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Healthy aging is associated with altered executive functioning (EF). Earlier studies found age-related differences in EF performance to
be partially accounted for by changes in resting-state functional connectivity (RSFC) within brain networks associated with EF. However,
it remains unclear which role RSFC in EF-associated networks plays as a marker for individual differences in EF performance. Here, we
investigated to what degree individual abilities across 3 different EF tasks can be predicted from RSFC within EF-related, perceptuo-
motor, whole-brain, and random networks separately in young and old adults. Specifically, we were interested if (i) young and old
adults differ in predictability depending on network or EF demand level (high vs. low), (ii) an EF-related network outperforms EF-
unspecific networks when predicting EF abilities, and (iii) this pattern changes with demand level. Both our uni- and multivariate
analysis frameworks analyzing interactions between age × demand level × networks revealed overall low prediction accuracies and a
general lack of specificity regarding neurobiological networks for predicting EF abilities. This questions the idea of finding markers for
individual EF performance in RSFC patterns and calls for future research replicating the current approach in different task states, brain
modalities, different, larger samples, and with more comprehensive behavioral measures.
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Introduction
Executive functioning (EF) is important for many everyday behav-
iors, such as controlling one’s attention, actions or emotions to
attain higher-order or long-term goals (inhibitory control); holding
content in mind and working with it as in incorporating new infor-
mation in plans or considering alternatives (working memory);
or changing one’s perspective or mindset (cognitive flexibility;
for review see Diamond 2013). EF thus denotes a multidimen-
sional construct, which subsumes a set of different abilities that
involve goal-oriented top-down control (i.e. inhibitory control,
working memory, and cognitive flexibility). Therefore, its neural
implementation is likely distributed across the brain, relying on
a core network, the so-called multiple-demand network (intra-
parietal sulcus, inferior frontal sulcus, dorsolateral prefrontal cor-
tex, anterior insula/frontal operculum, pre-supplementary motor
area, and anterior cingulate cortex), and other, more specific brain
regions depending on task demands (Teuber 1972; Duncan and
Owen 2000; Duncan 2010; Miyake and Friedman 2012; Camilleri
et al. 2018).

The human brain can be seen as a complex, nonrandom net-
work—also called the human connectome, which can be divided
into different subnetworks, subserving specific mental functions
and enabling segregation and integration of the latter. One com-
mon way to identify brain networks is to study their intrinsic
functional connectivity. Using this approach, several resting-state
brain networks have been consistently identified, corresponding
well with task-related co-activation patterns (Damoiseaux et al.
2006; Smith et al. 2009; Heckner et al. 2021). Prominent brain

networks are, for example, the default-mode network (DMN),
which has been found to be most active during rest and to
decrease its activity during externally oriented tasks (Raichle
2015); the executive control network (ECN), which is associated
with tasks that require top-down cognitive control (Seeley et al.
2007); and the salience network, which is involved in integrating
sensory with visceral, autonomic, and hedonic signals (Seeley
et al. 2007). Previous research has shown that DMN deactivation
decreases with age, which has further been linked to poorer
performance in EF-related tasks (Persson et al. 2007; Prakash
et al. 2012; Brown et al. 2019). Other research suggested that
activation of the EFN and deactivation of the DMN are more
strongly associated with EF performance than with chronological
age (Satterthwaite et al. 2013). The default–executive coupling
hypothesis of aging (DECHA) proposes that connectivity between
the ECN and the DMN increases with age and is associated with
poorer performance in tasks taxing cognitive flexibility (Turner
and Spreng 2015; Kupis et al. 2021) and processing speed (Ng et al.
2016). Hence, healthy aging is accompanied by a decline in the
performance of cognitively challenging tasks as well as altered
brain activity and connectivity patterns during task and resting
state (Park and Reuter-Lorenz 2008). Earlier studies found age-
related differences in EF performance to be partially accounted for
by changes in resting-state functional connectivity (RSFC) within
brain networks associated with EF (Steffener et al. 2009; Langner
et al. 2015; Hausman et al. 2020). However, it remains unclear
which role RSFC within EF-related networks plays as a marker for
individual EF performance. Multivariate (vs. univariate) analyses
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increase the validity as they result in a pattern of connectivity
(vs. individual connections) that can be linked to behavioral trait
markers. This also increases the sensitivity for finding interindi-
vidual differences (Marek et al. 2022; Pat et al. 2022). Furthermore,
a recent meta-analysis across 25 functional magnetic resonance
imaging (fMRI) studies revealed low test–retest reliability of edge-
level RSFC (Noble et al. 2019). Multivariate models, in particular
multivariate prediction models have been shown to result in a
substantially higher test–retest reliability compared with single
imaging features, such as individual connections in RSFC (Taxali
et al. 2021). Using prediction algorithms, earlier studies have been
able to predict the EF abilities of previously unseen individuals
from RSFC (Reineberg et al. 2015; He et al. 2021).

Taking the advantages of multivariate predictive modeling into
account, the current study aimed to gain a better understanding
of the neural implementation of EF, its change throughout the
lifespan, and its potential as a marker for individual differences in
EF performance. Therefore, we defined an EF network (EFN) based
on the results of 3 large-scale neuroimaging meta-analyses cap-
turing diverse EF facets (Rottschy et al. 2012; Langner et al. 2018;
Worringer et al. 2019). In contrast to previously meta-analytically
defined EF networks (Camilleri et al. 2018), we wanted to identify
a widespread network which comprises all potentially relevant
brain regions and is thus better suited for finding individual dif-
ferences than a network based on consensus. Then, we examined
to what degree individual abilities in 3 major EF subcomponents
(i.e. inhibitory control, cognitive flexibility, and working mem-
ory) can be predicted from RSFC within this network in young
and old adults. For each EF subcomponent, we chose a high-
demand task condition, assumed to strongly probe EF abilities,
as well as a low-demand control condition, assumed to hardly
tax EF abilities, to test whether performance in EF-related (vs.
EF-unrelated) task conditions can be better predicted from EF-
related (vs. EF-unspecific) brain networks. As EF-unspecific con-
trol networks, we included a meta-analytically defined perceptuo-
motor network (Heckner et al. 2021) and the whole-brain connec-
tome (Power et al. 2011). In addition, we computed 10 random
networks with 50 nodes to control for the number of features
per network. For prediction, we focused on the linear regression
algorithm partial least squares regression (PLSR) but additionally
applied a nonlinear algorithm (random forest) as well as a data-
driven feature-selection approach (Finn et al. 2015; Shen et al.
2017) for conceptual replication and testing robustness. Prediction
results were submitted to a 2 (age group) × 4 (network) × 2 (task
demand level) mixed-measures analysis of variance (ANOVA) to
further probe network and age specificity as well as potential
interactions. In particular, this study investigated (i) if young
and old adults differ in the predictability of their EF abilities
depending on network type or EF demand level, (ii) if an EF-related
network is better at predicting EF abilities than are various EF-
unspecific networks, and (iii) if this pattern changes depending
on EF demand level. Including a low-demand control condition
that comprised the same aspects as the high-demand condi-
tion except the EF component allowed us to investigate task
specificity.

