone modifications

Histone modifications are found to be closely correlated with
regulatory activities in the human genome [11]. Different histone
marks are associated with different regulatory elements, such
as open chromatin, promoter, enhancers, etc. [11, 12]. Whiting-
ton et al. [13] first used DNA motifs to scan the genome and
define potential binding sites. Then they used histone mark
H3K4me3 as well as other features such as distance to known
transcription start site (TSS) and sequence conservation to filter
the candidates to reduce false positives. He et al. [14] used
differential H3K4me2 ChIP-Seq signals to measure nucleosome
positioning, followed by motif analysis to predict TF binding
dynamics. Talebzadeh and Zare-Mirakabad used a composition
of different histone marks within neighboring nucleosomes as
predicting features. Then it is combined with position weighted
matrix (PWM) to fit a logistic regression classifier to predict
binding sites [15]. Ramsey et al. [16] used the local minima of
histone acetylation ChIP-seq signals (referred to as ‘valley score’)
combined with motif scanning score to predict TF binding sites.
They defined a weighted sum of scores from different features as
binding score where weighted parameters are trained by super-
vised learning. Won et al. [17] used a more comprehensive set of
histone features to train a hidden Markov model (HMM) model
to predict TFBS. Their method, named Chromia, fits a three-state
Gaussian mixture model by taking both position-specific scoring
matrix and binned histone modification signals as input. An
interesting finding from Chromia is the heterogeneity of histone
contribution; histone marks are predictive for TFBS in a TF-
specific manner. They found that, among all TFs listed in the
paper, H3K4me3 is the most frequent strong predictor.

It is interesting to notice that among a variety of histone
marks, only a few are proved to be relevant with TF binding reg-
ulation. These factors include open chromatin (Histone acety-
lation, HAc [16]), nucleosome distribution (H3K4me2 [14]), tran-
scription (H3K36me3 [17]), promoter (H3K4me3) or enhancers
(H3K4me1). Based on this idea, Ji et al. [18] used histone marks
to define genomic categories and made TFBS prediction based
on this information. The histone marks serve as a feature space
in which the complete epigenome environment can be projected
on to.

Prediction methods using chromatin accessibility

Since the open chromatin structure is often a necessary condi-
tion for a protein–DNA interaction, using chromatin accessibility
data (for example from DNase-seq or Assay for Transposase-
Accessible Chromatin using sequencing (ATAC-seq)) to predict
protein binding is a natural idea. There are in general two major
categories of methods using chromatin data: bin-based methods
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and candidate site-based methods. Bin-based methods include
DNase2TF [19] and HINT [20]. This class starts with searching for
footprints of TFBS shown on DNase-seq data, i.e. short valleys in
DNase highly sensitive peak regions, under the assumption that
binding sites of proteins are protected from enzymatic cleavage.
The footprints are usually enclosed within signatures of histone
modifications. HMM model was adapted to recognize this type of
local-dependency relationship in HINT and Chromia. The latter
class first scans the whole genome using known TF motifs and
gets a list of candidate binding sites. Then the chromatin profile
centered at these candidate sites are analyzed to detect potential
TF binding sites. Methods in this class could use supervised
or unsupervised learning algorithms. Unsupervised methods
include CENTIPEDE [21], FootprintMixture [22], PIQ [23], Romulus
[24] and Mocap [25]. These methods model the differences in
data between binding and non-binding sites then phase out the
labels (binding/no-binding) using prior knowledge. This type of
method can learn the class structure directly from data, thus is
useful when there is no training data available for supervised
learning. While supervised methods use a variety of representa-
tions of DNase profile, some combine with additional epigenetic
marks as prior [26] and train different types of models, including
support vector machine (SVM) [9, 27] or random forest [28, 29].

One important problem associated with chromatin-based
predicting methods is the sequence bias issue of the DNase
footprinting experiments. The cutting efficiency of DNase I
shows difference for certain DNA motifs, which might lead
to false detection of enriched motif resulted from technique
noise, rather than sequence signal of TF binding [30]. In
addition, the residence binding time of different TFs shows
great variance, which results in different reads coverage around
the binding sites. Gusmao et al. [31] discussed these issues and
computational solutions to address these challenges in detail in
a recent review.

Other methods for protein binding prediction

Prediction methods using methylation profile [32] or DNA shape
features [33] have been developed in addition to the popular
methods using epigenetic marks discussed above. As an exam-
ple, Xu et al. [32] showed that 5 mC DNA methylation profile
including CG and CH methylation can accurately predict TF–DNA
binding in vivo, in many cases, even better than using DNase
data. In addition, recent popularity of deep learning technology
brought applications in TFBS prediction as well. For example,
DeepBind [34] used convolutional neural network (CNN) [35] to
detect motif-like DNA sequence kernels and using them as input
features in a feed-forward neural network to predict binding
affinity of proteins. FactorNet [36] added an additional layer
of recurrent neural network (RNN) [37] to model the spatial
dependency of feature signals.

A list of protein binding site prediction methods reviewed
above is listed in Table 1.

Prediction of enhancer
Definition of enhancer

Prediction of enhancer is difficult, partly because of the lack
of a gold standard definition for an enhancer–gene pair. So far,
the predicting methods mostly rely on experimentally validated
enhancers from public data resources, such as FANTOM [38]
or ENCODE [3], where the spatial chromatin organization that
brings a regulatory enhancer to a distal gene promoter is con-

sidered as the validated evidence of an enhancer. However, this
approach is not applicable to all the cells/tissues due to the cost.
Alternative methods are proposed to use epigenetic features
presented at enhancer regions as indirect gold standards. This
approach, however, needs to be carefully designed since some
epigenetic marks are used to define the outcomes, while some
other epigenetic marks are used as predictors.

