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Abstract

Despite renewed interest, development of chemical biology methods to study peptidoglycan metabolism has lagged in com-
parison to the glycobiology field in general. To address this, a panel of diamides were screened against the Gram-positive 
bacterium Streptococcus pneumoniae to identify inhibitors of bacterial growth. The screen identified the diamide masarimycin 
as a bacteriostatic inhibitor of S. pneumoniae growth with an MIC of 8 µM. The diamide inhibited detergent-induced autolysis 
in a concentration-dependent manner, indicating perturbation of peptidoglycan degradation as the mode-of-action. Cell based 
screening of masarimycin against a panel of autolysin mutants, identified a higher MIC against a ΔlytB strain lacking an endo-
N-acetylglucosaminidase involved in cell division. Subsequent biochemical and phenotypic analyses suggested that the higher 
MIC was due to an indirect interaction with LytB. Further analysis of changes to the cell surface in masarimycin treated cells 
identified the overexpression of several moonlighting proteins, including elongation factor Tu which is implicated in regulating 
cell shape. Checkerboard assays using masarimycin in concert with additional antibiotics identified an antagonistic relationship 
with the cell wall targeting antibiotic fosfomycin, which further supports a cell wall mode-of-action.

INTRODUCTION
Antibiotic resistance is a growing global threat. Drug-resistant Streptococcus pneumoniae alone is estimated to cause more than 
two million infections with an excess of 1.3 billion USD in medical costs per annum [1, 2]. In light of this, there is need for the 
development of new therapeutics. Peptidoglycan (PG) is the primary structural heteropolymer conferring strength and cell shape 
determination in both Gram-negative and Gram-positive organisms (Fig. 1). The PG polysaccharide backbone is composed of 
β−1,4-linked N-acetylmuramic acid (MurNAc) and N-acetylglucosamine (GlcNAc). Attached to the C-3 lactyl moiety of MurNAc 
is a stem peptide that is involved in cross-linking the adjacent glycan strands to form the three-dimensional structure of the cell 
wall. The incorporation of new material into the stress bearing layer of the existing cell wall requires the delicate homeostasis of 
biosynthetic and degradative enzymes to prevent lysis [3, 4]. Disruption of this interplay between degradative and biosynthetic 
enzymes via chemical inhibition could provide unique insights into their biological role. The degradative enzymes, collectively 
referred to as autolysins, are a broad class of enzymes that are differentiated based on their bond selectivity. Deciphering physi-
ological activity of autolysins has been a formidable task as functional redundancy complicates attribution of biological activity 
[5]. Recent biophysical [4, 6] and computational studies [7] of bacterial autolysins have begun to unravel their roles in the release 
of stress in the cell wall to allow for incorporation of new material. A renaissance in PG metabolism research has started to provide 
new chemical biology tools to study synthesis [8–11] and the role endopeptidases play in methicillin resistance [12]. While the 
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cell wall, and PG in particular, have provided a wealth of clinically relevant antimicrobial targets [13], our understanding of the 
complex interplay between degradative and synthetic steps is still developing.

Previously, we had screened a panel of 21 diamides for antibacterial activity against the Gram-positive Bacillus subtilis [14]. This 
screen identified the diamide masarimycin (formerly fgkc) (Fig. 1 inset) as a bacteriostatic inhibitor of B. subtilis growth that 
targets the major active N-acetylglucosaminidase (GlcNAcase) LytG (glycosyl hydrolase family 73 (GH73)) in vitro. Here we 
report on the screening of this panel of diamides against S. pneumoniae, identifying masarimycin as a bacteriostatic inhibitor 
of cell growth. Although an initial examination experiment implicates a related S. pneumoniae GlcNAcase (LytB, GH73) in 
masarimycin’s activity, it is not the direct molecular target. A series of subsequent mode-of-action studies in S. pneumoniae 
highlights the challenges involved in target identification.