Methods
Sample
Resting-state fMRI data of 116 healthy young (age range = 20–
40 years, mean age = 26.67, SD = 5.80, 64 females) and 111
old (age range = 60–80 years, mean age = 68.19, SD = 5.66, 72
females) adults were obtained from the publicly available

enhanced Nathan Kline Institute—Rockland Sample (eNKI-RS;
Nooner et al. 2012). These age bins were chosen to maximize
the variance of age for studying age-related differences in the
association between RSFC and behavioral target variables. We
excluded participants with acute and/or severe psychiatric or
neurological disorders in the past or when currently taking
medication presumably affecting brain activity. The re-analysis
of the data was approved by the Heinrich Heine University Düs-
seldorf ethics committee. All participants underwent the same
protocol. The specific sample used is available upon request.

fMRI Data acquisition and preprocessing
Whole-brain fMRI data were obtained with a Siemens TimTrio
3T scanner using BOLD (blood oxygen level-dependent) contrast
[gradient-echo EPI (echo planar imaging) pulse sequence,
repetition = 1.4 s, echo time = 30 ms, flip angle = 65◦, voxel
size = 2.0 × 2.0 × 2.0 mm3, 64 slices]. In total, 404 volumes were
acquired. Participants were instructed to keep their eyes open and
maintain fixation on a central dot. Physiological and movement
artifacts were removed from the EPI time-series data by using
FIX (FMRIB’s ICA-based Xnoiseifier, version 1.061 as implemented
in FSL 5.0.9; Griffanti et al. 2014; Salimi-Khorshidi et al. 2014),
which decomposes the data into independent components and
identifies noise components using a large number of distinct
spatial and temporal features via pattern classification. Unique
variance related to the identified artefactual components was
then regressed from the data. Data were further preprocessed
using SPM12 (Wellcome Trust Centre Neuroimaging, London) and
in-house MATLAB scripts. After removing the first 4 dummy scans
of each time-series, the remaining EPI volumes were corrected for
head movement by a 2-pass affine registration procedure. First,
images were aligned to the initial volume and, subsequently,
to the mean of all volumes. The mean EPI image was then
co-registered to the gray matter probability map provided by
SPM12 using normalized mutual information and keeping all
EPI volumes aligned. Next, the mean EPI image of each subject
was spatially normalized to MNI-152 space using the “unified
segmentation” approach (Ashburner and Friston 2000). The
resulting deformation parameters were then applied to all other
EPI volumes.

Networks
We defined an EF-related network (EFN) by computing the maxi-
mum conjunction across 3 pertinent meta-analyses investigating
working memory (Rottschy et al. 2012), cognitive action regu-
lation (Langner et al. 2018), and multi-tasking (Worringer et al.
2019). Extracting the peak coordinates from this conjunction map
resulted in a network comprised of 50 nodes. Similarly, we defined
an EF-unrelated brain network linked to visual, auditory, or motor
processes (Heckner et al. 2021), which comprised 59 nodes. As a
whole-brain control, we employed Power et al.’s (2011) graph of
putative functional areas, which includes 264 nodes. All networks
are displayed in Fig. 1. Since the whole-brain approach amounted
to 34,716 edges—many more than the EFN with only 1,225 —
we wanted to control for the number of features. Therefore, we
created 10 networks comprised of 50 nodes each, preserving the
spatial properties of the EFN when pseudo-randomly sampling
from a conservative whole-brain gray matter mask. In particu-
lar, we restricted the minimum, mean and maximum Euclidean
distances between the sampled nodes to within one standard
deviation from the minimum, mean and maximum values of the
EFN, respectively (https://github.com/MartinGell/random_nets).

https://github.com/MartinGell/random_nets
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Fig. 1. Nodes of meta-analytically defined executive function A) and perceptuo-motor B) networks as well as Power et al.’s graph of putative functional
areas C).

Within-network resting-state functional
connectivity
For each network, RSFC was computed by first extracting the
BOLD signal time-courses of all voxels within each network
node expressed as the first eigenvariate for each subject.
Network nodes covered a sphere with a 6-mm radius around the
coordinate’s peak. Peaks were extracted using the SPM Anatomy
Toolbox version 3 (Eickhoff et al. 2005, 2007) in MATLAB; we made
sure that the resulting spheres would not overlap or exceed the
cortex. In addition, a gray matter mask including subcortical
regions was used to ascertain only voxels located in gray-matter
were analyzed (https://zenodo.org/record/6463123#.YlltJsjMJ3h).
To reduce spurious correlations, variance explained by the
mean white matter, cerebrospinal fluid, or global signal was
removed from the time-series. Subsequently, data were band-
pass filtered with cut-off frequencies of 0.01 and 0.1 Hz. Pairwise
functional connectivity was computed as Fisher’s Z-transformed
linear (Pearson) correlation between the first eigenvariate of the
time-series of each network’s nodes. There were no significant
correlations between the target variables (i.e. task scores) and sex
in either subgroup. Correlations with movement and age were
significant in the older subgroup. We refrained from additionally
correcting RSFC values for movement (i.e. removing movement-
related variance that is partially shared with age) to not unduly
affect the influence of age on the association between RSFC and
behavioral target variables (Miller and Chapman 2001).

To control for possible age-specific effects of global signal
regression as well as movement, we additionally computed
RSFC without global signal regression and with correction for
6 head movement parameters (x, y, z translations and α, β, γ

rotations) derived from realignment (RPs), squared RPs as well
as their derivatives. The results from RSFC without global signal

regression did not change (Table S1 and S2), and the results from
RSFC with movement correction did not change in regard to the
main effects of network type and EF demand level as well as for
all 2-way interactions and the 3-way interaction. Only the main
effect of age did change (see Table S3 and S4) such that with
movement correction, prediction accuracy was now better for
younger than older adults. Importantly, however, this main effect
was qualified by the crossed age × demand level interaction and
should, therefore, be interpreted only with great caution or not at
all. Secondly, as mentioned before, age and movement are likely
to share variance. Therefore, partialling out movement may also
remove age-related variance from the BOLD signal time-series,
possibly mitigating or blurring the effects of age on the association
between RSFC and the behavioral target variables.