Challenges of enhancer prediction

With limited annotation resource, the task of predicting
enhancers is challenging. Unlike well-annotated gene/TSS/pro-
moter, this task only became possible with the accumulation
of a large amount of TFBS/DNase I hypersensitive sites (DHSs)/
histone data. Some histone modifications are considered asso-
ciated with enhancer, acting as the markers to guide different
TFs to form regulatory chromatin loops. These modifications
include H3.3 and H2AZ [39], H3K4me1 and H4K27ac [11, 40,
41]. The latter is specifically studied as the marker for poised
enhancer [42, 43]. Nucleosome positioning is also a key factor
to define enhancers [14], which could potentially be the result
of chromatin opening. Also, TFs are essential components of
enhancer activity as well. Multiple studies showed the key
role of TFs as the marker of enhancers, such as p300/CREB-
binding protein (CBP) [44–47] or a combination of multiple TFs
[48–51]. In prediction methods, common practice is to overlap
predicted ‘enhancer’ with P300 + DHS + several TFBS known to
be associated with enhancer.

It is equally important to choose proper negative set in the
training data. For example, TSSs share a considerable number of
common features with enhancers, thus the negative sites must
include TSS regions should the user wish to differentiate them
from distal regulatory regions. Tissue specificity is another issue
that needs to be considered. Just like gene expression and other
epigenetic profiles, enhancer is highly cell type-specific [52, 53].
For example, enhancers regulating developmental genes (e.g.
SOX2/OCT4/NANOG) should not function in developed tissues
in principle. Another challenge of enhancer prediction is the
diversity of the enhancer itself. Studies have shown that the
enhancers are highly heterogeneous [54, 55]. Thus, it is essential
for the selection of training data to collect a comprehensive set
of representing training samples, both for positive classes and
negative classes.

Tools for enhancer prediction

Before epigenetic marks were used for predicting enhancer,
DNA sequence was investigated as the potential predictor
for enhancers [11], and this information has been used as
an enhancer predictor for a long time. k-mer-based methods
are often coupled with SVM classifier, and more sophisticated
representation of k-mers allowing gaps was introduced as well
[56, 57]. Other variants based on motifs [58] and DNA local
structure [59] have also been proposed. As more epigenomic
data become available, tools like REFCS [60] that based only on
DNA sequence become less common.

Among all the epigenomic marks, histone modifications
are the most relevant to enhancer. Firpi et al. [61] developed
a tool in the early stage of enhancer prediction. They used
neural network to model the histone modifications as features
at enhancer regions. Their approach is considered as a standard,
and many follow-up works adopt the same setting, including
the size of negative sets, validation procedure, etc. Non-linear
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Table 1. Prediction methods of protein binding sites

Publication Features Method Software Description

Whitington et al. [13] Histone PWM scan followed by
filtering chromatin
features

N/A Scan the genome using motif PWM to
detect candidate binding sites. Sites
are then filtered by several genetic
and epigenetic criteria using ad hoc
thresholds.

He et al. [14] Nucleosome-resolution
histone

Dynamics of nucleosome
occupancy and motif

N/A Use differential H3K4me2 ChIP-seq
signals to measure nucleosome
positioning, followed by motif
analysis to predict TF binding
dynamics.

Won et al. [17] Histone HMM Chromia
(http://wanglab.ucsd.
edu/star/job.php?s=
chromia)

Use sequence counts of fixed-sized
bins for a number of histone
ChIP-seq data sets as inputs for a
three-state HMM.

Ramsey et al. [16] Histone acetylation
ChIP-seq, nucleosome
occupancy, DNA sequence

Weighted sum of scores RamseyHAc2010
(http://magnet.
systemsbiology.net/hac/)

Take 100 bp intervals of
transcript-proximal regions as
candidate regions. Sequence and
epigenetic features are used as
predictors. Weighted sum of
thresholded predictors values are
treated as prediction scores.

Pique-Regi et al. [21] DNase-seq, DNA
sequence

Two-component mixture
model, expectation-
maximization (EM)
algorithm

CENTIPEDE
(http://centipede.
uchicago.edu/)

Compute prior for binding from
sequence-based features. Binned
read counts from DNase-seq are
assumed to be from a mixture model,
which is fitted by an EM algorithm.
Posterior probabilities of binding are
obtained.

Cuellar-Partida
et al. [26]

DNase-seq, histone Epigenetic data as prior,
use motif to predict

FIMO, part of MEME
(http://meme-suite.
org/doc/fimo.html)

Prior probabilities of binding are
derived from epigenetic data.
Posterior probabilities are computed
from prior and motif scores based
on a Bayesian model.

Arvey et al. [9] Histone, DNase-seq SVM N/A Two SVMs are trained based on
dinucleotide mismatch k-mer
features of 100 bp regions and read
counts from 100 bp bins.

Ji et al. [18] Nine histones Principal component
analysis (PCA)-type
unsupervised learning

dPCA (http://www.
biostat.jhsph.edu/dpca/)

Binned read counts from several
ChIP-seq data sets are obtained.
Differences in counts between two
conditions are decomposed using
PCA. The motif sites with large PC1
scores are deemed differential
binding sites.

Gusmao et al. [20] DNase-seq, histone HMM HINT
(http://www.regulatory-
genomics.org/hint/
introduction/)

Genome-wide read counts in 5000 bp
bins are obtained and normalized.
Eight-state HMM (with one of the
states being the protein-binding
footprint) with multivariate outcome
is fitted.

Sung et al. [19] DNase-seq, Motif (4-mer) Tests based on counts Dnase2TF
(https://sourceforge.
net/projects/dnase2tfr/)

Identify DHS from DNase-seq data.
For each DHS, it looks for ‘dip’ within
the peaks. The dips are then
combined with motifs to define
binding sites.