METHODS
Strains and compounds
Streptococcus pneumoniae 6305 and R6 were purchased from ATCC (Mannassas, VA), and S. pneumoniae IU1945 (ΔlytB, ΔlytC, 
ΔdacA, ΔdacB, Δpmp23, Δpbp1a) mutants were kindly provided by Dr Malcolm E. Winkler at the University of Indiana [15]. S. 
pneumoniae TIGR4 and TIGR4 ΔlytB strains were previously reported [16]. S. pneumoniae strains were grown in Mueller Hinton 
(MH) broth (MilliporeSigma, St. Louis, MO) supplemented with 5 % (v/v) sheep blood (Lampire Biological, Pipersville PA) or 
MH agar plates containing 1.5 % (m/v) Bacto agar and 5 % (v/v) sheep blood at 37 °C under anaerobic conditions. Staphylococcus 
aureus was grown in MH broth or solid media, Clostridiodes difficile was grown in brain heart infusion (BHI) and Escherichia 
coli DH5α on Luria Bertani (LB) broth or solid media. Diamide inhibitors were synthesized as described previously [14]. Other 
reagents, unless otherwise specified, were purchased from MilliporeSigma (St. Louis, MO).

MIC assays
MIC values were determined using the resazurin method [17]. Briefly, cells were initially grown from the freezer on MH agar 
plates containing 5 % defibrinated sheep blood. For all assays second passage cells of S. pneumoniae 6305, TIGR4, or R6 were 
used and grown overnight in MH broth, and standardized to an OD600nm = 0.4. Inhibitors were analysed via serial dilution into 
PBS media in microtitre plates. For masarimycin, dilutions were initially made in DMSO down to a concentration of 100 µM, 
further dilutions were then made into PBS. Plates containing MH broth were inoculated with a 1/20 dilution of the OD600nm = 0.4 
cell culture with a final concentration of 1 % DMSO. Cultures were grown statically under anaerobic conditions for 24 h at 37 °C, 
followed by addition of 30 µl of a 0.01 % (m/v) solution of resazurin. The plates were incubated for 15 min to allow stabilization of 

Fig. 1. Structure of PG showing the cleavage sites of several of the characterized autolysins in S. pneumoniae. Inset: structure of the antimicrobial 
diamide masarimycin.
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colour production. MICs were read directly off the plate; MICs were recorded as the lowest concentration that completely inhibited 
growth. MIC assays with S. aureus were performed in MH broth, C. difficile in BHI broth, while E. coli was performed in LB.

Morphological studies of S. pneumoniae
Cultures were prepared from second passage S. pneumoniae 6305, R6 and ΔlytB [15] as previously described for MIC determina-
tion. Cells were washed in phosphate-buffered saline and chemically fixed in 20 mM HEPES pH 6.8 containing 1 % formaldehyde 
[18]. Samples were fixed overnight at 4 °C to limit de novo cell wall biosynthesis during fixation and stained with 0.1 % (m/v) 
methylene blue (solution in 20 % ethanol). Samples were gently heated to 60 °C for 15–20 min to bring cells to a common focal 
plane. Slides were visualized using bright-field microscopy with a Zeiss Primo Star microscope at 1000× magnification. Micro-
graphs were acquired using an Axiocam ERc5s camera and Zen lite software.

Autolysis assays
Cellular autolysis assays were performed as previously described by Cornett and Shockman [19]. Briefly, S. pneumoniae 6305 
were grown in MH broth containing 5 % (v/v) defibrinated sheep blood under anaerobic conditions. Cells were harvested by 
centrifugation (8000 r.p.m., 5 min) and washed with PBS. Cells were suspended in PBS and autolysis induced with the addition of 
Triton X-100 to a final concentration of 0.1 % (v/v) and turbidity monitored at 600 nm over 60 min. Rates were calculated using 
the linear portion of the autolysis curves with the rate of autolysis in the absence of inhibitor set at 100 %.

Chain dispersing assay
Dispersion of the ΔlytB chain morphology with purified LytB was carried out as previously described using the TIGR4 and 
associated ΔlytB strains [16]. LytB was added to the cell suspension at a final concentration of 2 µM. The final concentration of 
masarimycin in the assays was 40 µM.

DNA intercalation assays
To determine if masarimycin intercalates DNA, DNA mobility shift assays were performed as previously described using BamHI-
linearized pUC18 plasmid [20]. The known DNA intercalator actinomycin D was used as a control.

