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To be and not to be: wide-field Ca2+ imaging reveals
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The stability and flexibility of the functional parcellation of the cerebral cortex is fundamental to how familiar and novel information
is both represented and stored. We leveraged new advances in Ca2+ sensors and microscopy to understand the dynamics of functional
segmentation in the dorsal cerebral cortex. We performed wide-field Ca2+ imaging in head-fixed mice and used spatial independent
component analysis (ICA) to identify independent spatial sources of Ca2+ fluorescence. The imaging data were evaluated over multiple
timescales and discrete behaviors including resting, walking, and grooming. When evaluated over the entire dataset, a set of template
independent components (ICs) were identified that were common across behaviors. Template ICs were present across a range of
timescales, from days to 30 seconds, although with lower occurrence probability at shorter timescales, highlighting the stability of the
functional segmentation. Importantly, unique ICs emerged at the shorter duration timescales that could act to transiently refine the
cortical network. When data were evaluated by behavior, both common and behavior-specific ICs emerged. Each behavior is composed of
unique combinations of common and behavior-specific ICs. These observations suggest that cerebral cortical functional segmentation
exhibits considerable spatial stability over time and behaviors while retaining the flexibility for task-dependent reorganization.
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Introduction
Animal behavior is rich, dynamic, and expressed in a high dimen-
sional space. Encoding of such a behavioral repertoire in the
brain requires equally complex and flexible computations at
multiple levels of processing. One of the prominent hypotheses
regarding the nervous system is that behavior is an emerging
property of neuronal populations across the brain (Buzsáki 2010;
Yuste 2015; Makino et al. 2017). In this view, behaviorally relevant
computations are distributed within and across anatomically and
functionally distinct brain regions, at the level of both cells and
circuits. Therefore, a comprehensive characterization of neuronal
activity at various spatial and temporal scales, including simulta-
neously recording from different regions, is critical for deciphering
how the brain plans, learns, and executes behaviors (Fox et al.
2005; Allen et al. 2017; vena-Koenigsberger et al. 2017; Gilad et al.
2018; Ren and Komiyama 2021).

Observing neuronal activity at the mesoscale level is fun-
damental to investigations into both the representation and
control of behavior as it allows simultaneous characterization
of local neuronal population activity as well as long-range
interactions among these local populations. The develop-
ment of fast, genetically-encoded calcium (Ca2+) sensors was
critical for mesoscale imaging, as they allow simultaneous
visualization of neural activity across brain regions at high
spatiotemporal resolution and provide for cell-type specificity

(Che and De Marco García 2021; Guo et al. 2021). When combined
with newer techniques for large-scale, chronic cranial windows,
which can give chronic access to 100 mm2 of cortex, wide-field
Ca2+ imaging of neuronal activity is proving to be a powerful
tool to investigate local and long-range ensemble interactions
(Ghanbari et al. 2019; Cardin et al. 2020; Cramer et al. 2021; Ren
and Komiyama 2021; Takahashi et al. 2021). Wide-field Ca2+

imaging in the cerebral cortex has already provided insights
into the spatial and temporal patterns of activation during
behaviors, including reorganization of cortical interactions with
learning (Makino et al. 2017; Gilad et al. 2018), the contributions of
spontaneous movements to cortical activity (Musall et al. 2019),
state transitions and changes in functional connectivity during
locomotion (West et al. 2022), cortical dynamics during reaching
(Galiñanes et al. 2018), and how task information across the cortex
is modulated by cognitive processes and task demands (Pinto et al.
2019; Salkoff et al. 2020; Zatka-Haas et al. 2021).

Given the recent prominence of Ca2+ imaging for investigat-
ing mesoscopic neuronal dynamics and functional interactions
among ensembles and their interactions with behavior, many
important questions focus on how the underlying activity is func-
tionally parcellated in the cerebral cortex (Cardin et al. 2020). This
makes it necessary to identify regions engaged in neural process-
ing and then determine how they vary with time and behavior.
Robust segmentation is critical to understand the regions engaged
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in behaviors and their interactions. A spectrum of approaches
have been used to segment the cerebral cortex in wide-field Ca2+

imaging studies including manually selecting regions of interest,
using the Allen Brain Atlas Common Cortical Framework (CCF;
Vanni and Murphy 2014; Wang et al. 2020; Couto et al. 2021), seed-
based correlation methods (White et al. 2011; Mohajerani et al.
2013; Vanni et al. 2017), clustering algorithms (Pinto et al. 2019;
Shin et al. 2020; Nagayama et al. 2022), as well as principal com-
ponent analysis (PCA) and singular value decomposition (SVD;
Musall et al. 2019; Kondo and Matsuzaki 2021; Peters et al. 2021).

One approach is to use existing anatomical and/or functional
maps. Both seed-based correlational and Localized semi-
Nonnegative Matrix Factorization (LocaNMF) studies have utilized
the mouse Allen Brain Atlas Common Cortical Framework (CCF)
to segment the cerebral cortex (Barson et al. 2020; Saxena et al.
2020; Wang et al. 2020; Xiao et al. 2021; Quarta et al. 2022). While
having many advantages, the use of static maps does not take
into account individual variability, nor that segmentation may
change with different behaviors and over time.

Another approach is blind-source separation with spatial inde-
pendent component analysis (ICA; McKeown et al. 1998; Calhoun
and Adali 2006). Spatial ICA separates a multivariate signal into
additive subcomponents by maximizing their statistical indepen-
dence from each other, and assuming that the subcomponents are
non-Gaussian signals. ICA can be used to identify both temporal
and spatial independent components (ICs). Extensively used in
human brain imaging, spatial ICA has numerous advantages,
including being data-based with minimal prior assumptions, high
reliability, artifact detection/rejection, and repeatability across
studies and subjects (Calhoun and de Lacy 2017).