Yardimci et al. [22] DNase-seq, bias
adjustment

Two-component mixture
model

FootprintMixture
(https://ohlerlab.mdc-
berlin.de/software/
FootprintMixture 109/)

Two-component mixture model is
used to predict binding sites. Binned
read counts around candidate sites
are modeled by factor-specific
multinomial distribution.

Continued

http://wanglab.ucsd.edu/star/job.php?s$=$chromia
http://magnet.systemsbiology.net/hac/
http://centipede.uchicago.edu
http://meme-suite.org/doc/fimo.html
http://www.biostat.jhsph.edu/dpca/
http://www.regulatory-genomics.org/hint/introduction/
http://www.regulatory-genomics.org/hint/introduction/
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https://sourceforge.net/projects/dnase2tfr/
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Table 1. continued

Publication Features Method Software Description

Sherwood et al. [23] DNase-seq
(magnitude + shape
around motif match
sites)

Expectation propagation PIQ (http://piq.csail.mit.
edu/)

Scan the genome using motif PWM to
detect candidate binding sites. Binned
read counts from DNase-seq are
analyzed to build TF-binding profiles
(shapes and magnitude). Posterior
probability of binding is computed
using expectation propagation method.

Xu et al. [32] Methylation, genomic
features

Random
forest + two-component
mixture model for
methylation

Methylphet
(https://github.com/
benliemory/Methylphet)

Compute methylation scores based
on a mixture model, then use the
scores with other features as
predictor in a random forest to predict
binding sites.

Alipanahi et al. [34] DNA sequence (using
binding array data as
target)

CNN DeepBind (http://tools.
genes.toronto.edu/
deepbind/)

Use a deep learning framework to
model the relationships between DNA
sequence patterns and TF binding
sites. CNN is used to capture
sequence patterns. Trained model can
be applied to a new sequence with
variations to estimate risks by
predicting changes in TF binding
affinity.

Quach and Furey
[27]

DNase-seq (profile:
mean and slope,
centered at
motif)

SVM DeFCoM (https://
bitbucket.org/
bryancquach/defcom)

Find candidate regions based on motifs.
Binned read counts from DNase-seq
around the candidate regions are
obtained for varying-sized bins. Read
counts are used as predictors in an
SVM.

Jankowski et al.
[24]

DNase-seq (shape, on
motif-matched sites)

Two-component mixture
model, EM algorithm

Romulus (https://github.
com/ajank/Romulus)

Similar to CENTIPEDE, except for the
binning strategy. They use 20 bp bins
outside the motif site and single-bp
bins within the motif site. For
non-binding sites, they put all the
positions in a single bin.

Liu et al. [28] DNase-seq (footprint
score defined by
counts) + genomic
features

Random forest BPAC (http://bioinfo.
wilmer.jhu.edu/BPAC/)

Motif PWM scores and different types
of read count features are used as
predictors to train a random forest for
prediction.

Ma et al. [33] DNA sequence, shape
kernel

Support vector
regression

Sequence-shape (https://
bitbucket.org/wenxiu/
sequence-shape.git)

Use kernel functions to model both
DNA sequence and shape features
simultaneously. It then performs
kernel-based regression and
classification to predict TF–DNA
interaction. It shows that
incorporation of DNA shape
information can improve prediction
accuracy.

Kuang et al. [29] Histone, DNase-seq, on
known motif-matched
sites

Random forest DynaMO (https://github.
com/spo111/DynaMO)

Use motif sites as candidate regions.
Binned read counts around the motif
sites are used as predictors in random
forest for prediction.

Chen et al. [25] DNase-seq, ATAC-seq
and DNA sequence
features

Three-component
mixture model; sparse
logistic regression;
weighted least square

Mocap (https://github.
com/xc406/Mocap)

Take motif sites as candidate regions.
They used a three-component
mixture model for the read counts
and sparse logistic regression on a
number of features. Cross-sample
method uses weighted least square to
minimize a loss function.

Quang et al.
(unpublished)

DNase-seq CNN + RNN FactorNet (https://github.
com/uci-cbcl/FactorNet)

Use a number of features to train a
deep learning model (DanQ CNN-RNN
hybrid architecture). Features include
genome sequences and annotations,
gene expression and DNase-seq data.

http://piq.csail.mit.edu/
http://piq.csail.mit.edu/
https://github.com/benliemory/Methylphet
https://github.com/benliemory/Methylphet
http://tools.genes.toronto.edu/deepbind/
http://tools.genes.toronto.edu/deepbind/
http://tools.genes.toronto.edu/deepbind/
https://bitbucket.org/bryancquach/defcom
https://github.com/ajank/Romulus
https://github.com/ajank/Romulus
http://bioinfo.wilmer.jhu.edu/BPAC/
https://bitbucket.org/wenxiu/sequence-shape.git
https://bitbucket.org/wenxiu/sequence-shape.git
https://bitbucket.org/wenxiu/sequence-shape.git
https://github.com/spo111/DynaMO
https://github.com/spo111/DynaMO
https://github.com/xc406/Mocap
https://github.com/uci-cbcl/FactorNet
https://github.com/uci-cbcl/FactorNet
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Table 2. Prediction methods of enhancers

Publication Enhancer
definition/control

Features used Method Software Description

Heintzman et al. [11] P300/random DNA sequence Correlation N/A Use correlation between
sequence and P300 binding sites
to predict enhancers. Some
predicted enhancers lack p300
binding. Hold-out
cross-validation is used to select
the optimal combination of
histone modifications.

Firpi et al. [61] 74 validated from
Heitzman et al.
[11]

Histone ANN (Time
delay neural
network
(TDNN))

CSIANN
(http://tanlab4gene
regulation.org/
CSIANNWebpage.html)

Use neural network model to
predict enhancer from histone
modification. It was one of the
early works that defined the
settings of enhancer prediction
that later works adopted.