Dnase I assays
Degradation of the pUC18 plasmid DNA was assayed using 150 ng of linearized pUC18 plasmid as described by Huang et al. [21]. 
Compound titrations in DMSO were added and reactions were initiated with 0.002 units of Dnase I. The reactions were incubated 
for 15 min at 37 °C before being subjected to agarose gel electrophoresis. EDTA was used as a control for Dnase I inhibition.

Lipotechoic acid detection by Western blot
Lipoteichoic acid profiles were analysed as previously described [22]. Briefly, S. pneumoniae R6 cells were cultured overnight, 
harvested (3000 g), resuspended in 6 M urea, and incubated at 37 °C for 5 min to solubilize proteins. Samples were standardized 
by total protein content and separated by SDS-PAGE (16 %) and transferred to PVDF membrane. The membrane was incubated 
with a 1 : 5000 α-phosphocholine monoclonal antibody (SSI Biotech, Santa Cruz, CA). Blots were analysed by chemiluminescence.

Analysis of cell wall associated proteins
Changes to cell wall protein profiles were analysed as previously described [23]. Briefly, second passage S. pneumoniae R6 were 
inoculated 1/100 into MH broth and grown statically for 6 h anaerobically at 37 °C. Masarimycin was added to a final concentration 
of 0.75 × MIC, the effect of solvent was controlled by the addition of DMSO to a second flask and the cells grown overnight at 
37 °C anaerobically. Cells were harvested into PBS containing sucrose (20 % w/v) and pelleted at 8000 r.p.m. for 10 min. The pellets 
were washed with PBS containing 20 % (w/v) sucrose and centrifuged again. The washed and pelleted bacteria were resuspended 
in 2 ml of 50 mM glycine-NaOH (pH 12.0) containing 20 % (w/v) sucrose and incubated for 30 min at room temperature with 
gentle shaking. The suspension was centrifuged (10 000 r.p.m., 20 min). The supernatant was collected, and adjusted to pH 7 with 
1 M HCl, proteins precipitated with acetone and analysed by 1D-SDS PAGE and silver staining. All lanes were standardized to 
total A280nm loaded onto the gel. Bands were excised from the gel and sent for identification by mass spectrometry at the National 
Resource for Proteomics (University of Arkansas).

Proteomic analysis of SDS-PAGE gel bands
Each SDS-PAGE gel band was subjected to in-gel trypsin digestion as follows. Gel segments were destained in 50 % methanol 
(Fisher), 50 mM ammonium bicarbonate, (Sigma-Aldrich), followed by reduction in 10 mM Tris[2-carboxyethyl]phosphine 
(Pierce) and alkylation in 50 mM iodoacetamide (Sigma-Aldrich). Gel slices were then dehydrated in acetonitrile (Fisher), followed 
by addition of 100 ng porcine sequencing grade modified trypsin (Promega) in 50 mM ammonium bicarbonate (Sigma-Aldrich) 
and incubation at 37 °C for 12–16 h. Peptide products were then acidified in 0.1 % formic acid (Pierce). Tryptic peptides were 
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separated by reverse phase Xselect CSH C18 2.5 um resin (Waters) on an in-line 150×0.075 mm column using a nanoAcquity 
UPLC system (Waters). Peptides were eluted using a 60 min gradient from 98 : 2 to 65 : 35 buffer A:B ratio. [Buffer A=0.1 % formic 
acid, 0.5 % acetonitrile; buffer B=0.1 % formic acid, 99.9 % acetonitrile.] Eluted peptides were ionized by electrospray (2.4 kV) 
followed by MS/MS analysis using higher-energy collisional dissociation (HCD) on an Orbitrap Fusion Tribrid mass spectrometer 
(Thermo) in top-speed data-dependent mode. MS data were acquired using the FTMS analyser in profile mode at a resolution 
of 240 000 over a range of 375 to 1500 m/z. Following HCD activation, MS/MS data were acquired using the ion trap analyser 
in centroid mode and normal mass range with precursor mass-dependent normalized collision energy between 28.0 and 31.0. 
Proteins were identified by database search using Mascot (Matrix Science) with a parent ion tolerance of 3 ppm and a fragment 
ion tolerance of 0.5 Da. Scaffold (Proteome Software) was used to verify MS/MS based peptide and protein identifications. Peptide 
identifications were accepted if they could be established with less than 1.0 % false discovery by the Scaffold Local FDR algorithm. 
Protein identifications were accepted if they could be established with less than 1.0 % false discovery and contained at least two 
identified peptides. Protein probabilities were assigned by the Protein Prophet algorithm [24].