To date, a few wide-field Ca2+ imaging studies have used ICA
to segment the dorsal cerebral cortex into functional domains
(Reidl et al. 2007; Makino et al. 2017; Weiser et al. 2021; West et al.
2022). In most cases, ICA was performed across the entire dataset,
generating a singular set of ICs. It remains to be determined the
degree to which ICs are stable across timescales and behaviors,
or the degree to which they emerge and dissipate transiently in
a behavior-dependent manner. To address these questions, we
examined several properties of spatial ICs obtained from wide-
field Ca2+ imaging of excitatory cortical neurons in awake, behav-
ing mice. First, we examine the similarity and repeatability of
components obtained at different timescales. The results show
that the ICs extracted at different timescales are spatially stable,
although the probability of occurrence decreases at shorter dura-
tion timescales. We also show that at shorter durations unique
ICs are found but at a relatively low probability. We examine
whether the ICs extracted depend on the behavior, comparing
rest, locomotion, and grooming. The results demonstrate both
a common set of ICs across these three behaviors, as well as
sets of unique ICs that arise during specific behaviors. These
data highlight the need for both a subject-based and task-based
analysis approach to capture intra- and inter-subject variability
and changing neural dynamics, respectively.

Materials and methods
All experiments were approved by the Institutional Animal Care
and Use Committee (IACUC) at the University of Minnesota.

Animals, implant fabrication, and surgical
procedures
Six mice of both sexes (ages 6–12 months) expressing the
genetically-encoded Ca2+ indicator GCaMP6f primarily in

excitatory neurons (Thy1-GCaMP6f; Jackson Laboratories #024339)
were used for the imaging studies (Dana et al. 2014). Animals were
implanted with “See-Shell” transparent polymer skulls, designed
to conform to the geometry of the skull and provide chronic
optical access to a large contiguous region of the dorsal cerebral
cortex, as previously detailed (Ghanbari et al. 2019; West et al.
2022). These polymer windows consist of 50-μm thick, transparent
polyethylene terephthalate (PET) film (MELINEX 462, Dupont Inc.),
fitted and bonded (Scotch-Weld DP100 Plus Clear, 3M Inc.) to a
3D-printed frame made from polymethylmethacrylate (PMMA;
RSF2-GPBK-04, Formlabs Inc.).

Implantation of the See-Shells was performed as described pre-
viously, including anesthesia, analgesia, monitoring, craniotomy,
and postoperative care (Ghanbari et al. 2019; West et al. 2022).
Following removal of the bone flap, the See-Shells were aligned
over the brain at the edges of the craniotomy and attached to the
skull with cyanoacrylate glue (Vetbond, 3M). See-Shells were fur-
ther secured using dental cement (S380, C&B Metabond, Parkell
Inc.) and a custom titanium head plate attached to the implant
via three screws and also secured with dental cement.

Experimental setup
Following surgery, mice were housed individually on a 12-h
reverse light–dark cycle with experiments performed during the
dark phase. Imaging experiments were performed with mice
head-fixed to a freely moving disk treadmill that allowed for
a variety of behaviors including rest, walking, and grooming.
Behavior was monitored and recorded using a high-speed IR-
sensitive CMOS camera (40 fps; Blackfly, FLIR Systems) under
infrared illumination that did not affect concurrent Ca2+ imaging.
Spontaneous locomotion was also monitored using a rotary
encoder attached to the disk treadmill. Wheel rotation was
recorded at 1 kHz using an Arduino microcontroller (Arduino
Mega 2560; Arduino). Rotary encoder data were subsequently
used to segment Ca2+ imaging data into periods of walk and rest,
as previously described (West et al. 2022). In order to segment
walk and rest data, we defined rest empirically as any movement
less than 0.15 cm/s in either the forward or reverse direction and
walk as any movement greater than 0.25 cm/s in the forward
direction only (West et al. 2022).

In a subset of experiments, a waterspout was placed above
the animal’s snout and droplets of water delivered to encourage
grooming behavior. Delivery of water droplets was controlled
using a Bpod Finite State Machine (Bpod, Sanworks) as well as
custom written Matlab code (Mathworks; Natick, MA). Grooming
behavior was manually segmented from high-speed videos with a
grooming bout manually defined as when the mouse first lifts its
paw toward its snout and ending when the paw returns toward the
wheel or is held stationary in an upright position longer than 1.5–
2 seconds. Any grooming bouts split by less than ∼ 1.5–2 seconds
of walk or rest were combined into a single grooming period.
Manually segmented grooming bouts were removed from walk
and rest data using custom written Matlab code.