Lee et al. [56] P300/random DNA sequence
(k-mer with
k = 3∼10)

SVM Kmer-svm
(http://beerlab.org/
kmersvm/)

Use SVM to model k-mer
composition for enhancers. It is
a non-cell-specific model.
Performance varies in different
cells. It explores the possibility
to predict enhancer from DNA
sequence.

Taher et al. [58] Validated/random TF motifs LASSO
regression

CLARE
(http://clare.dcode.org/)

Use LASSO regression to model
concurrence between TF motifs
and enhancers. Consider the
length and GC content of the
target region.

Fernandez and
Miranda-Saavedra [62]

P300 distal to
TSS/random

Histone SVM + genetic
algorithm

ChromaGenSVM Use SVM on histone data to
predict enhancer. Use genetic
algorithm for model selection.

Rajagopal et al. [63] p300 overlapping
with DHS, distal
to TSS/validated

24 types of
histone

Random forest RFECS
(https://github.com/
kaizhang/RFECS)

Use an extended panel of
histone data and evaluate the
importance of different histone
modifications. It can perform
cross cell-type prediction.

Ghandi et al. [57] p300 in mouse
embryonic/
random

Gapped-kmer SVM Gkm-svm
(http://www.beerlab.org/
gkmsvm/)

Use gapped-kmer as features for
SVM model, which is an
extension to the previous
kmer-SVM method.

Erwin et al. [66] VISTA
enhancer/tissue-
specific
non-enhancer
validated

Step 1: histone,
TFBS,
Dnase/FAIRE,
conservation,
motif;
Step 2: histone,
p300

Linear SVM as
step 1; multiple
kernel learning
in step 2

EnhancerFinder
(https://sourceforge.net/
projects/enhancers/)

A two-step method for
developmental enhancer. Step 1
is non-cell-specific; it detects
developmental enhancer regions
across the genome. Step 2 is
trained in tissue-specific
manner, thus unable to do
cross-tissue prediction. It shows
that functional genomics data
are more informative about
developmental enhancer tissue
specificity than degree of
conservation or sequence motifs.

Continued

http://tanlab4generegulation.org/CSIANNWebpage.html
http://beerlab.org/kmersvm/
http://beerlab.org/kmersvm/
http://clare.dcode.org
https://github.com/kaizhang/RFECS
https://github.com/kaizhang/RFECS
http://www.beerlab.org/gkmsvm/
http://www.beerlab.org/gkmsvm/
https://sourceforge.net/projects/enhancers/
https://sourceforge.net/projects/enhancers/
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Table 2. continued

Publication Enhancer
definition/control

Features used Method Software Description

Kleftogiannis et al. [65] ENCODE validated
enhancer/random

Histone, DNA
sequence

Ensemble, with
SVM as base
classifier and
ANN as final
output classifier

DEEP
(http://cbrc.kaust.edu.
sa/deep/)

Take a comprehensive set of
features from histone and DNA
sequence and then use an
ensemble learning framework
with SVM as base classifiers. It
performs feature selection based
on an exhaustive search that
identifies the optimal set of
attributes that differentiates
considerably between different
cell lines. It shows that no model
trained from a single cell-line
data can effectively predict
enhancers in all other cell lines.

Liu et al. [59] Validated
enhancer/non-
enhancer

Sequence (k-mer),
DNA local
structure

SVM iEnhancer-2 L
(http://bioinformatics.
hitsz.edu.cn/
iEnhancer-2L/)

A two-step method that takes
k-mer and DNA structure as
input. Step 1 predicts enhancers;
Step 2 distinguishes weak/strong
enhancers. It downsamples
negative class to solve imbalance
problem.

Lu et al. [64] P300, DHS; distal
to TSS/random

Histone (shape of
profile in addition
to intensity)

Adaboost DELTA
(https://github.com/
genereader/delta)

Take shape features from histone
marks (instead of using intensity
only) as input. An adaboost model
is used for prediction.

Liu et al. [67] H3K27ac peaks;
multiple filters
(distal to TSS, etc.)

Histone, 27 TFs
and cofactors, 15
chromatin
accessibility,
transcription,
RRBS, CpG
islands,
evolutionary
conservation,
sequence k-mers,
motifs (TFBS)

Deep learning
(DNN) + HMM;
Iteratively train
through cell
types

PEDLA
(https://github.com/
wenjiegroup/PEDLA)

Take a comprehensive set of
features, including histone, TF
binding sites, chromatin
accessibility, transcription and
methylation. A deep neural
network model is used for
prediction. Model is trained
across all available cell types
iteratively then predict in one cell
type. This is an early deep
learning method for enhancer
prediction.

Jia et al. [60] Strong or weak
enhancer/non-
enhancer

400 bp: bi-profile
Bayes (similar to
200 bp positive
PWM and 200 bp
negative PWM,
Nucleotide
frequency,
pseudo-
nucleotide
frequency, 3-mer
frequency)

SVM EnhancerPred
(http://server.malab.cn/
EnhancerPRED/)

Build a set of sequence features
based on nucleotide frequency
and PWMs, then use an SVM
model to predict enhancers. All
features are derived from DNA
sequence.

He et al. [68] P300/random +
promoters

Histone,
methylation

Random forest REPTILE
(https://github.com/
yupenghe/REPTILE)

Use histone and methylation data
as features in a random forest
model. It shows that enhancer
overlaps with DMRs. Two random
forest models are trained, one is
based on pigenomic signature of
the complete query region, and
the second model is based on the
epigenomic signature of DMRs
within the query region. When
predicting, the maximum score
between the outputs form the
two models are used as the final
prediction.

http://cbrc.kaust.edu.sa/deep/
http://cbrc.kaust.edu.sa/deep/
http://bioinformatics.hitsz.edu.cn/iEnhancer-2L/
https://github.com/genereader/delta
https://github.com/genereader/delta
https://github.com/wenjiegroup/PEDLA
https://github.com/wenjiegroup/PEDLA
http://server.malab.cn/EnhancerPRED/
http://server.malab.cn/EnhancerPRED/
https://github.com/yupenghe/REPTILE
https://github.com/yupenghe/REPTILE
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Table 3. Prediction methods of methylation

Publication Methylation
type

Features used Method Software Description

Bhasin et al. [76] CpG sites from
MethDB

DNA sequence SVM Methylator MethDB sequences are fragmented into
overlapping fragments of fixed length
and used as predictors in an SVM.