Antagonism assay and fractional inhibitory concentration index (FICIndex) determination
Fractional inhibitory concentration index (FICIndex) was conducted to determine the interaction between masarimycin and a range 
of antibiotics with defined mode-of-action in a 96 well-plate microdilution broth assay. A checkerboard assay was performed with 
each masarimycin pair as previously described [25]. Plates were inoculated with 5 µl of a OD600nm =0.2 culture of S. pneumoniae 
R6 and growth monitored as previously described for the MIC assays. FICIndex was determined using the formulae:

(Eq 1) ‍FIC = X
MICx‍, where X is the lowest inhibitory concentration of the drug in the presence of the co-drug, and MICx is the 

lowest inhibitory concentration of the drug in the absence of the co-drug.

(Eq 2) FICIndex=FICmasarimycin+FICantibiotic

Drug interactions were rated as synergistic (FICIndex ≤0.5), additive (0.5<FICIndex≤1.0), indifferent (1.0<FICIndex≤4.0), and antago-
nistic (FICIndex >4.0), based on published standards [26].

NADP/NADP(H) ratio assays
Measurement of NADP/NADPH intracellular ratios was determined via the Amplite colorimetric NADP/NADPH ratio assay kit 
(Kit #15274:, AAT Bioquest Inc, Sunnyvale CA) following manufacturer protocols. S. pneumoniae R6 second passage cells grown 
on MH with 5 % defibrinated sheep blood under anaerobic conditions were used to inoculate 5 ml MH broth cultures (OD600nm 
= 0.5) containing either masarimycin (1 ×, 3 × MIC) or vehicle control. Cultures were grown under anaerobic conditions for 
1.5 h and centrifuged (8000 r.p.m., 10 min). Cell pellets were resuspended in PBS and lysed via sonication. Lysed cells were then 
used in assays following manufacturer’s instructions. Samples were analysed in a 96 well plate format using a Molecular Devices 
SpectraMax190 with detection at 570 nm. Data was analysed using GraphPad Prism.

RESULTS AND DISCUSSION
We screened a previously reported [14] panel of 21 diamides against S. pneumoniae using the resazurin microtitre assay (Fig. S1, 
available in the online version of this article) [17]. Of the 21 compounds screened, masarimycin (formerly fgkc) was identified 
as a single digit micromolar bacteriostatic inhibitor (Fig. S2) of S. pneumoniae growth with an MIC of 8 µM against all three 
strains of S. pneumoniae that we tested – 6305, R6, and TIGR4 (Fig. S3a). Three strains were chosen for screening to account for 
the known genomic plasticity among S. pneumoniae isolates which can manifest as varying antibiotic sensitivity between strains 
[27–29]. TIGR4 was included as it is capable of causing invasive disease [30]. These results for masarimycin are comparable to 
those obtained against B. subtilis (MIC=3.8 µM, bacteriostatic) [14]. To further investigate masarimycin’s spectrum of activity, the 
compound was screened against the Gram-positive organisms Clostridiodes difficile, Staphylococcus aureus and Gram-negative 
Escherichia coli which possess at least one GH73. In all cases, no antimicrobial activity was observed up to 150 µM (Fig. S3b). 
Extrapolating from the activity of masarimycin against B. subtilis, where it inhibits LytG, a GH73 enzyme, we hypothesized 
that the target of masarimycin in S. pneumoniae was also a GH73 family glycosidase. S. pneumoniae possesses one glycosidase 
classified as a member of the GH73 family (www.cazy.org) – LytB, a cell division associated endo-β-GlcNAcase belonging to 
cluster 4 of GH73 [16, 31–33]. In contrast, B. subtilis LytG is an exo-acting GlcNAcase active in vegetative growth and belongs 
to GH73 cluster 2 [34].