Mesoscale calcium imaging
Cortex-wide mesoscale Ca2+ imaging was performed by placing
head-fixed mice beneath an epifluorescence microscope (Nikon
AZ-100) and focusing on layers II/III of the cerebral cortex (∼150–
200 μm below the brain surface). Dual-wavelength single pho-
ton imaging was performed using a fast LED switcher (OptoLED,
Cairn). To eliminate potential interference of the strobing due
to the dual-wavelength imaging a custom light shield extended
from the objective collar to the top of the titanium head plate
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that blocked the strobing from reaching the mouse while not
obscuring the imaging field. Calcium-dependent and independent
signals of GCaMP6f were sampled by alternating the illumina-
tion of a 470 and 405 nm LED, respectively. Mesoscale brain
images were captured (40 fps; 18 ms exposure; 256 × 256 pix-
els; ∼ 24 × 24 μm pixel size) using a high-speed CMOS camera
(Andor Zyla, 4.2, Oxford Instruments) controlled by Microman-
ager imaging software (Edelstein et al. 2010, 2014). Using digital
zoom, the field-of-view was adjusted so that the See-Shell cortical
window (∼6.2 × 6.2 mm) filled as much of the field as possi-
ble. Note that while a large continuous region of the cortex is
optically accessible through the See-Shell cortical window, intact
skull remained along the outer regions of the cortex to provide
attachment and stability for the implant. Continuous images
were collected as tiff stacks over either 5.5- or 6 minute periods,
which comprised a single imaging trial, with each imaging day
comprised of several trials (3–10 trials per mouse per day). Syn-
chronization of behavior and microscope cameras as well as the
rotary encoder was controlled by a series of TTL pulses delivered
by Spike2 software in conjunction with a CED Power 1401 data
acquisition system (Cambridge Electronic Design).

Preprocessing of mesoscopic imaging data
For each individual trial, the first preprocessing step was to de-
interleave images into 470 and 405 nm channels and remove the
initial 30 seconds of each trial to eliminate any initial rundown of
the Ca2+ signal. All subsequent analyses were done on the remain-
ing 5 or 5.5 minutes (min) of data in a trial. Calcium-dependent
GCaMP6f images (470 nm) were corrected for Ca2+-independent
signals (405 nm images) similar to corrections described by others
(Jacobs et al. 2020; MacDowell and Buschman 2020; West et al.
2022). Briefly, the change in fluorescence (�F) for both the hemo-
dynamic (405 nm) and Ca2+ (470 nm) signals were calculated
using the detrend function in Matlab, which removes the average
fluorescence signal and any linear trends. From there, each signal
was normalized to its respective average and finally the hemody-
namic signal was subtracted from the Ca2+ signal according to the
following equation:

Fcorrected = �F470 nm

F470 nm
− �F405 nm

F405 nm

The hemodynamic corrected images were saved along with a
background 470-nm image. Subsequently, a reference image was
chosen, and a mask was drawn for each animal to separate the
brain from the non-brain field-of-view (FOV). For each mouse, all
hemodynamic corrected trials were co-registered to the reference
image using a rigid transformation (imregconfig and imregtform
functions in Matlab). For each mouse, the hemodynamic corrected
images were smoothed in the spatial domain using a 5 × 5 pixel
Gaussian filter and concatenated across all recording days. The
noise present in the brain FOV due to variability in the background
illumination was eliminated at the pixel level by regressing the
data against the average of the non-brain pixels and performing
all analyses on the residuals. The de-noised brain data were com-
pressed using singular value decomposition (SVD), retaining the
first 200 components (Musall et al. 2019; Saxena et al. 2020). Con-
catenated SVD compressed data maintains important features
of the original full-rank data, including the time courses of the
Ca2+ fluorescence from ROIs (Supplementary Fig. S1, see online
supplementary material for a color version of this figure). Data
for each animal were subsectioned at four different timescales:

(i) days (15–50 min per day), (ii) trials (5–5.5 min), (iii) minutes,
and (iv) 30 seconds (30 s). At each timescale, concatenation and
compression were repeated as described for the full dataset.

Spatial ICA
Spatial ICA was performed on the entire concatenated data set
and on each of the subsectioned data sets, independently. For
each of these data sets, we computed 60 ICs using the Joint
Approximation and Diagonalization of Eigenmatrices (JADE) algo-
rithm that obtains maximally independent source signals from
signal mixtures by minimizing mutual information (Cardoso 1999;
Sahonero-Alvarez and Calderon 2017) as has been used in previ-
ous wide-field Ca2+ imaging studies (Makino et al. 2017; West et al.
2022). The solutions were multiplied back into the original vector
space and their z-scores computed to yield spatial maps of the ICs
(See Supplementary Fig. S2B, see online supplementary material
for a color version of this figure). Binary masks of the ICs were
obtained by setting values between -2.5 and +2.5 to 0 and all other
values to 1 (Supplementary Fig. S2A and C with modified CCF atlas
overlay, see online supplementary material for a color version
of this figure). Although ICA does not make assumptions about
the spatial structure of the components, ICs with less than 250
contiguous pixels were excluded, thereby imposing a minimum
size constraint. Importantly, the size constraint was imposed
after the ICs were determined. Also, 250 pixels cover an area of
∼0.144 mm2 and therefore, only very small ICs were excluded
based on this size threshold. Occasionally, ICs contained more
than one noncontiguous region, for example a pair of homotopic
regions. In these cases, the IC was separated into the individual
regions, so each IC mask consisted of a single, contiguous region.
Remaining ICs were inspected for artifacts and were manually dis-
carded, including areas overlying only vasculature (Musall et al.
2019; West et al. 2022).

Comparison of ICA segmentation across
timescales
The first analysis focused on determining matches among the
ICs obtained at different timescales. For each mouse, the catalog
of ICs obtained from the entire concatenated dataset served as
the ground-truth template map to which all other ICs obtained at
the different timescales were compared. ICs were sorted anterior
to posterior based on the IC centroid position and assigned a
unique color value. Pairwise comparisons of ICs in the template
map and timescale maps were performed using the Jaccard index,
a common and robust statistic to determine similarity between
data sets, including images and more recently graphs and seg-
mentations (Leung et al. 2011; Frigo et al. 2021; Pérez-Ortega et al.
2021; Weiser et al. 2021). The threshold for ICs to be defined as
spatially matching was 0.5, that is 50% or more pixels overlapped
between a pair of binary ICs (see Fig. 2B). For plotting purposes, ICs
at any timescale matching the template map were assigned the
same color identity as the maximally matching (highest Jaccard
index) IC in the template. We determined spatial matches for each
IC in the timescale maps and the template map. All ICs matching
template ICs at each timescale were superimposed to yield a
cortex-wide map of percentage occurrence for the template ICs
in smaller timescales.