Performance measures
EF ability scores were obtained for a highly demanding (i.e. tax-
ing EF abilities) and less demanding (i.e. low-EF control) condi-
tion from each of 3 classical EF tasks probing working memory,
inhibitory control, or cognitive flexibility, respectively. Because of
the task conditions available (high- vs. low-demand), we had to
dichotomize the EF demand level. Performance raw scores were z-
transformed and outliers > |3| standard deviations were removed.
Working memory abilities were assessed using the Short Letter-
N-Back Test, which is part of Penn’s computerized neurocogni-
tive battery (CNB; Gur et al. 2010). In this test, participants are
supposed to press a button as fast as possible if the letter on
the screen is the same as the one shown n trials before. We
analyzed the reaction times (RTs) of correct responses in the
1-back and 0-back conditions as high- and low-demand perfor-
mance indicators, respectively. To assess inhibition abilities, we
analyzed RT of the incongruent (high-demand) and congruent

https://zenodo.org/record/6463123#.YlltJsjMJ3h
https://academic.oup.com/cercor/article-lookup/doi/10.1093/cercor/bhac520#supplementary-data
https://academic.oup.com/cercor/article-lookup/doi/10.1093/cercor/bhac520#supplementary-data
https://academic.oup.com/cercor/article-lookup/doi/10.1093/cercor/bhac520#supplementary-data
https://academic.oup.com/cercor/article-lookup/doi/10.1093/cercor/bhac520#supplementary-data
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(low-demand) conditions of the Color-Word Interference (CWI)
Test, which is part of the Delis–Kaplan Executive Function System
(D-KEFS; Delis et al. 2004). In this Stroop-like test, participants
are asked to name the font color of a written word while inhibit-
ing the automatic response to the meaning of the word, which
names a different (incongruent) or the same (congruent) color. For
assessing cognitive flexibility, we analyzed RT of the number and
letter switching and sequencing conditions of the Trail Making
Test (TMT), which is also a part of the D-KEFS. In this test,
participants are required to connect consecutive targets of one
type (e.g. numbers in ascending order; low-demand condition)
or, in the high-demand condition, continuously switch between
2 target types (i.e. alternatingly connect ascending numbers with
letters in alphabetical order). All tasks applied were previously
evaluated and shown to have moderate to high reliability (Delis
et al. 2001; Homack et al. 2005; Gur et al. 2010).

Prediction
Individual z-transformed performance scores were predicted
from within-network RSFC using partial least squares regression
(PLSR; Krishnan et al. 2011). PLSR is similar to a supervised prin-
cipal component regression (PCR; based on eigen-decomposition)
and is thus advantageous when dimension reduction is beneficial
for analysis. Here, we used within-network RSFC as features for
prediction. With RSFC, a network comprised of 50 nodes enters
1,225 edges and thus considerably increases the feature space. In
comparison with PCR, dimension reduction in PLSR is supervised
(i.e. uses information about the target variables), yielding the
advantage that the resulting latent variables are all related to the
target variables. After dimensionality reduction, a linear regressor
is applied to the transformed data.

For prediction, a 10-fold cross-validation was performed for
which the data were split into 10 sets, 9 of which were used for
training while the 10th was held back as a test set and subse-
quently used for prediction of the unseen data. This was done with
each set being the test set once. In total, 100 repetitions of this 10-
fold cross-validation were computed to ensure robustness.

To test whether the association between brain features
and individual EF abilities may be nonlinear, we replicated
our prediction analysis using a nonlinear algorithm (random
forest) (Breiman 2001). Finally, we repeated our prediction
analysis using a data-driven feature-selection approach (Finn
et al. 2015; Shen et al. 2017) to test whether RSFC-based
performance predictions differ between features obtained from
meta-analytically pre-defined functional networks and features
chosen from a whole-brain connectome (i.e. Power nodes) in
a data-driven manner. In brief, this data-driven connectome-
based predictive modeling (CPM) identifies “predictive features”
by correlating each RSFC edge with the behavioral target variable
from the training set. Then, the most relevant edges are chosen
for prediction (i.e. edges that were significantly correlated with
the target variables at P < 0.05). We followed the protocol by
Shen et al. (2017) using positive and negative features but
adjusted from leave-one-out to a 100 × 10-fold cross-validation
scheme.

Prediction accuracy was assessed by computing the root
mean squared error (RMSE), the mean absolute error (MAE), and
the correlation between real and predicted values (Pearson’s
r). Accuracy measures were averaged across the 10 folds and
100 repetitions. Prediction accuracy, as represented by RMSE
values for each of the 100 repetitions, was then submitted to a
2 (age group) × 4 (network) × 2 (demand level) mixed-measures
ANOVA (P < 0.00005, Bonferroni-adjusted for the 100 × 10-fold

cross-validation scheme) to assess age differences in prediction
accuracy, network specificity, and the impact of the EF demand
level. To corroborate the main effects and to test for differences
between different prediction algorithms, machine-learning-
adjusted paired t-tests were computed (Nadeau and Bengio 2003).

Results
Behavioral analyses
We first performed t-tests to investigate if the age groups sig-
nificantly differed in their behavioral performance (z-scored) in
the EF-related tasks and conditions used. In all tasks and condi-
tions, younger adults were significantly faster than older adults
(P < 0.005). Means, standard deviations, and t-statistics are dis-
played in Table 1.

Second, we computed Pearson correlations between age and
task performance for both age groups separately. Even though
age had a small but significant positive correlation with RT in
the CWI congruent condition for older adults (r = 0.19, P = 0.048),
this association was not significant for younger adults (r = 0.11,
P = 0.240). For the incongruent condition, age showed a similar
significant positive correlation with RT in older adults (r = 0.21,
P = 0.026) but again not in younger adults (r = 0.066, P = 0.480).
For the TMT, age was significantly associated with RT in both
the consecutive (r = 0.29, P = 0.002) and switch conditions (r = 0.19,
P = 0.048) in older adults, but again not in younger adults (r = 0.1,
P = 0.270; r = 0.11, P = 0.260). For the n-back task, neither associa-
tion between task condition and age per group was significant
(P = 0.05).

Prediction
CWI Congruent. The results are displayed in Table 2 and Fig. 2A.