Given the potential connection to LytB and cell wall metabolism, we examined whether masarimycin inhibited autolytic activity 
in S. pneumoniae (Fig. 2a). Exposure of S. pneumoniae to low concentration of the non-ionic detergent (Triton X-100) induces 
autolysis [19]. This autolytic activity was inhibited in a concentration-dependent manner by masarimycin. The elevated concentra-
tion for near complete inhibition of autolysis in the whole cell assay is likely due to the broad dysregulation of autolysins induced 
by Triton X-100. Given the observed inhibition of autolytic activity, the MIC of masarimycin was determined for a series of S. 
pneumoniae mutant strains lacking the autolysins lytA, lytB, pmp23, dacA, or dacB, as well as the bifunctional pbp1a. It has been 

www.cazy.org
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demonstrated that deletion of any gene that affects PG biosynthesis, stability, or regulation can make the bacterium more suscep-
tible to compounds that target the cell wall [27]. While none of the mutants were more sensitive to masarimycin, higher MICs were 
observed with lytB (GH73 GlcNAcase), pmp23 (muramidase), and dacA (pbp3, d,d-carboxypeptidase) mutants. This is counter 
to what was observed in a screen of autolysin mutants in B. subtilis. [14] The near four-fold decrease in sensitivity to masarimycin 
in the ΔlytB mutant suggests that changes to the cell wall imparted by the lack LytB reduces sensitivity to masarimycin.

To further explore these results, morphological changes induced by sub-MIC (0.7 ×) concentrations of masarimycin, and antibi-
otics with known modes-of-action were investigated (Fig. S4). Treatment of S. pneumoniae with the cell wall-acting antibiotics 
bacitracin, vancomycin, as well as the protein synthesis inhibitor kanamycin presented a phenotype of clumping cells. Sub-MIC 
treatment with masarimycin showed a change similar to these antibiotics. The clumping phenotype observed with kanamycin 
has been associated with antibiotics that target intracellular protein synthesis [35]. In light of this, the clumping phenotype could 
not be directly attributed to a cell wall mode-of-action. Comparison of the masarimycin-induced phenotype with the reported 
phenotypes of a ΔlytB [15], Δpmp23 [36], or ΔdacA [37] mutants, for which higher MICs with masarimycin were observed, did not 

Fig. 2. Screening of the diamide masarimycin against Streptococcus pneumoniae. (a) The diamide masarimycin inhibits detergent-induced autolysis in 
a concentration dependent manner. Percent residual activity was calculated using autolysis in the absence of inhibitor set as 100 %. Data shown is the 
average of experiments performed in biological and technical triplicate. Error bars denote standard deviation. (b) Activity of masarimycin against S. 
pneumoniae R6 autolysin and cell wall biosynthesis mutants (13) to identify changes to masarimycin sensitivity. Assays were run in biological triplicate 
and yielded the same MIC values.
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correlate. Additionally, the masarimycin-induced phenotype did not correspond to phenotypes of other S. pneumoniae autolysin 
mutants [38–40]. The masarimycin phenotype more closely resembles a morphology in which the autolysin is still produced but 
is catalytically inactive, such as that reported for E61Q and D68N mutants of pmp23 [36].

To further probe alterations to the cell wall suggested by the autolysis and genetic screen assays, lipoteichoic acid (LTA) disruption 
was monitored by Western blot in the presence of sub-MIC masarimycin. LTA has been shown to regulate autolysin activity in 
several species and LytB possesses a choline binding domain, a component of S. pneumoniae LTA [41–43]. Additionally, it has 
been suggested that LytB function is altered when cell wall choline content is depleted [44]. Results indicated that changes to LTA 
and choline incorporation in the cell wall was not a contributor to the observed masarimycin-induced autolysis, genetic screen, 
and morphology phenotypes (Fig. S5a).