The second analysis identified ICs present in the timescale-
specific maps that were not present in the template map
(Supplementary Fig. S3, see online supplementary material for
a color version of this figure). Catalogs of timescale-specific ICs
were generated by creating a library of all IC binary masks from all
ICA segmentations within a timescale. Dimensionality reduction
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of the IC libraries was achieved with t-distributed stochastic
neighbor embedding (t-SNE) using the Jaccard distance algorithm,
plotting the position of each IC in this space as a point in a 2D
graph (Matlab 2019 tsne function). Next, the reduced IC libraries
were clustered using Gaussian mixture models, solving for
1–100 clusters. The best performing model and cluster number
were chosen by minimizing the Bayesian Information Criterion.
Occasionally, the best Gaussian mixture model allowed for similar
ICs, which segregated into multiple clusters. ICs from each
cluster were superimposed and any IC areas occurring in less
than 15% of the time-windows were discarded to achieve an
average IC shape and subsequently converted into a binary mask.
Remaining ICs containing less than 250 contiguous pixels were
also discarded. The catalogs of ICs were matched back to the
template ICs using the Jaccard index with a 0.5 match threshold to
remove ICs matching the template set. The catalogs of timescale-
specific ICs were also matched back to themselves to remove
ICs similar to one another, yielding a final map of timescale-
specific ICs. Catalogs of timescale-specific ICs were then treated
as the new reference map and matched back to each time-window
within their timescale using the Jaccard index and threshold as
previously described.

Comparison of ICA segmentations across
behaviors
To determine if any ICs are specific to certain behaviors, we
concatenated bouts of resting, walking, or grooming that lasted
for five seconds or longer and performed ICA for each behavior as
described for the previous datasets.

Statistical analyses
Statistical analyses were performed using GraphPad Prism 8 (San
Diego, CA). The data sets were assessed for normality using a
D’Agostino Pearson or Sharpiro–Wilks test (if the n was less
than 8). As many data sets were not normally distributed, we used
nonparametric statistical tests, including Friedman and Krusal–
Wallis analyses of variance (ANOVAs). Data are displayed as
mean ± standard deviation. Custom Matlab codes for performing
preprocessing, ICA, matching of ICs, and behavioral segmentation
are available upon request. Data are also available upon request.

Results
Database
We recorded mesoscale cortex-wide Ca2+ activity from Thy1-
GCaMP6f mice (n = 6), head-fixed on a freely moving disk treadmill
that allowed for spontaneous walking, resting, and evoked groom-
ing. The imaging dataset for each mouse was analyzed at several
timescales including as a whole and over days, trials, minutes, and
30 s windows. Mice were imaged an average of 18.6 sessions per
mouse (range 11–29 sessions).

Functional parcellation of the cerebral cortex
based on the entire data set
Initially, for each mouse, all data were concatenated chronologi-
cally, and ICA was performed on the combined dataset (Fig. 1A).
The resulting ICs were used as a ground-truth “template map” to
which all other IC segmentations were compared (Fig. 1B; Supple-
mentary Fig. S2C, see online supplementary material for a color
version of this figure). Across mice (Fig. 1B; Supplementary Fig.
S2C, see online supplementary material for a color version of
this figure), the cerebral cortex is mostly covered by an average
of 33 ± 9 template ICs. Although there are overall similarities in

the ICs, the exact template map differs for each mouse, thereby
providing an individualized segmentation based on the recorded
neuronal dynamics.

To validate use of the Jaccard index for comparing the simi-
larity of ICs and the matching threshold (≥0.5), we computed the
Jaccard index for all pairs of template ICs (Fig. 1C). Given how ICA
segments the data, we expected that the ICs would be maximally
spatially independent and IC pairs would have a very low Jaccard
index (Rutledge and Bouveresse 2013). The Jaccard index for the
vast majority of template off-diagonal IC pairs is 0 (shown as
white spaces in an example Jaccard matrix; Fig. 1C), and only a
small incidence of positive Jaccard indices were observed (blue
squares off the diagonal, Fig. 1C). The frequency distribution of
Jaccard indices across all mice reinforces that there is very little
spatial overlap among template ICs, with the vast majority of pairs
having no overlap (Fig. 1D). Across all mice, the average Jaccard
index between template ICs was 0.0063 ± 0.02 (mean ± SD) with
an overall maximal value of 0.26, demonstrating that template
maps of ICs based on the entire data set are highly spatially
separate, therefore confirming that the Jaccard index is a valid
measure of IC spatial homology.

Functional parcellation of the cerebral cortex and
comparison on multiple timescales
Using the Jaccard index as our measure of similarity, we inves-
tigated the degree to which template spatial ICs were observed
over progressively smaller timescales. As described in section
“Materials and methods,” the data were divided into day (trials
recorded on a single day), trial (5 or 5.5-min periods of continuous
data), minute (1,200 continuous images), and 30 s (600 continuous
images) periods. Each time segment of data was then run through
the ICA algorithm to produce timescale-specific cortical segmen-
tations. The process is shown in Fig. 2A, in which all ICs for three
individual days are plotted. Next, the Jaccard index was calculated
between all pairs of the template set of ICs and the ICs gener-
ated for each timescale (Fig. 2B). Varying levels of overlap were
observed as shown for several examples (Fig. 2C), finding that a
Jaccard value of 0.5 provides a suitable threshold for a spatial
match at the different timescales. Using this threshold, template
matching ICs are present at all timescales (Fig. 2D), although the
number of matches decreases at the smaller timescales.