Das et al. [78] CpG sites,
differentiate
in/out CpG
Island (CGI)

DNA sequence SVM HDFinder ∼100 sequence-based features are used
as predictors. Feature selection was done
by recursive feature elimination. A
number of classifiers were applied, and
SVM provides the best performance.

Fang et al. [77] CGI GC content,
DNA motifs

SVM MethCGI Sequence-based features and TFBSs are
used as predictors in an SVM model.

Whitaker et al. [79] DNA
methylation
valleys

DNA sequence
(motif)

LASSO feature
selection + ran-
dom forest
prediction

Epigram
(http://wanglab.
ucsd.edu/star/
epigram/)

Use a number of DNA sequence motifs as
predictors. LASSO was used for feature
selection, and random forest is the
classifier.

Zhang et al. [86] WGBS, 450 K DNA sequence
(composition,
recombination
rate, evolution
rate), 450 K data,
DHS site, TFBSs

Random forest N/A 124 features are extracted from
sequence, genome annotation and
epigenetic modifications. Random forest
is used for prediction.

Wang et al. [87] RRBS DNA sequence
(composition,
k-mer), both
local and
remote based
on Hi-C data

DNN (stacked
denoising
autoencoders)

Deepmethyl
(http://dna.cs.
miami.edu/
DeepMethyl/)

Features are obtained from Hi-C and a
number of DNA sequence patterns.
Stacked denoising autoencoder is used
for prediction.

Fan et al. [85] WGBS, 450 K DNA sequence
(k-mer), 450 K
data

Random forest N/A Features are obtained from DNA
sequence. The goal is to train the model
using methylation array data and predict
the methylation levels on CpG sites that
are not covered by the array. It also
proposes to integrate multiple types of
epigenetic marks to improve prediction
accuracy.

Zeng and Gifford [84] RRBS, meQTL DNA sequence
variants

CNN of Keras CpGenie
(https://github.
com/gifford-lab/
CpGenie)

A deep learning framework to predict the
impact of sequence variation on the
methylation level of neighboring CpG
sites. It adopts a CNN model to capture
the DNA sequence patterns for
prediction.

Angermueller et al. [83] Single-cell RRBS DNA sequence,
neighboring
CpG

CNN + RNN DeepCpG
(https://
deepcpg.
readthedocs.io/
en/latest/)

A deep neural network model to predict
methylation level on low-coverage CpG
sites. It uses CNN to capture the DNA
sequence patterns for prediction and an
RNN framework to model the spatial
dependency of methylation level among
neighboring CpG sites.

Zou et al. [88] WGBS, EPIC ATAC-seq,
Histone, TFBS,
Genomic
Features (CGI,
GC content,
recombination
rate)

XGBoost BoostMe
(https://github.
com/lulizou/
boostme)

Imputation method to estimate
methylation level for low-quality regions
in WGBS data. It can integrate a diverse
set of genomic and epigenetic features
and leverage information from multiple
samples.

http://wanglab.ucsd.edu/star/epigram/
http://wanglab.ucsd.edu/star/epigram/
http://wanglab.ucsd.edu/star/epigram/
http://dna.cs.miami.edu/DeepMethyl/
http://dna.cs.miami.edu/DeepMethyl/
http://dna.cs.miami.edu/DeepMethyl/
https://github.com/gifford-lab/CpGenie
https://github.com/gifford-lab/CpGenie
https://github.com/gifford-lab/CpGenie
https://deepcpg.readthedocs.io/en/latest/
https://deepcpg.readthedocs.io/en/latest/
https://deepcpg.readthedocs.io/en/latest/
https://deepcpg.readthedocs.io/en/latest/
https://github.com/lulizou/boostme
https://github.com/lulizou/boostme
https://github.com/lulizou/boostme
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effects among different histone modifications were modeled by
machine learning approaches including SVM [62], random forest
[63], adaboost [64] or combined with ensemble learning frame-
work [65]. The current trend to predict enhancer is to utilize all
the available epigenetic profiles and capture the inter-feature
relationships by complex models. Such methods combine his-
tones with chromatin accessibility [66, 67] or methylation [68]. A
comprehensive list of the enhancer predicting tools is shown in
Table 2.

Prediction of DNA methylation
DNA methylation is the most studied among all epigenetic phe-
nomena. A variety of biological or clinical processes has been
reported to be associated with methylation changes [69–72].
The majority of DNA methylation is on the Cytosine of CG
dinucleotides (5 mC), or CpG sites, although other types of DNA
methylation (non-CG methylation) exist. There are also varia-
tions of methylation types, such as hydroxymethylation (5 hmC)
[73].

Before high-throughput sequencing became available,
methylation level of CpG sites is investigated together with
DNA sequence patterns using methylation-specific restriction
enzymes [74], and prediction models aim to infer methylation
levels based on the DNA sequence. MethDB [75] was the popular
choice of the training resource then. Multiple works [76–78]
were proposed to use sequence-derived features for methylation
prediction on selected CpG sites. However, an intrinsic problem
with these initial exploring works is that DNA methylation is
highly cell/tissue type-specific, thus using only static genomic
DNA sequence is not sufficient to capture its dynamic profile,
or at least, this strategy can only be applied to some genomic
regions containing specific functional elements [79].