Next, changes to cell-wall-associated protein profiles were examined using high-pH extraction [23] of the S. pneumonia cell 
surface (Fig. S5b). Upon treatment with 0.75 × MIC masarimycin the appearance of several overexpressed proteins was observed. 
Proteomic analysis of SDS-PAGE gel bands identified several cell surface and moonlighting proteins that are present only in the 
masarimycin treated sample (Table 1, Dataset S1). Of note is the upregulation of elongation factor Tu, a known moonlighting 
protein that has been implicated in regulating cell shape by modulating the formation of MreB filaments in B. subtilis and E. coli 
[45]. The overexpression of proteins involved in complex carbohydrate catabolism (BgaA, MalX) have been previously shown to 
be regulated by the two-component system CiaR/H, which is also associated with sensing cell wall stress in S. pneumoniae [46]. 
These changes to proteins on the cell surface suggest that masarimycin is interfering with cell wall remodelling.

To further investigate the higher MIC observed with the ΔlytB mutant, inhibition of LytB activity was investigated in an established 
chain dispersing assay using the TIGR4 ΔlytB strain in the presence of exogenously added LytB [16]. When the ΔlytB mutant 
was treated with exogenous LytB, dispersion of the chains was observed (Fig. 3). When a five-fold MIC (40 µM) concentration 
of masarimycin was added, LytB catalysed chain dispersion was not inhibited. In vitro analysis with Remazol Brilliant Blue 
labelled PG [16, 47] and purified LytB confirmed these results. This lack of inhibition of the biochemical activity of purified LytB 
further suggests that the higher MIC of masarimycin observed for the ΔlytB mutant may be due to changes in cell wall structure, 
stability, or metabolism. These results further highlight the difficulty in target identification of small molecule inhibitors. The 
reduced MIC values observed in the genetic screen against the ∆lytB strain is is likely due to a more complex interplay between 
the deletion of LytB and the actual target(s) of masarimycin. Consistent with this hypothesis, treatment of ∆lytB with 0.7 × MIC 
masarimycin (Fig. 4) resulted in the conversion of the ΔlytB chaining phenotype to the clumping phenotype observed in Fig. 
S4. Co-administration of sub-MIC concentrations of cefoxitin, a DacA (PBP3) selective β-lactam, with masarimycin resulted in 
the reduction of the clumping phenotype in the ΔlytB mutant but not wild-type cells. This further suggests that masarimycin’s 
mode-of-action is impacted by alterations to the cell wall caused by either genetic deletion or chemical inhibition of autolysins. 
LytB is implicated in PG remodelling during cell division while DacA is associated with division rather than remodelling [15]. 
These observations suggest that masarimycin is influencing cell wall biosynthesis, turnover, stability, and/or regulation in these 
mutant backgrounds. Given their roles in cell wall remodelling during division (LytB) or directly involved in division or division 
complex (DacA, Pmp23) and the overexpression of elongation factor Tu suggests that masarimycin is either directly or indirectly 
impacting the cell wall during division.

Taken collectively, the reduction in autolysis, phenotypic changes and overexpression of surface associated proteins observed 
with masarimycin, along with the reduced sensitivity against multiple mutant strains, suggest that these results could be the result 
of meta-phenotypes - a phenotype that results from the alteration of more than one pathway [48]. For instance, the clumping 
meta-phenotype observed in S. pneumoniae in the presence of masarimycin could be generated via a direct mechanism (e.g. 

Table 1. Overexpressed proteins observed in SDS-PAGE gel (Fig. S5b) of S. pneumoniae R6 cell-surface protein extracts when exposed to 0.75 x MIC 
masarimycin

Gel band Protein ID Biological function

1 1.	 BgaA β-galactosidase
2.	 Iga immunoglobin A1 protease

1.	 Plays role in growth and adhesion [65]
2.	 Covalently linked to cell surface by sortase A. Involved in host immune 

evasion [66].

2 Spr0440, endo-β-GlcNAcase Surface protein, role in commencement of neuroinvasion [67]

3 1.	 Elongation factor Tu
2.	 PykF Pyruvate kinase

1.	 Moonlighting function in regulation of cell shape [68]
2.	 Moonlighting protein [69, 70]

5 MalX maltooligosaccharide transporter Complex carbohydrate catabolism regulated by CiaR/H system which is 
involved in sensing cell wall stress [46, 71].