Template ICs are present at all timescales, but
the probability of occurrence varies
Having established a criterion for determining the similarity of
ICs across different timescales, we asked how stable the ICs are
across time, determining the probability of occurrence of each
template IC at the different timescales (Fig. 3A). Results reveal
that template ICs are timescale invariant, as the same ICs are
observed at all timescales. However, the probability of extracting
a template IC depends on the duration of the time-window
analyzed. The average probability of IC occurrence decreased
as the duration of time segments was reduced (Fig. 3B, %
occurrence days: 55.45 ± 33.19%, trials: 38.41 ± 34.93%, minutes:
17.82 ± 26.24%, 30 s: 10.19 ± 18.25%; mean ± SD; n = 198; P < 0.0001
Friedman ANOVA; P < 0.0001 all post-hoc Dunn’s comparisons).
Importantly, the decrease in IC occurrence is not uniform across
the timescales or the cortex, demonstrating that the reduction is
not simply due to smaller time segments being analyzed. Instead,
the occurrence rate is highly dependent on IC location. At the day
timescale, many of the ICs are found at 100% probability, and at
the minute and 30 s timescales, ICs within sensorimotor regions
have occurrence rates of ∼80% (Fig. 3A and B). Conversely, for
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Fig. 1. Spatial ICA of wide-field Ca2+ imaging data produces spatially independent brain regions. A) Schematic showing the ICA workflow of
concatenating data for each animal chronologically across days and trials (days are signified by different colored borders; trials are signified by
overlapping images) and sending the combined dataset through the JADE ICA algorithm. B) Example template map (ground-truth to which all other
ICA solutions are compared) of spatial ICs produced from running ICA on one mouse’s combined dataset (each different colored region is a single IC;
scale bar: 1 mm). White lines denote major regions of the Allen Common Coordinate Framework (CCF; see Supplementary Fig. S2). C) Example matrix
of Jaccard indices comparing the template map to itself (low off-diagonal Jaccard indices indicate good spatial separation; zero values are shown as
white indicating no IC overlap). D) Frequency histograms showing the distribution of off-diagonal Jaccard indices (nonself matches) when comparing
the template map to itself for each animal (bin-widths = 0.05).

ICs in the most anterior and posterior regions, the occurrence
probability is less than 20% at the minute and 30 s timescales.

The template ICs with the highest probability of observation
are in the sensorimotor areas (Fig. 3B). Conversely, ICs covering
more anterior secondary motor regions and posterior parietal/vi-
sual regions are less likely to be present. These results indicate
while the same neuronal ensembles that underlie the ICs are
present at each timescale; the probability of occurrence is highly
dynamic.

To compare the overall cortical coverage at a timescale, we
collapsed the template matching ICs at each timescale to cre-
ate a binary coverage map (Fig. 4A). The collapsed maps reveal
that the ICs at smaller timescales cover a similar area of the
cortex as the template ICs. Comparing the binary maps of cortical
coverage revealed a high degree of similarity, as evident in the
high Jaccard indices between maps at each timescale (Fig. 4B; off-
diagonal comparisons). These findings show that the underlying
Ca2+ activity can be segmented into a common set of ICs, irrespec-
tive of the timescale analyzed.

Sectioning of data into discrete timescales
reveals timescale-specific ICs
The template map for each mouse represents the ICs extracted
over a large data set, as typically undertaken with ICA. This raises
the question whether new ICs occur at different timescales that
are not found in the complete data set. Therefore, we combined

all the ICs within a timescale to determine whether unique ICs
emerge at shorter timescales. We utilized Gaussian mixture mod-
els to cluster ICs within a timescale to identify repeated ICs, as
detailed in section “Materials and methods” and illustrated in
Supplementary Fig. S3 (see online supplementary material for a
color version of this figure). Using the Jaccard index, we then
matched the timescale-specific clusters of ICs back to the tem-
plate set of ICs for each mouse and removed template matches,
resulting in a set of timescale-specific ICs.

Intriguingly, timescale-specific ICs were observed across all
time-windows. These unique ICs occur throughout both hemi-
spheres, with most emerging in anterior motor regions and in
parietal and visual cortices (Fig. 5A). These same unique ICs can
be present across each timescale, as shown in the probability of
occurrence plot (Fig. 5B). Similar to the template ICs, timescale-
specific ICs showed reduced rates of occurrence at the smaller
time segments (days: 34.13 ± 18.97, trials: 24.05 ± 19.33, minutes:
14.93 ± 15.10, 30 s: 12.33 ± 14.7; Kruskal–Wallis ANOVA P < 0.0001;
n = 22–75 ICs). These data suggest that unique ICs are relatively
common at the day and trial timescales, and show the flexibility
of cortical segmentation in both space and time.