CWI Incongruent. The results are displayed in Table 3 and
Fig. 2B.

TMT Consecutive. The results are displayed in Table 4 and
Fig. 2C.

TMT Switch. The results are displayed in Table 5 and Fig. 2D.
0-back. The results are displayed in Table 6 and Fig. 2E.
1-back. The results are displayed in Table 7 and Fig. 2F.

Mixed-measures ANOVA
To further assess age differences in prediction accuracy as well as
network specificity and the impact of the task demand level, we
submitted the prediction results represented by RMSE values for
each of the 100 repetitions to a 2 (age group) × 4 (network) × 2
(demand level) mixed-measures ANOVA (P < 0.00005, Bonferroni-
adjusted for our 10 × 100 cross-validation scheme).

In the first step, prediction results for all low-demand (i.e. 0-
back, CWI congruent, and TMT consecutive) and all high-demand
(i.e. 1-back, CWI incongruent, and TMT switch) conditions
were combined into low-demand (LD) and high-demand (HD)
compound scores, respectively. When Mauchly’s test of sphericity
was significant, Greenhouse–Geisser corrected results were
interpreted. The ANOVA yielded significant main effects for
the factors network [F(2.268, 449.094) = 4,439.180, P = 6.36 ×
10−308, η2 = 0.957], demand level [F(1, 198) = 873.671, P = 1.551 ×
10−74, η2 = 0.815], and age group [F(1, 198) = 832.277, P = 7.697 ×
10−73, η2 = 0.808] as well as the interactions age × network [F(3,
594) = 192.666, P = 3.019 × 10−87, η2 = 0.493], age × demand level
[F(1, 198) = 24,857.207, P = 4.3025 × 10−210, η2 = 0.992], network
× demand level [F(2.190, 433.671) = 72.860, P = 4.813 × 10−30,
η2 = 0.269], and age × network × demand level [F(3, 594) = 156.714,
P = 8.1004 × 10−75, η2 = 0.442]. To corroborate the main effects,
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Table 1. Mean, standard deviation, and t-statistics of the performance of old and young subjects in the behavioral tasks.

Mold SDold Myoung SDyoung t-statistic P-value

0-back −0.02 0.62 −0.33 0.89 3.06 0.003
1-back −0.00 0.68 −0.30 0.88 2.90 0.004
CWI_con 0.04 0.91 −0.30 0.90 2.82 0.005
CWI_inc 0.20 0.84 −0.47 0.62 6.82 < 0.001
TMT_con 0.12 0.67 −0.37 0.54 6.00 < 0.001
TMT_switch 0.07 0.77 −0.33 0.64 4.20 < 0.001

Note. CWI_con = congruent condition of color-word interference test, CWI_inc = incongruent condition of color-word interference test, TMT_con = consecutive
condition of trail making test, TMT_switch = switching condition of trail making test.

Table 2. Prediction accuracies displayed as Pearson’s r, mean absolute error, and root mean squared error for both age groups from
prediction within the executive function-related, perceptuo-motor, whole-brain, and averaged random brain networks.

rold ryoung MAEold MAEyoung RMSEold RMSEyoung

EFN 0.1 −0.04 0.74 0.85 0.95 1.04
PercMot 0.01 0.05 0.75 0.76 0.96 0.98
Power 0.13 0.12 0.72 0.74 0.92 0.91
RandomAvg 0.06 0.00 0.72 0.79 0.94 0.98

Note. MAE = mean absolute error, RMSE = root mean squared error, EFN = executive function network, PercMot = perceptuo-motor network,
RandomAvg = averaged 10 random networks.

Fig. 2. Prediction accuracies expressed as mean Pearson correlations between observed and predicted scores, mean absolute error, as well as root mean
squared error for the task conditions color-word interference (CWI) congruent A), CWI incongruent B), trail making test (TMT) consecutive C), TMT
switch D), 0-back E), and 1-back F) based on executive function (EF), perceptuo-motor (PercMot), whole-brain (Power), and averaged random networks
(RandomAvg), shown separately for the old (dark colors), and young (light colors) subsamples.

Table 3. Mean prediction accuracies displayed as Pearson’s r, mean absolute error, and root mean squared error for each age group
based on the functional connectivity within the executive function-related, perceptuo-motor, whole-brain, and averaged random brain
networks.

rold ryoung MAEold MAEyoung RMSEold RMSEyoung

EFN −0.12 −0.02 0.74 0.56 0.94 0.68
PercMot −0.06 −0.01 0.72 0.55 0.93 0.67
Power 0.03 0.05 0.67 0.53 0.87 0.63
RandomAvg −0.03 0.00 0.68 0.54 0.88 0.66

Note. MAE = mean absolute error, RMSE = root mean squared error, EFN = executive function network, PercMot = perceptuo-motor network,
RandomAvg = averaged 10 random networks.

we conducted machine-learning-adjusted t-tests. The t-tests
confirmed the main effects for age and all network differences.
Only the main effect for demand level was not confirmed (see
Table S5).

Overall, prediction accuracy (i.e. RMSE) was better for older
than for younger subjects (see Fig. 3A and Table 8). Across demand

level and age groups, prediction accuracy was best for the
whole-brain connectome (i.e. Power nodes) compared with the
averaged random, perceptuo-motor, and EF network (see Fig. 3B
and Table 8). A figure showing the RMSE values of the 10 random
networks separately can be found in the Supplementary Material
(see Fig. S1).

https://academic.oup.com/cercor/article-lookup/doi/10.1093/cercor/bhac520#supplementary-data
https://academic.oup.com/cercor/article-lookup/doi/10.1093/cercor/bhac520#supplementary-data
https://academic.oup.com/cercor/article-lookup/doi/10.1093/cercor/bhac520#supplementary-data
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Table 4. Mean prediction accuracies displayed as Pearson’s r, mean absolute error, and root mean squared error for each age group
based on the functional connectivity within the executive function-related, perceptuo-motor, whole-brain, and averaged random brain
networks.

rold ryoung MAEold MAEyoung RMSEold RMSEyoung

EFN 0.04 0.02 0.57 0.47 0.73 0.59
PercMot −0.21 0.06 0.63 0.46 0.79 0.57
Power 0.11 0.19 0.53 0.42 0.67 0.53
RandomAvg −0.01 0.04 0.56 0.48 0.72 0.57

Note. MAE = mean absolute error, RMSE = root mean squared error, EFN = executive function network, PercMot = perceptuo-motor network,
RandomAvg = averaged 10 random networks.