High-throughput technologies enable researchers to profile
methylation landscape in larger scale at low cost. Microarrays
such as the Illumina Infinium Methylation 450 k and Methyla-
tionEPIC arrays are designed to cover CpG sites in important
regulatory genomic regions. Sequencing-based technologies
such as reduced representation bisulfite sequencing (RRBS) [80]
and whole-genome bisulfite sequencing (WGBS) [81] provide
wider genome coverage. Quantification of methylation from
these diverse platforms is a non-trivial task, and detailed
discussion of this topic can be found in this review [82].
Prediction of DNA methylation based on these high-throughput
data has a distinct feature compared to other predictions tasks.
The majority of tools are designed to perform imputation
(instead of prediction) for the whole methylome [83–85],
usually within the same cell/tissue. This is different from other
prediction tasks, where the prediction for a new cell/tissue
context is more important. This is largely the result of DNA
methylation measurement techniques; array-based methods
are cost effective but only cover a small portion of all CpG
sites. On the other hand, WGBS provides genome-wide coverage
but is prohibitively expensive to be applied to a large-scale
study. Thus, it is desirable to train a model to predict genome-
wide methylome (which is expensive to obtain) based on
the data from a small portion of the genome (which is low
cost).

With the accumulation of epigenome data, using relevant
genome features to predict DNA methylation has become pos-
sible. There are some works for DNA methylation prediction
without data from a proportion of CpG sites (such as from
microarray). These are the true ‘prediction’, instead of ‘imputa-
tion’ methods. For example, Zhang et al. [86] integrate sequence

signatures together with other cell type-specific markers, includ-
ing DHS and protein binding sites to predict methylation level.
A different group introduced the other possibility to consume
chromatin topological features from Hi-C experiments for the
same task [87]. A recent method brings in histone modification to
the already rich collection of features for the task of methylation
prediction [88]. In addition to the prediction of methylation level
for CpG sites in general, Zeng et al. [84] proposed to predict the
effect of sequence variants on CpG methylation, which is similar
to the application of DeepBind [34]. Also, imputation methods
might find their new application in single-cell data, due to the
large proportion of missing values in single-cell methylation
data. Angermueller et al. [83] proposed a deep learning frame-
work named DeepCpG, which used CNN to capture sequence
features and RNN for spatial-dependent relationships among
CpG sites to impute missing data for single-cell methylation
sequencing results.

A list of the methods for methylation prediction is shown in
Table 3.

Prediction of chromatin structure
The genome has a very complex three-dimensional structure.
The particular spatial organization is closely linked to the biolog-
ical functions. Recently developed chromosome conformation
capture (3C) [89] and its extension Hi-C techniques can identify
genome-wide long-range interactions of chromosome [81, 90,
91]. However, high-resolution Hi-C experiments are costly and
difficult to implement, so it is desirable to predict the chromatin
structure from other sources of information [92].

For this task, the prediction methods vary due to the
complexity of characterizing chromatin structure. Different
experimental techniques provide diverse views of the spatial
organization of chromatin. A/B compartments are one way
to divide the genome based on chromatin structure, where
interactions between loci within one compartment are assumed
to be independent to the other. The A compartment was found to
be associated with open chromatin or euchromatin while the B
compartment was with closed chromatin or heterochromatin. A
common assumption behind the works to predict chromatin
structure is that distal but interacting loci tend to harbor
similar epigenomic features. Fortin and Hansen [93] used this
strategy to reconstruct A/B compartment using methylation
data and the other types of epigenomic marks across multiple
cell lines. Genomic loci with high correlation of these marks are
predicted to be within the same compartment. Similarly, Zhu et
al. [94] developed a novel strategy to detect spatial chromatin
interaction structure measured by capture-C experiments. They
collected epigenomic marks including chromatin accessibility,
histone modifications and gene expression levels from five
different tissue types. Then correlations of distal loci are
measured, and significantly associated loci are identified based
on permutation. Huang et al. [95] adopted a different way to
study the structural features by defining interaction hubs and
train a machine learning classifier based on epigenomic marks.
In addition to the efforts to utilize epigenomic marks, molecular
thermal simulation has been applied to explore the structural
feature of chromatin as well. Brackley et al. [96] proposed to
use chromatin accessibility data to infer protein binding sites,
which could serve as the interaction points to form protein
bridge. Then polymer modeling was applied to simulate the
thermal motion of the chromatin fiber to detect potential
local interaction structures based on inferred protein bridging
sites. A recent study extends the prediction target from the
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Table 4. Prediction methods of chromatin structure

Publication Targeted
chromatin

Features used Method Software Description

Fortin and Hansen [93] A/B
compartment

450 K
Methylation
microarray, DHS,
scATAC-seq,
scWGBS

Eigenvector of
features + Cor-
relation

N/A (R script
provided)

Compute the methylation
correlation matrix for
fixed-length bin. The sign of the
first principal components (PC)
of the correlated matrix is used
to estimate compartments.

Huang et al. [95] Chromatin
interaction hubs
and
topologically
associated
domain (TAD)
boundaries

Hi-C, histones,
DNA sequence

Bayesian
additive
regression tree

N/A Summarized local pattern for
each histone mark then signals
are input to a BART model to
predict hubs; call peaks of CTCF
by MACS, TAD boundaries are
predicted as CTCF peaks.

Zhu et al. [94] Spatial
association
within TADs

Histone, DHS,
RNA-seq

Tensor vector
correlation + per-
mutation

EpiTensor
(http://wanglab.
ucsd.edu/star/
EpiTensor/)

Deconvolute 18 histone
modification signals of five cell
types into three tensor spaces,
associations between two
regions are calculated as their
geometric mean of their scores
in eigenlocus space.