Different behaviors have both common and
unique ICs
The above ICA analyses of the functional segmentation reveal
a set of timescale invariant ICs as well as transient,
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Fig. 2. Segmentation of Ca2+ imaging data reveals spatially similar ICs across time segments and scales. A) Schematic showing how data is parsed
into equal length time segments (set of images show data time segments) for different timescales which are run through the JADE ICA algorithm
independently to obtain new ICA solutions (lower images; each color represents an IC). B) Example template map based on an entire mouse’s dataset and
time segment ICA map at the day timescale (left; colors show individual ICs) and Jaccard index matrix showing matching (high value) and nonmatching
(low value) ICs between a time segment and template ICA map (circles). C) Examples of overlap between matching and nonmatching pairs of template
and time segment ICs for circles shown in the Jaccard matrix of B (overlap shown in dark red; individual ICs blue or yellow). D) Three examples of
template matching ICs (Jaccard index ≥0.5) for each of the four timescales (columns/green bars). Scale bars: 1 mm.

timescale-specific ICs. Therefore, we hypothesized that seg-
mentation based on rest, walk, and grooming would reveal
both common and behavior-specific ICs. Behavior-specific maps
were generated by performing ICA on datasets that consisted
of only rest, walking, or grooming (Fig. 6A). ICs in the behavior-
specific maps were matched with those in the template map (see
section “Materials and methods”; Fig. 6B right). Each behavior
contributed to the database used to construct the template
map with rest providing the largest contribution (36.2 ± 15.4%)
followed by walk (9.02 ± 10.8%) and groom (5.7 ± 4.6%; n = 4–6).
As only pure behavior bouts were considered for the behavioral
analysis, we excluded data that did not meet the criteria for
specific behaviors or the duration requirements (see section
“Materials and methods”). Concerning the question of whether
the behavior with the largest contribution to the database has the
most matches with the template ICs, the results show this not to
be true. Despite the 4-fold ratio of rest to walk and 6-fold ratio of
rest to groom, the three behaviors shared near equal numbers

of ICs with the template map, with rest sharing: 64.5 ± 9.5%,
walk sharing: 61.8 ± 13.6% and groom sharing: 59.6 ± 13.9%.
Similarly, the number of behavior-specific ICs is not obviously
related to the relative proportion of the behavior of interest, as
the percentage of behavior-specific ICs was similar for walking
(33.06 ± 15.56%) and grooming (32.72 ± 13.93%), even though the
duration of walking was 1.5 times longer than groom. Rest trended
toward having fewer behavior-specific ICs, though this was not
statistically significant (16.62 ± 6.4%; Kruskal–Wallis ANOVA
P = 0.07). As with the template matching ICs, behavior-specific
ICs occur throughout the cortex and each behavior exhibits a
different set of unique ICs, highlighting the behavior-dependent
nature of cortical functional segmentation. Interestingly, when
examining ICs prior to separation (see section “Materials and
methods”), we find that fewer than 10% of non-artifact template
ICs consist of multiple regions (6.25 ± 3.7%; n = 6). However, when
multiple regions are identified, they are highly likely to occur
together when examining the data in a behavior-specific manner
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Fig. 3. Template ICs are revealed to have a variable temporal presence in brain function as timescales shorten. A) Example heat maps from two mice
showing the percentage occurrence of template ICs as a function of time at four progressively shorter timescales. B) Average percentage occurrence of
template ICs across animals at each timescale (Friedman ANOVA P < 0.0001; post-hoc Dunn’s comparisons (all) P < 0.0001). Scale bars: 1 mm.

(co-occurrence: 81 ± 20.7%; unitary occurrence: 19 ± 20.7%; n = 5).
In some cases, where multiregion template ICs were close
together, they appeared as a single large region during a behavior
(note that these instances were still identified as co-occurring
regions). These data suggest that when multiregion ICs occur,
they do so together irrespective of behavior engagement and
reveal that some ICs are strongly functionally coupled.

Finding that both template and behavior-specific ICs partici-
pate in cortical processing during behavior, we sought to deter-
mine how versatile template ICs are with respect to specific
behaviors compared to the full dataset irrespective of behavior.
To do this, Jaccard indices were calculated between all pairs of ICs
in the template map and each behavior map. If a template IC had
a matching IC in the behavior-specific map, it suggested that the
IC participates in that behavior. ICs in the template map were then
color-coded according to which behavior or combination of behav-
iors they were engaged in (Fig. 7). Results show that a majority of
template ICs are engaged in multiple behaviors with 39.2 ± 10.1%
in all 3, 7.2 ± 3.6% in rest and walk, 12.1 ± 11.5% in groom and rest,
and 5.9 ± 4.1% in groom and walk. Fewer template ICs are specific
to a single behavior with 12.4 ± 10.5% in rest, 13.8 ± 10.9% in walk,
and 6.9 ± 3.2% in groom. Lastly, 13.2 ± 5.5% of template ICs are not
engaged during any of the behaviors analyzed, suggesting these
ICs are active during different stimuli and/or behaviors. The high
rate of IC engagement across behaviors implies that a core set of
regions are frequently used to encode behavior.

Finally, we investigated which behavior-specific ICs are shared
across behaviors. As with previous results, we hypothesized that
ICs would be both shared between and unique to specific behav-
iors. When comparing the resting behavior map to both walking
and grooming behavior maps, we find that ∼50% of ICs are shared
between behaviors, although different combinations of ICs are
observed in the individual behaviors (Fig. 8A). Similarly, when

comparing the walking or grooming specific maps to the other
behaviors, we find both shared and unique ICs; which changed
depending on the behavior observed (Fig. 8B and C). As shown
in for the example mouse in Fig. 8A–Cii, comparing the segmen-
tation between behaviors reveals a set of shared ICs as well as
unique ICs. A similar finding was observed across all mice tested
(Fig. 8A–Ciii). The shared ICs between behaviors range from 48.9
to 64.8% and unique ICs with a single behavior range from 35.2
to 51.1% (Table 1). These data suggest that a core map of ICs
participates in generating all behaviors and is reconfigured on
an as-needed basis. These data also suggest that although many
of the same regions are engaged across behaviors, new cortical
areas are integrated in a behavior-specific manner, increasing
computational flexibility.