Table 5. Mean prediction accuracies displayed as Pearson’s r, mean absolute error, and root mean squared error for each age group
based on the functional connectivity within the executive function-related, perceptuo-motor, whole-brain, and averaged random brain
networks.

rold ryoung MAEold MAEyoung RMSEold RMSEyoung

EFN 0.22 −0.27 0.62 0.59 0.78 0.74
PercMot −0.06 −0.22 0.65 0.54 0.84 0.71
Power −0.15 0.12 0.62 0.50 0.82 0.64
RandomAvg 0.00 −0.09 0.62 0.54 0.81 0.70

Note. MAE = mean absolute error, RMSE = root mean squared error, EFN = executive function network, PercMot = perceptuo-motor network,
RandomAvg = averaged 10 random networks.

Table 6. Mean prediction accuracies displayed as Pearson’s r, mean absolute error, and root mean squared error for each age group
based on the functional connectivity within the executive function-related, perceptuo-motor, whole-brain, and averaged random brain
networks.

rold ryoung MAEold MAEyoung RMSEold RMSEyoung

EFN 0.04 0.10 0.54 0.74 0.67 0.96
PercMot 0.11 −0.02 0.51 0.76 0.64 0.97
Power −0.05 −0.15 0.51 0.74 0.64 0.95
RandomAvg 0.03 −0.03 0.51 0.76 0.65 0.96

Note. MAE = mean absolute error, RMSE = root mean squared error, EFN = executive function network, PercMot = perceptuo-motor network,
RandomAvg = averaged 10 random networks.

Table 7. Mean prediction accuracies displayed as Pearson’s r, mean absolute error, and root mean squared error for each age group
based on the functional connectivity within the executive function-related, perceptuo-motor, whole-brain, and averaged random brain
networks.

rold ryoung MAEold MAEyoung RMSEold RMSEyoung

EFN −0.13 0.01 0.62 0.74 0.79 0.97
PercMot 0.15 −0.04 0.54 0.77 0.69 0.97
Power 0.10 −0.07 0.55 0.73 0.68 0.94
RandomAvg −0.02 −0.03 0.57 0.74 0.72 0.95

Note. MAE = mean absolute error, RMSE = root mean squared error, EFN = executive function network, PercMot = perceptuo-motor network,
RandomAvg = averaged 10 random networks.

Prediction accuracy was better for HD than LD (see Fig. 3C and
Table 8) conditions across networks and age groups.

Prediction accuracy for both age groups was best for the Power
nodes, as compared with the averaged random, perceptuo-motor,
and EF network (see Fig. 4A and Table S6). Although prediction
accuracy for older participants was better for LD than HD con-
ditions, prediction accuracy for younger participants was better
for HD (see Fig. 4B and Table S6) conditions. Finally, all networks
performed better for HD than LD (see Fig. 4C and Table S6) task
conditions.

T-tests between algorithms
For each age group, prediction accuracy, as indicated by RMSE,
was significantly better for the nonlinear algorithm (RF) in all net-
works than for the linear algorithm PLSR (P < 0.001). The results
of the adjusted t-test can be found in Table 9. Comparing PLS
with CPM, prediction accuracy only differed significantly (P = 0.05)
in younger adults, with PLSR slightly outperforming CPM (see

Table 10). Tables stating the prediction accuracies for RF and CPM
can be found in the Supplementary Material (see Table S7 and S8).

Discussion
This study aimed to extend our understanding of the imple-
mentation of EF in the human brain, its age-related differences,
and its potential as a marker for individual differences in EF
performance. After deriving EF-related brain regions from previ-
ous neuroimaging meta-analyses, we examined to what degree
individual EF abilities, as assessed via 3 classic tasks with high-
and low-demand conditions, can be predicted from RSFC within
this EFN in young and older adults. For comparison, we included
2 EF-unspecific networks (i.e. a perceptuo-motor network and
a representation of the whole-brain connectome) as well as
10 pseudo-random networks with the same properties as the
EFN. Eventually, we replicated our analysis, which used a linear
prediction algorithm (i.e. PLSR), employing a nonlinear prediction

https://academic.oup.com/cercor/article-lookup/doi/10.1093/cercor/bhac520#supplementary-data
https://academic.oup.com/cercor/article-lookup/doi/10.1093/cercor/bhac520#supplementary-data
https://academic.oup.com/cercor/article-lookup/doi/10.1093/cercor/bhac520#supplementary-data
https://academic.oup.com/cercor/article-lookup/doi/10.1093/cercor/bhac520#supplementary-data
https://academic.oup.com/cercor/article-lookup/doi/10.1093/cercor/bhac520#supplementary-data
https://academic.oup.com/cercor/article-lookup/doi/10.1093/cercor/bhac520#supplementary-data
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Table 8. Post-hoc pairwise comparisons of ANOVA effects.

Post-hoc pairwise comparisons

Factor Mean (SE)group1 Mean (SE)group2 P-value

Age 0.792 (0.0002)old 0.802 (0.0002)young 7.70 × 10−73

Network 0.820 (0.0005)EF 0.809 (0.0004)PercMot 1.61 × 10−40

0.820 (0.0005)EF 0.767 (0.0003)Power 6.17 × 10−172

0.820 (0.0005)EF 0.786 (0.0004)Random 2.81 × 10−124

0.809 (0.0004)PercMot 767 (0.0003)Power 1.42 × 10−160

0.809 (0.0004)PercMot 793 (0.0001)Random 1.39 × 10−89

767 (0.0003)Power 793 (0.0001)Random 1.92 × 10−161

Demand Level 0.793 (0.0003)HD 0.802 (0.0002)LD 1.55 × 10−74

Note. EF = executive-function-related network, PercMot = perceptuo-motor-related network, Power = Power et al.’s (2011) graph of putative functional areas,
Random = average of 10 randomly computed brain networks, HD = high-demand, LD = low-demand, SE = standard error.

Fig. 3. Main effect for age, network, and task (mean ± standard error).
Prediction accuracy (i.e. root mean squared error, RMSE) was better
for older compared with younger subjects A); for high-demand (HD)
compared with low-demand (LD) task conditions B); and best for the
whole-brain connectome (i.e. Power nodes), compared with the executive
function (EF), perceptuo-motor (PercMot), and averaged random networks
(P < 0.00005; C).