Brackley et al. [96] Local folding/in-
teraction map
on Alpha/beta
globin loci in
mouse
erythoblasts

DHS, TF motifs Polymer model N/A Use DHS as a proxy for binding
of a generic type of protein
bridge and then predict
chromosome architecture f using
a Polymer model.

Jung et al. [97] Chromatin
accessibility
(ENCODE
DNase-seq)

Transcriptomic
data (ENCODE
RNA-seq)

Hierarchical
random forest

ChromAccPrediction
(https://github.
com/saschajung/
ChromAccPrediction)

Use a hierarchical random forest
model to predict chromatin
accessibility from gene
expression data.

looping structure of chromatin to accessibility prediction [97].
Transcriptome data are used to infer the chromatin landscape
within gene-regulatory regions.

A list of the methods for chromatin structure prediction is
shown in Table 4.

Prediction of gene expression
Gene expression is often considered as the target in the whole
cascade of regulatory network. All the other elements, including
chromatin accessibility, histone modification and protein bind-
ing, serve as intermediate steps to control the expressions of tar-
get genes. Gene expression can be easily profiled by a number of
high-throughput experiments such as gene expression microar-
ray [98], RNA-seq [99], Cap analysis gene expression (CAGE) [100,
101]and RNA-PET [102]. These methods are considerably cheaper
than profiling several other epigenetic marks. Thus, the main
purpose of gene expression prediction is to study the regulatory
mechanisms of different epigenetic marks on gene expression.

Initially, there were efforts to study the patterns of DNA
sequence at the regulatory regions of expressed genes in limited
tissue context. Sequence-based prediction method was devel-
oped in early works by Yuan et al. [103], where they select
regulatory motif to predict gene expression patterns in yeast. In
this work, genes are clustered into groups, and then predictive
models are trained to use their sequence signature to classify
genes into the corresponding class. Later methods shift their
focus onto a broader range of features such as histone modifica-
tions to predict gene expression rates, either as a discrete level

from a classifier or as a continuous output from a regression
framework. Different types of histone modifications have been
found to be correlated with gene expression. For example, Karlic
et al. [104] used a number of histone marks to predict gene
expression. They showed that only a small subset of histone
marks is needed to accurately predict gene expression levels,
while the subset selection of histone marks is dependent on
the GC content of the gene promoter regions. Yu et al. [105]
used a Bayesian network to jointly model the causal relation-
ship between histone modifications and gene expression. Their
result reveals not only the regulatory mechanism from histone
modification to gene expression but also inter-regulatory rela-
tionships among different types of histone marks. With the
popularity of deep learning, a recent work applies CNN with
histone modification profile as the input and achieved good
performance [106].

In addition to histone modifications, protein bindings are
shown to be related to gene expression as well, which is not
surprising due to the role of many DNA-binding proteins such as
the TFs. Ouyang et al. [107] predict gene expression based on the
binding profile of a number of TFs. They propose to decompose
groups of TFBS signals into sets of combinations (PCs) using
PCA then perform regression to model their relationships with
gene expression. There are also attempts to use other features
to predict gene expression. Park et al. used methylation levels as
input for the first time in [108]. This strategy has been extended
to non-linear SVM model by Kapourani and Sanguinetti [109].
Natarajan et al. [110] introduced DHS as the predicting feature
when this type of cell-specific data were released by ENCODE,

http://wanglab.ucsd.edu/star/EpiTensor/
http://wanglab.ucsd.edu/star/EpiTensor/
http://wanglab.ucsd.edu/star/EpiTensor/
https://github.com/saschajung/ChromAccPrediction
https://github.com/saschajung/ChromAccPrediction
https://github.com/saschajung/ChromAccPrediction
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which makes the use of chromatin accessibility in study of
cell-specific epigenetic regulation on a large scale possible. In
addition, DNA shape was also found to be predictive for TFBS and
gene expression [111]. Since 2011, researchers started to combine
multiple resources for the gene expression prediction. Costa et al.
[112] combined TFBS and histone marks to predict the expres-
sion levels of genes with low-CG promoters in diverse immune
cells. They point out that genes with low-CG promoters tend to
express in tissue-specific manner. Cheng et al. [113, 114] followed
the same strategy to predict gene expression in Caenorhabditis

elegans and mouse embryonic stem cell (ESCs), using SVM to
accommodate non-linear model. There are also some works to
use genetic variants to predict gene expression [115]. Note that
this is different from the expression quantitative trait loci (eQTL)
analysis, which focuses on detecting SNPs correlated with gene
expressions, though the eQTLs or GWAS SNPs are often used as
predictors.

It is worth noting that there are very few works to pre-
dict gene expression from enhancers, likely due to the lack of
gold standard definition for enhancers and enhancer–gene pairs.

Table 5. Prediction methods of gene expression. This table doesn’t include a software column because most of the studies do not provide a
software along with the method. If the method has a software, it is listed in the ‘Description’ column

Publication Features used Method Target genes Description

Yuan et al. [103] TF motifs Naïve Bayes Microarray, 2587
yeast genes

Use TF binding motifs as features. A
naïve Bayes model is trained to predict
gene expression in yeast.

Yu et al. [105] Histone Bayesian
Network

Microarray,
∼15 000 human
genes from
multiple tissues

Predict regulatory network between
histone modifications and gene
expressions.

Ouyang et al. [107] TFBS Linear
regression

RNA-seq, mouse
ESCs

Perform PCA on TF binding strength; use
PCs as regressors. A linear regression
model is fit for expression level
prediction.

Karlic et al. [104] Histone Linear
regression

Microarray,
human T cell

Use different combinations of histone
marks to predict gene expression. Linear
regression models are used.