As behavior-specific segmentation revealed both common
and unique ICs for each behavior, we asked whether behavior-
specific ICs were more similar within a specific behavior than
across behaviors. We hypothesized that behavior-specific ICs
would be more similar between time-windows of the same
behavior as the behavioral output is qualitatively similar. To
test this hypothesis, we divided each behavior into two roughly
equal time-windows and obtained ICA segmentations on the two
windows separately. Using the Jaccard index, we compared how
well the ICs from two windows consisting of the same behavior
match with each other (intra-behavior comparison) or the other
present behaviors (inter-behavior comparison). As shown in
Supplementary Fig. S4 (see online supplementary material for
a color version of this figure), the intra-behavior comparisons
have a significantly higher number of matching ICs than the
inter-behavior comparisons (% shared ICs (mean ± SD): intra-
behavior = 64.85 ± 10.5%; n = 16; inter-behavior = 48.4 ± 13.7%;
n = 56; Mann–Whitney test P < 0.0001). These results show that
distinct behaviors engage the same subsets of functional regions.

https://academic.oup.com/cercor/article-lookup/doi/10.1093/cercor/bhac523#supplementary-data
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Fig. 4. Cortex-wide maps cover similar areas across timescales. A) Brain maps from all six experimental subjects showing cumulative cortical coverage
of template matching ICs across all time-windows within each of the four timescales examined (color scale shows the number of timescales where an
area of cortex was covered by a spatial IC). Scale bar: 1 mm. B) Jaccard index matrices for each of the six experimental subjects showing a high degree
of overlapping cortical coverage between timescales (off-diagonal comparisons).

Table 1. Summary of shared and behavior-specific ICs across subjects.

Reference map Rest ICs shared
(%)

Walk ICs shared
(%)

Groom ICs shared
(%)

Rest specific ICs
(%)

Walk specific ICs
(%)

Groom specific
ICs (%)

Rest N/A 58.5 ± 10.3 64.8 ± 6.9 N/A 51.1 ± 11.7 44.4 ± 11
Walk 49 ± 11.7 N/A 52.7 ± 13.5 41.8 ± 10.2 N/A 46 ± 9.6
Groom 55.6 ± 11 54 ± 9.6 N/A 35.2 ± 6.9 47.3 ± 13.5 N/A

Using behavior-specific maps as the reference map shows approximately half of ICs are shared across behaviors whereas approximately half are
behavior-specific. Data shown are mean ± SD. Percentage shared and unique ICs for each behavior map were compared using Mann–Whitney (MW) tests. In all
MW tests P > 0.05.

Discussion
To understand the neural processes measured with cortex-wide
mesoscale Ca2+ imaging we used spatial ICA, a blind-source
method that segments the imaged area into functional regions
with minimal overlap based on statistically independent neuronal
Ca2+ activity. To gain insight into the dynamics and relevance
of the segmentation, we partitioned the data into a wide range
of timescales and discrete behaviors, including rest, walk, and
grooming. The key findings are that a common set of ICs are
stable, being present across a wide range of timescales, ranging
from 30 s to days. In addition to the common ICs in the template,
unique ICs emerge at the shorter duration timescales. Segmenting
the data by behavior reveals both common and behavior-specific

ICs, with unique combinations characterizing rest, spontaneous
locomotion, and grooming. Together, these findings show that the
functional segmentation within the cerebral cortex is spatially
stable, but also that neural ensembles possess the ability to form
and dissolve as needed, for example, during specific behaviors.

ICs are stable across timescales
The observation that the template ICs are present at the shorter
timescales and cover the same area of the dorsal cerebral cor-
tex has several implications. First, the template ICs represent
functional regions of the cortex that are consistently engaged
in these head-fixed, behaving mice. This stability of the tem-
plate ICs over timescales suggests that different behaviors use
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Fig. 5. Timescale-specific ICA solutions produce ICs that are unique from the template map. A) Example timescale-specific IC maps at each of the
4 timescales tested (top) and heat maps of the percentage occurrence for timescale-specific ICs for one mouse (bottom). Scale bar: 1 mm. B) As the
timescale shortens, fewer timescale-specific ICs are produced and are also less frequently observed over time (Kruskal–Wallis ANOVA P < 0.0001; Dunn’s
post-hoc comparisons; Minutes-30 s P > 0.99; P < 0.05 all others).

the same functional groups of neurons (see below). Second, the
probability maps of the template ICs obtained across the day
to 30 s timescales may be analogous to the default mode and
behavioral networks observed with human functional imaging
(Kiviniemi et al. 2011; Lu et al. 2012; Stafford et al. 2014). The ICs
with the highest probabilities across timescales are the primary
motor and somatosensory cortices, followed by retrosplenial and
secondary motor area, all regions which would be expected to be
engaged during the behaviors observed. The highest occurrence
rates for ICs in the somatomotor regions are consistent with the
observation that ongoing cortical activity is driven by the diverse
array of ongoing spontaneous motor activity in head-fixed mice
(Gilad et al. 2018; Musall et al. 2019; Salkoff et al. 2020; Ren and
Komiyama 2021).

Conversely, we postulate that the template ICs with lower
occurrence rates represent cortical regions involved in other
behaviors, variations on the more common behaviors, responses
to sensory stimuli, or changes in brain states. At rest the mouse
continues to engage in other behaviors that were not quantified
here, such as sniffing, whisking, and/or tail movements, which
can have a large effect on the optical responses as shown
by Musall et al. (2019). Also, there are likely intrinsic brain
states that could engage ICs that were not found in specific
behaviors. This large repertoire of movements and behaviors
modulate neural activity and may account for time-dependent
engagement of template ICs (Drew et al. 2019; Musall et al. 2019;
Salkoff et al. 2020).