6 GapA glyceraldehyde 3-phosphate dehydrogenase Moonlighting protein [70]
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inhibition of an enzyme associated with cell wall metabolism) or an indirect one (e.g. alterations in autolysin expression levels, 
changes in metabolic flux through cell wall associated pathways).

To further interrogate the potential mode-of-action, masarimycin was screened in checkerboard assays with antibiotics with 
well-defined mechanisms (Table 2). Using pre-established guidelines [26] for interpreting FICIndex, two antibiotics, levofloxacin 
(DNA gyrase) and fosfomycin (MurA, first committed step of PG biosynthesis) demonstrated mild antagonism (FICIndex 4.5). 
Antagonistic relationships can be used to map genetic networks and reveal novel connections between pathways [25]. Antago-
nism with fosfomycin suggests a functional connection to the target of masarimycin. To further probe the antagonism with 
fosfomycin, we looked to see if masarimycin was indirectly impacting fosfomycin’s target MurA. The subsequent step, catalysed 
by MurB reduces the product of MurA, UDP-GlcNAc-enolpyruvate, to UDP-MurNAc utilizing NADPH [49]. Given the impact 
that changes to the cell wall have on masarimycin activity, we wondered if the observed antagonism with fosfomycin might be 
due to altered redox potential in the cell, a consequence of a destabilized cell envelope. This could impact PG metabolite flux 
through MurA/B by reducing the levels of NADPH in the cell. Alterations in redox potential and oxidative stress can negatively 
influence fosfomycin sensitivity [50]. It has been previously demonstrated in S. aureus that alterations in metabolic flux of 
precursors and cofactors can contribute to fosfomycin resistance [51]. Changes in NADP/NADPH levels were measured in a 
colorimetric assay in the presence/absence of masarimycin. The ratio of NADP/NADPH did not change when up to 3 × MIC 
masarimycin was present (Fig. S6) suggesting the fosfomycin antagonism is not due to an altered redox potential impacting 
flux through MurB.

Antagonism with levofloxacin provides a counterpoint to the fosfomycin results. Levofloxacin introduces double-stranded DNA 
breaks upon inhibition of DNA gyrase, and induces the SOS response system [52]. To further evaluate this antagonistic relation-
ship, masarimycin was evaluated for its ability to interact with DNA. Masarimycin was investigated for its ability to inhibit nuclease 
activity and intercalate DNA in established assays (Fig. S7) [20, 21]. Masarimycin showed no inhibition of nuclease activity or 
ability to intercalate DNA, suggesting the antagonism observed is likely not due to direct interaction with DNA or nucleases. 
Further the additive interaction with rifampicin (RNA synthesis) and the protein synthesis inhibitors tetracycline and kanamycin 
in Table 2 suggests a pure summation effect of the antibiotics with masarimycin. This suggests the antagonism with levofloxacin 
is not a product of downstream inhibition of transcription and translation. It should be noted that there is a connection between 
quinolone bactericidal activity and the expression of stress-induced proteins [53]. Cell wall targeting antibiotics like β-lactams 
can activate the SOS response system [54]. The antagonism observed with levofloxacin can be explained by the induction of the 
SOS system by both compounds [55].

Fig. 3. Chain dispersing assay with S. pneumoniae TIGR4 ΔlytB strain and purified recombinant LytB (rLytB, 2 µM). In the presence of 40 µM masarimycin 
dispersion of the ΔlytB chain phenotype is not inhibited. Images were taken at 1000 x magnification.
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CONCLUSION
Taking this data holistically, we posit that masarimycin activity is impacted by alterations to the cell wall caused by deletion of certain 
autolysins (LytB, DacA, Pmp23) in S. pneumoniae. These three autolysins are associated with remodelling PG during division (LytB) 
[31], or associated with division (DacA) [39] or with the Z-ring (Pmp23) [36] components of the cell division complex. Other PG 
hydrolases [56–58] might also be affected by masarimycin treatment, giving rise to the complex phenotypic results. The data presented 
here demonstrates that the morphological phenotypes of genetic knockouts of cell wall acting enzymes can be distinct from chemical 
inactivation and may more closely resemble the phenotype of catalytically inactive mutants. This distinction has previously been 