Fig. 4. Interaction effects for age ×network, age ×task, and network
×task. Prediction accuracy (i.e. root mean squared error, RMSE) was best
for the whole-brain approach (i.e. Power nodes) for both age groups
(P < 0.00005; A). Prediction accuracy for younger subjects was best for
high-demand (HD) while prediction accuracy for older subjects was best
for low-demand (LD) task conditions (P < 0.00005; B). Prediction accuracy
was better for the high-demand task condition in all brain networks
investigated (P < 0.00005; C).
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algorithm (RF) as well as a data-driven feature-selection approach
without any a priori network definition. As expected, younger
adults were significantly faster than older adults in all tasks (i.e.
n-back, CWI, and TMT) and both demand levels (i.e. HD vs. LD).
Prediction accuracies, reflecting the strength of brain−behavior
associations, were overall rather low. Surprisingly, at the given
average low level of accuracy, EF-unspecific networks even
outperformed the EF-specific network. Finally, prediction accu-
racy was better for HD than LD task conditions.

Prediction of EF abilities from network-level RSFC
Pearson’s correlation coefficient (r), calculated to quantify the
association between observed and predicted scores, is being
widely used in neuroscience as an accuracy measure for
predictive analyses or as a reference for a prediction’s success.
However, a correlation coefficient provides information about
the strength of a linear relationship and not the accuracy of a
model (Li 2017). RMSE is the standard deviation of the residuals.
It provides information about how far away, on average, the data
points are from the regression line and thus how accurate the
prediction was. MAE measures the average magnitude of errors.
RMSE and MAE do not depend on the variance of the outcome
variable and thus allow comparisons across data sets. Therefore,
RMSE, MAE, and correlation coefficient do not need to go hand
in hand and offer different, yet complementary, information. A
recent paper by Poldrack et al. (2020) discussing best practices
evaluating prediction pointed out that high correlation coef-
ficients can occur even if predicted data substantially differ
from observed data (e.g. due to outliers or very heterogeneous
groups). The authors recommend reporting and interpreting
several measures of prediction accuracy, especially RMSE
and MAE.

Here, we will discuss prediction accuracy as measured with
RMSE (<0.8) and the respective correlation coefficient (note
that cognitive performance was z-scored). This follows the
rationale that RMSE provides information about the accuracy
of a prediction and thus only the correlation coefficient of
successful (i.e. meaningful) predictions will be further interpreted.
As mentioned before, prediction accuracy for all networks
and both age groups was overall rather low. Even for TMT
switching, which featured the highest r, the predicted score based
on within-EFN RSFC was not able to explain any variance in
interindividual performance differences in older adults based on
the coefficient of determination (R2 = −.02; Scheinost et al. 2019).
For within-perceptuo-motor network RSFC, similarly no variance
was explained. The whole-brain approach, which achieved the
overall best prediction accuracy (i.e. RMSE), was only able to
explain 3.7% of the variance in the TMT consecutive condition
in younger adults. Finally, RSFC within random networks, while
resulting in second-best prediction accuracy, was not able to
explain any variance in the target variables. Although previous
research has made positive claims regarding the predictability
of cognitive abilities from network-level RSFC, the explained
variance rarely exceeded r > 0.3 (i.e. r2 = 0.09; Ferguson et al.
2017; Greene et al. 2018; He et al. 2021), which is comparable
with the strength of brain−behavior associations observed here
[TMT_switchold from EFN (r = 0.22; r2 = 0.05), 0backold (r = 0.11;
r2 = 0.01) and 1backold (r = 0.15; r2 = 0.02) from the perceptuo-motor
network as well as 1backold (r = 0.10; r2 = 0.01), TMT_conold (r = 0.11;
r2 = 0.01), TMT_conyoung (r = 0.19; r2 = 0.04) and TMT_switchyoung

(r = 0.12, r2 = 0.01) from the whole-brain connectome]. Note,
that for the sake of comparability with published results, we

here used the squared correlation coefficient as coefficient of
determination.

In conclusion, when predicting EF ability from RSFC, we
achieved overall rather low prediction accuracies, which suggests
that the relationship between individual RSFC patterns and
EF abilities is rather loose. Although the level of predictability
is comparable with previous related research, it is rather
unsatisfactory from a translational perspective aiming to discover
biomarkers for individual-level prediction. Interestingly, our
results also point out that RMSE, MAE, and correlation coefficient
may offer different, yet complementary, information. This further
brings into question whether prediction results evaluated only
based on the correlation between predicted and observed scores
should be interpreted at all. The question remains what kind
of variance has been explained with the approach used and
how meaningful it is, especially when the amount of variance
explained is low to moderate.

Network specificity
The ANOVA yielded a main effect of network on prediction
accuracy, and post-hoc pairwise comparisons revealed significant
differences between all networks. It turned out that the best
prediction accuracy was obtained with the whole-brain connec-
tome, followed, in descending order, by the random networks,
the perceptuo-motor network, and lastly—against expectations—
the EFN. One possible explanation for the superiority of Power
et al.’s (2011) version of the connectome in predicting individual
EF abilities might be its greater feature space, which amounts
to 34,716 connections, compared with 1,225 connections for the
EFN. However, in our control analysis, 10 random networks of
the same size as the EFN still resulted in a significantly better
prediction accuracy than the EFN and the perceptuo-motor
network, pointing out that it is not the sheer number of features
that is responsible for the prediction outcome. As discussed before
in the context of overall weak brain−behavior associations, the
question of what part of the variance we are explaining becomes
even more pressing if a whole-brain approach or even random
networks outperform the network that is specifically involved in
implementing EF in the human brain.

An explanation for the low prediction accuracy, reflecting
rather loose RSFC−behavior associations, could be RSFC’s
unconstrained nature. Several recent studies have shown that
prediction from brain activity during tasks (or movie watching)
works better than from rest (Greene et al. 2018; Sripada et al. 2020;
Finn and Bandettini 2021). Tasks modulate the functional brain
state, which may yield important information about individual
differences in brain functional organization and cognition (Greene
et al. 2018). During tasks, FC changes are likely to subserve task-
related processing and are thus more constrained. In fact, it
has been shown that even only thoughts about a task already
influence the FC pattern (Gregory et al. 2016). In contrast,
the functional brain state during rest is much less externally
constrained and therefore highly dependent on the participants
themselves (Buckner et al. 2013; Tailby et al. 2015). Therefore,
resting-state fMRI does not offer any certainty about what mental
state is being captured, let alone experimental control over what
is going on mentally (Finn and Bandettini 2021). Measurement
conditions that involve movie watching, on the other hand,
have been linked to the selection of specific pathways, such
as higher-level brain regions integrating sensory information
and an increase in inter-hemispheric exchange through a global
reorganization of functional communities (Gilson et al. 2018).
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Table 9. Results of adjusted two-sided t-tests comparing the prediction accuracies (RMSE) of the linear machine learning algorithm
partial least squares and the nonlinear algorithm random forest.