Costa et al. [112] Histone + TFBS Mixture of
linear models

Microarray,
human Th1,
Th2, Th17 and
iTreg cells

Use a combination of histone signals and
TFBS as features. Use linear regression
for each factor then use EM for
estimating parameters.

Park et al. [108] 12 TFBS,
Methylation,
Histone, CpG
island

Linear
regression

RNA-seq, mouse
ESCs

Combine TFBS, methylation, histone and
CpG island annotation as features. Linear
regression models are fit. Two classes of
genes regulated by distinct combination
of epigenetic marks were discovered.

Cheng et al. [113] Histone, TFBS SVM RNA-seq, C.
elegans and
other species
(modENCODE
data)

Use SVM with histone and TFBS as
features. It shows that histone features
are redundant; positional contribution
varies.

Natarajan et al.
[110]

DHS Logistic
regression + L1
norm

Microarray, 19
human cell lines
(from ENCODE)

Use DHS and TF motifs on DNA sequence
to infer binding sites. A logistic
regression model with L-1 norm is used.

Cheng et al. [114] Histone, TFBS SVM RNA-seq, mouse
ESCs

Use Histone and TFBS in SVM model.
TFBS and Histone show distinct spatial
patterns.

Gamazon et al. [115] DNA sequence
variants

LASSO, elastic
net and
polygenic score

RNA-seq,
Human (DGN,
GEUVADIS,
GTEx)

Use SNP genotypes to predict gene
expressions with different penalized
regression models.

Kapourani and
Sanguinetti [109]

Methylation
(RRBS)

SVM regression RNA-seq, cell
lines (K562,
GM12878,
H1-hESC)

Use methylation in SVM regression
model for prediction. Methylation
profiles are predictive of gene expression
across cell lines.

Singh et al. [106] Histone CNN RNA-seq (REMC) Use a deep learning CNN model on
histone data for prediction. Software
(deepChrome) is available at
deepchrome.org.

Peng and Sinha
[111]

DNA shape
features, TF
motifs

Random forest 37 Drosophila
genes

Combine DNA shape features with TF
motifs as features for random forest
model.

deepchrome.org


Review of genome-wide features prediction 131

However, since the definition of enhancer is mostly based on
epigenetic marks, predicting expression from epigenetic marks
partially includes the effects from enhancer.

A list of the methods for gene expression prediction is pro-
vided in Table 5.

Discussion
In silico genome feature prediction has become a popular
research field in recent years, mainly because of the availability
of large-scale training data and the advances of machine
learning methods. Since it is impossible to profile all genome
features under all conditions, in silico prediction provides an
economical solution to fill the gaps in the experimental data.
In the meantime, the prediction models shed light on how the
genome work as a coordinated system and greatly enhance
our knowledge in gene regulation mechanism. In this work,
we conduct a comprehensive review on the available in silico
prediction methods for different genome features. All methods
reviewed are summarized in a dynamic figure provided at
https://stanleyxu.github.io/featureNet/, where each node is
a genome feature, and an arrow represents the prediction
direction (from predictor to outcome). It should be noted that
for one method, there might be multiple arrows targeting the
same node, which means that this method combines different
types of marks as input in order to predict the target mark. It is
of note that our aim here is to provide a summary of existing
publications and methods instead of comparing different
software, thus the performances of different software tools are
not evaluated.

Despite the rapid developments and excitements in this field,
there are some important points we want to make. First, the
rationale for predicting features needs to be clarified. There
could be economical reasons (e.g. to predict targets requiring
higher cost to profile based on predictors that can be obtained
from lower-cost experiments) or technical reasons (e.g. to pre-
dict target that is technically difficult to measure, for example,
requires surgical procedure). Even though there are works that
use multiple marks requiring higher cost to predict lower-cost
targets, they are not meant to be used in practice. For example,
predicting gene expression using a full collection of chromatin
profiles would be economically unreasonable. The main goal in
that practice is to provide insight to the biological mechanism.
Secondly, in evaluating the prediction results, many methods
train the model on half of the genome and predict on the other
half. This evaluation is not practical and will provide inflated
accuracies since the training and testing data share many tech-
nical characteristics such as the same experimental condition
(e.g. no batch effect). It is advisable to use different data sets for
training, testing and validation in order to provide evaluation
in real-world scenario. Furthermore, it is more important and
interesting to predict the features showing variability among
distinct conditions. For example, in predicting DNA methylation,
one can simply predict genome-wide hypermethylation and CpG
islands hypomethylation and get reasonable results, but that
would not be very interesting. The dynamic regions [such as
the differentially methylated regions (DMRs) between different
biological conditions] will be of more interests. In this regard, it is
important to include dynamic features (such as DNase or protein
binding data) as predictors, instead of using static features such
as DNA sequence alone.

There are also some technical issues that require attention.
The first one is the technical artifacts such as experimental
protocol or batch effects. One needs to be careful in data nor-

malization to make sure the model trained in one set of data
can be applied to the other set. It is also highly likely that the
trained model cannot be transferred between different plat-
forms, for example, the model trained using sequencing data
will not perform well when using microarray data as predictors.
Secondly, the model trained using cell line data might not work
well for data from clinical samples, which is often a mixture of
different cell types. Even though there are methods for signal
deconvolution for complex samples such as cancer [116, 117],
how to incorporate these methods into the feature prediction
framework is understudied and will be an interesting research
direction worth exploring.

Key Points
• There are a number of features (genetic, genomic, epige-

nomic, etc.) in the genome, which can be measured on
the genome-wide scale by high-throughput technolo-
gies.

• There are intrinsic correlations among different
genome features. The correlation makes the in silico
feature prediction possible.

• It is impossible to measure all features under all condi-
tions. Thus, in silico feature prediction is useful to fill the
gaps in experimental data.

• A plethora of methods and software are available for
predicting different genome features based on sta-
tistical or machine learning techniques, using other
genome features as predictors.
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