Fig. 4. Morphological analysis of S. pneumoniae ΔlytB mutant- [15] in the presence of sub-MIC masarimycin, the β-lactam cefoxitin (DacA/PBP3 selective) 
or in combination. Cells were fixed in 1 % formaldehyde, stained with methylene blue, and visualized using bright field microscopy under oil immersion.
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observed in Mycobacterium tuberculosis shikimate biosynthesis [59]. These data illustrate that the use of genetic and phenotypic screens 
for target identification may not always lead directly to the molecular target. The complexity involved in deciphering the underlying 
mechanisms associated with these meta-phenotypes obfuscates target identification. Despite these challenges, the elucidation of the 
molecular target of masarimycin is on-going. Based on the data provided here, masarimycin may provide a unique molecular scaffold 
for the development of anti-S. pneumoniae therapeutics and can play a role in furthering our understanding of PG metabolism.

The bacterial cell wall and PG biosynthesis has provided a wealth of clinically relevant antibiotic targets. While our understanding of PG 
biosynthetic and cross-linking steps is well established, our knowledge of the role autolytic enzymes play in the growth and maintenance 
of the cell wall has remained more elusive. Traditional genetic approaches to studying the biological role of autolysins are complicated 
by functional redundancy of these enzymes, where other autolysins can compensate for a loss in activity. The results presented here 
illustrate the complexity of PG metabolism and the difficulty in identifying the molecular target of small molecule inhibitors. Recent 
reports [4, 6, 7] have begun to elucidate the role of autolysins in relieving stress in the cell wall to allow for incorporation of new material 
into the stress bearing layer. The results with the diamide masarimycin demonstrate that sensitivity is impacted by alterations in the 
cell wall caused by the deletion of specific autolysins associated with cell division and separation. Upregulation of elongation factor 
Tu, a moonlighting protein known to regulate cell shape, indicates that masarimycin is impacting cell wall metabolism. Collectively 
our data further demonstrate that morphological, genetic, and whole cell assays (autolysis) reveal meta-phenotypes that result from 
the complex interaction of one or more cellular processes that appear connected to cell wall metabolism. The genetic deletion of one 
or more autolysins disrupts the equilibrium stoichiometry of the cell wall machinery that likely results in changes to expression levels 
and activity to both autolytic and biosynthetic enzymes. With interest in the development of chemical biology approaches to study PG 
metabolism [60–64] receiving renewed attention, the diamide inhibitor masarimycin provides a potential small molecule complement 
to both traditional genetic and current chemical biology approaches to studying cell wall metabolism.
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Table 2. Synergy and antagonism screen with masarimycin

Antibiotic MICapp antibiotic*
(µM)

FIC antibiotic MICapp masarimycin†
(µM)

FIC masarimycin FICindex

Ampicillin 0.010 1 2 0.25 1.25

Bacitracin 1.66 0.5 15.6 2 2.5

Cefoxitin 0.69 0.4 4 0.5 0.9

Cefuroxime 0.012 1.59 2 0.25 1.75

Fosfomycin 85.87 0.5 32 4 4.5

Kanamycin 43 0.5 1.66 0.21 0.71

Levofloxacin 1.08 0.5 32 4 4.5

Optochin 7.96 0.5 8 1 1.5

Rifampicin 0.0023 0.124 3.33 0.416 0.54

Tetracycline 0.048 0.75 2 0.25 1

Vancomycin 0.003 1 4 0.5 1.5

*MIC for antibiotics alone. ampicillin: 0.010 µM; bacitracin: 3.325 µM; cefoxitin: 1.72 µM; cefuroxime: 0.008 µM; fosfomycin: 171.5 µM; kanamycin: 
86 µM; levofloxacin: 2.16 µM; optochin: 15.85 µM; rifampicin: 0.018 µM; tetracycline: 0.065 µM; vancomycin: 0.003 µM.
†MIC masarimycin 8 µM.
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