PLSR vs. RF

Mean (SD)old PLSR Mean (SD)old RF t-statisticold

(Cohen’s d)
Mean
(SD)young PLSR

Mean (SD)young RF t-statisticyoung

(Cohen’s d)

EF 0.81 (0.11) 0.76 (0.12) 4.19∗∗ (0.45) 0.83 (0.18) 0.76 (0.17) 6.35∗∗(0.41)
PercMot 0.81 (0.13) 0.76 (0.12) 4.89∗∗ (0.42) 0.81 (0.18) 0.76 (0.17) 8.48∗∗(0.29)
Power 0.77 (0.12) 0.75 (0.11) 2.50∗(0.18) 0.77 (0.19) 0.75 (0.17) 2.22∗(0.12)

Note. EF = executive-function-related network, PercMot = perceptuo-motor-related network, Power = Power et al.’s (2011) graph of putative functional areas,
PLSR = partial least squares, RF = random forest, SD = standard deviation. ∗∗Significant at P < 0.001. ∗Significant at P < 0.05.

Table 10. Results of adjusted 2-sided t-tests comparing the prediction accuracies (RMSE) of 2 different feature selection algorithms:
The linear machine learning algorithm partial least squares and the data-driven connectome-based predictive modeling.

PLSR vs. CPM

Mean (SD)old PLSR Mean (SD)old CPM t-statisticold

(Cohen’s d)
Mean
(SD)young PLSR

Mean
(SD)young CPM

t-statisticyoung

(Cohen’s d)

Power 0.77 (0.12) 0.77 (0.11) −1.10 (0.00) 0.77 (0.19) 0.78 (0.18) −1.97∗ (0.06)

Note. Power = Power et al’.s graph of putative functional areas, PLSR = partial least squares, CPM = connectome-based predictive modeling, SD = standard
deviation. ∗Significant at P = 0.05.

Along these lines, a recent paper titled “Is it time to put rest
to rest?” brought into question if cognitive neuroscience using
resting-state fMRI data has reached a plateau and suggested
moving on to integrated designs that draw from the advantages
of both rest (i.e. self-generated activity) and task (i.e. control and
interpretability) (Finn 2021). Examples for integrated designs are
task-signature echoes, where task paradigms are used to learn
signatures of brain activity that correspond to particular task
conditions, followed by searching for these signatures (an echo)
in resting-state data; annotated rest, where introspection data
are acquired about the subjective mental experience during or
after the scan; state-informed approaches, where the brain state
is monitored, for example through real-time neuroimaging, and
tasks are given at certain intervals to causally test the influence of
ongoing activity; or naturalistic designs such as movie watching. It
has been shown that between-network communication increases
during movie watching vs. within-network communication (i.e.
network integration), whereas within-network communication
increases during rest vs. between-network communication
(i.e. network segregation; Betzel et al. 2020). Higher network
integration has been associated with the processing of local,
specialized information whereas higher network segregation has
been linked to the transfer of inter-modular information (Shine
et al. 2016; Fukushima et al. 2018). In the context of EF, higher
network integration might explain why the whole-brain approach
or even random networks outperformed the specific EFN in the
current study, as they possible comprise important hubs of further
relevant brain networks.

Therefore, another potential reason for low prediction accuracy
from pre-defined brain networks might be that interindividual
differences in complex mental functions such as EF are not so
much related to single networks but rather global organizational
properties of the brain (Pläschke et al. 2020). Brain regions cru-
cial but not specific to EF—e.g. modulating between-network
communication—might be missing from the meta-analytically
derived networks but are covered by the whole-brain approach.
It has been shown, for example, that the dynamic reconfigura-
tion of frontoparietal and frontotemporal networks (i.e. network

flexibility) was able to predict individual performance in a work-
ing memory task (Braun et al. 2015), pointing out that between-
network communication might be as important (if not more)
as within-network communication. Here, we additionally looked
at the features (i.e. RSFC edges) resulting from the data-driven
feature-selection approach (i.e. features that were significantly
associated with the EF target variables) and observed that the
pattern of predictive edges was distributed throughout the entire
brain and across intrinsic networks (see Figs. S2–S5, Tables S9 and
S10). This finding supports the notion that between-network con-
nectivity, for example, between the salience network and DMN,
might contain more information about individual performance in
EF-related tasks than does FC within networks.

We replicated our analyses with a data-driven feature-
selection approach CPM (Finn et al. 2015; Shen et al. 2017) as
well as with a nonlinear prediction algorithm (random forest)
to investigate whether the association between within-network
RSFC and our cognitive target variables might be better captured
by selected, relevant features or if the relationship is nonlinear.
For older adults, the data-driven feature-selection approach—
where linear regression was applied for prediction—did not differ
from feature selection based on eigen-decomposition using PLSR.
For younger adults, PLSR (vs. CPM) resulted in a slightly but
significantly higher prediction accuracy. Random forest, in turn,
statistically significant but numerically small exceeded PLSR in
both age groups. Therefore, overall, we were able to replicate the
prediction results and patterns obtained with our initial algorithm
(PLSR). Importantly, these results speak against the idea that
between-network connectivity contained more information than
within-network connectivity, as prediction accuracy of the data-
driven feature-selection approach across the whole-brain did not
outperform prediction limited to the pre-defined networks.

Another reason for interindividual differences in EF per-
formance not being visible when predicting from the meta-
analytically pre-defined EFN may be that meta-analyses result
in regions showing the most consistent activation across subjects
(i.e. possibly not capturing interindividual differences). This might
similarly affect RSFC from within these networks. However, RSFC

https://academic.oup.com/cercor/article-lookup/doi/10.1093/cercor/bhac520#supplementary-data
https://academic.oup.com/cercor/article-lookup/doi/10.1093/cercor/bhac520#supplementary-data
https://academic.oup.com/cercor/article-lookup/doi/10.1093/cercor/bhac520#supplementary-data
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from the whole-brain approach as well as from within random
networks does not result in high prediction accuracy either,
suggesting that RSFC patterns overall do not seem particularly
associated with individual levels of performance. Returning to
the question, what variance is explained by within-network RSFC.
One possibility could be that within-network RSFC is suited for
predicting individual performance in simple, but not complex,
EF tasks. In complex EF tasks, the variance explained might be
associated with perceptual and motor aspects rather than EF
components of the task. These perceptual and motor aspects are
more likely associated with global fitness of the brain, which is
linked to many different parts of the brain rather than specific
EF patterns. In addition, the EFN could consist of regions that are
always involved during complex tasks but their individual level of
involvement (i.e. individual level of interconnectivity) might not
be important as long as they are recruited. In this scenario, there
would be no association between the level of within-EFN RSFC
and interindividual differences in EF ability, making a prediction
impossible. Therefore, these regions might be important for EF but
not for interindividual differences in EF. Lastly, another reason for
individual differences not being visible when predicting from pre-
defined brain networks derived from group-average maps might
be the high interindividual variability in the brain’s anatomy
but also in the functional organization of the brain (Wang and
Liu 2014). Therefore, a promising alternative for future studies
would be prediction from individualized brain networks that
acknowledge differences in size, location, and connectivity of
brain regions. A recent study, for example, has shown that RSFC
among individualized regions of interest was better at predicting
fluid intelligence than was connectivity derived from group-level
brain atlases (Li et al. 2019).

In summary, our results indicate that a comprehensively
defined EFN is not better at predicting EF abilities than a
perceptuo-motor network, random networks or the full con-
nectome. In fact, the latter led to better predictions overall—
irrespective of task demand level or age. This indicates that the
whole-brain connectome and even random networks—which are
structurally similar to the EFN and thus offer a direct compar-
ison—contain more information about individual EF abilities
than a comprehensive EF-related network. Prediction from task or
integrated designs such as movie watching as well as from indi-
vidualized brain networks might offer better prediction accuracy.

Age specificity
Overall prediction accuracy was better for older (vs. younger)
adults, which is in line with previous work showing that
brain–behavior associations become closer with advancing age
(Pläschke et al. 2020). On the other hand, in all tasks except n-
back, older adults showed greater variability (i.e. how scattered
the behavioral scores were; see Table S11). However, this main
effect was qualified by a crossed age × demand level interaction
and will therefore not be discussed.

Interestingly, this interaction revealed that the highest pre-
diction accuracy for younger adults was obtained when predict-
ing HD task conditions, and the lowest prediction accuracy was
obtained when predicting LD conditions. For older adults, the pat-
tern was reversed. A possible explanation could be an age-related
decline in within-network specificity or segregation between net-
works (Chan et al. 2017; Varangis et al. 2019). Although perfor-
mance in LD tasks (i.e. less specific to EF) might still be maintained
in advanced age by some form of compensation such as the
additional recruitment of domain-general resources (Carp et al.
2010) subserved by the networks investigated here, performance

in HD tasks might not, resulting in low predictability. One reason
might be ineffective compensatory attempts, as the EFN is already
being recruited at LD so that the RSFC adjustments within the
EFN cannot be linked to performance. Another possibility would
be that the compensatory adjustment happens outside of the
EFN. However, the latter explanation is not supported by the cur-
rent results, as brain–behavior associations did not meaningfully
improve with using the Power nodes.

In summary, LD tasks appear to be sensitive markers for EF
abilities in older adults who show typical age-related cognitive
decline and thus already need to compensate in LD. For younger
adults, as expected, only HD tasks are sensitive enough for cap-
turing meaningful interindividual differences in EF performance.
This further points out the importance of adaptive testing, as only
sensitive tests can result in interindividual differences that are
meaningful and can be linked to trait-markers in the brain.

Conclusions and outlook
The current study investigated to what extent the individual
EF performance of older and younger adults can be predicted
from RSFC patterns in pre-defined functional brain networks.
Overall, prediction accuracy was rather low to moderate, partially
in line with previous studies. These results bear on 2 important
issues. First, to meaningfully interpret such brain-based predic-
tion results, it is important to not only report correlations between
observed and predicted scores but also include additional mea-
sures of prediction accuracy, such as RMSE or MAE. Second, our
results raise the question of whether an explanation of < 4%
variance is meaningful and how results from RSFC may help
to gain a better understanding of brain−behavior associations.
Therefore, our results question the idea of finding biomarkers
for individual EF performance in functional coupling patterns
at rest. Furthermore, our results show that EF-unspecific net-
works outperformed a circumscribed EF-related network. This
may indicate that interindividual differences in EF are not so
much related to single networks but rather global properties of
the brain (e.g. overall atrophy in older subjects or level of global
fitness). In addition, central hubs modulating between-network
communication might be missing from meta-analytically derived
networks but are likely covered by the whole-brain connectome or
by some random networks. Future studies may want to replicate
the current approach with prediction from individualized brain
networks that retain interindividual differences in size, location,
and connectivity of brain regions. Furthermore, LD tasks appear
to be sensitive markers for EF abilities in older adults who show
typical age-related cognitive decrease and thus already need to
compensate in LD. These findings suggest adaptive testing as only
sensitive tests can capture meaningful brain–behavior relation-
ships.

A limitation of the current study is the unconstrained nature
of RS-fMRI and our limited understanding of it in the context of
prediction analyses. It appears important to conceptually repli-
cate our analyses with different brain modalities. A recent study,
for example, has shown that prediction of crystallized intelligence
from regional homogeneity (ReHo), which evaluates the time con-
sistency of the BOLD signal in a particular brain region, resulted in
a higher prediction accuracy than RSFC-based prediction (Larabi
et al. 2021). Furthermore, replication with task-based FC, FC dur-
ing movie watching, or other designs integrating the advantages
of task and rest, might improve prediction accuracy and the asso-
ciation with the target variables. Another limitation was the task
conditions available (high- vs. low-demand), which did not allow

https://academic.oup.com/cercor/article-lookup/doi/10.1093/cercor/bhac520#supplementary-data
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for analyzing EF demand level as a continuous variable. Therefore,
future research would benefit from EF tasks that allow for a
continuous assessment of EF demand level. Similarly, it would be
an advantage to investigate a continuous age distribution within a
longitudinal design to assess the trajectory of changes throughout
the lifespan.

Overall, our results reveal complex interactions among several
factors and, importantly, an overall lack of specificity of neurobi-
ologically plausible networks for predicting interindividual differ-
ences in EF abilities, questioning the idea of finding biomarkers
for individual levels of EF performance in predefined networks
applying RSFC. Our results call for future research replicating
the current study in different task states, in different and larger
samples as well as with different modalities.

Supplementary material
Supplementary material is available at Cerebral Cortex online.
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