Timescale-specific ICs reveal flexibility in
cortical segmentation
Although we show that ICA performed over large data sets yields
a stable functional segmentation, we also observed timescale-
specific ICs that were relatively common at the day, trial, and
even minute timescales. Timescale-specific ICs are of interest
as they are transient and reflect subtle but important changes
in the spatial organization of activity, which are masked when
analyzing longer time periods. This finding mirrors similar results
on simulated and human electroencephalography and functional
magnetic resonance imaging data using a sliding window ICA
approach, showing that ICA source maps become more dissimilar
as the timespan between segmentations increases (Jung et al.
2001; Esposito et al. 2003; Kiviniemi et al. 2011). These studies, in
addition to the present results, show that cortical segmentation is
flexible over time. With recent interest in inter-individual IC map
variability and its effect on functional connectivity mapping, the
dynamic maps generated at smaller timescales may prove crucial
for accurate activity mapping (Bijsterbosch et al. 2019; Bergmann
et al. 2020).

Intriguingly, the timescale-specific ICs were located in the
secondary motor areas, posterior parietal, and visual processing
areas. These more anterior and posterior placed ICs tend to
surround the somatomotor regions defined by the template ICs
that emerge most frequently. One possibility is that these tran-
siently activated regions reconfigure the core network for specific
processes. The anterior motor areas covered by timescale-specific
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Fig. 6. ICA segmentation by behavior produces both template and behavior-specific ICs. A) Examples of the template map (left) and behavior-specific
IC maps for resting, walking, and grooming. B) Scatter plot showing the percentage of template ICs that have matches in the behavior-specific IC maps
(left) and examples of ICs in each behavior-specific map matching the set of template ICs (right). C) Scatter plot showing the percentage of unique ICs
generated as part of the behavior-specific maps (left) and examples of behavior-specific ICs generated during each behavior (right). Scale bar: 1 mm.

ICs are involved in planning and decision making (Svoboda and Li
2018; Inagaki et al. 2022; Xu et al. 2022; Yin et al. 2022). The visual
areas and posterior parietal regions are critical for both vision
and sensory-motor integration (Beloozerova and Sirota 2003;
Freedman and Ibos 2018; Steinmetz et al. 2019; Wal et al. 2021).
These processes are likely subject to changes in the behavioral
context, as opposed to the somatomotor regions that are covered
with high probability by the template ICs and are involved in more
stereotypical aspects of behaviors (Xu et al. 2022).

Behavior-specific maps are a combination of
shared and unique ICs
In the initial analysis, we investigated the temporal dynamics
of the functional modules in a behaviorally agnostic manner.
The observation of timescale-specific ICs suggests that cerebral
cortical segmentation dynamically engages different neuronal
ensembles. To test this concept, we partitioned the data into three
specific behaviors: rest, walk, and groom. We observed that a
majority of the template ICs are present in all three behaviors.
However, the same template ICs are not found in each behavior,
instead each behavior engages a subset of the template ICs.
Furthermore, during rest, walk and groom, new ICs are extracted.
Therefore, each behavior is characterized by a different functional
segmentation. The implications are that the cerebral cortex uses
both common and unique regions to encode and execute the full
repertoire of behaviors.

ICA provides robust functional segmentation
As outlined in the Introduction, the development of wide-
field imaging techniques represents a major advance for

characterizing cortex-wide interactions during behavior but
comes with the major challenge of massively high dimensional
datasets. Saxena and colleagues recently outlined several
desiderata for the analysis of wide-field imaging (Saxena et al.
2020). These include: (i) denoising and compression, (ii) avoiding
nonphysiological constraints such as the orthogonality required
by SVD, (iii) decomposition into interpretable signals defined by
well-defined regions, (iv) flexibility to adapt to differences across
animals, (v) is comparable across animals, and (vi) reproducibility.
Overall, we demonstrate that ICA meets, if not exceeds, each
of these criteria for functional segmentation of wide-field Ca2+

imaging data.
The resulting ICA yielded a template map with on average 33

ICs across mice. These ICs were obtained from large data sets
of mesoscale Ca2+ imaging data after denoising and compres-
sion. As a blind-source separation technique, ICA decomposes a
complex, multichannel signal into a linear set of independent
components, with the goal of identifying the underlying sources
and their time courses. ICA has many compelling features and
had been suggested to be a rigorous method of decomposing
time series data (Friston 1998). Depending on the implemen-
tation, the components can be either temporal or spatial. As
used in this study, spatial ICA finds the spatial sources of the
Ca2+ fluorescence in the cerebral cortex based on high order
statistics and non-Gaussian features of the data. Although similar
to principal component analysis (PCA) or singular value decom-
position (SVD), the components obtained using PCA or SVD are
orthogonal. The orthogonality of the linear bases derived from
PCA and SVD has always been questioned as problematic, if not
unrealistic, in biological systems. However, in ICA the components
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Fig. 7. Template map ICs are engaged in a behaviorally specific manner. A) Template IC maps for four animals with all three behaviors showing the
behavior or combination of behaviors in which each IC participates. Each color corresponds to a specific behavior or combination of behaviors. B) Similar
to A, template IC maps for two animals in which grooming behavior was not present. C) Scatter plot showing the percentage of template ICs involved
in each behavior or combination of behaviors. The only significant difference in % ICs was ALL versus G/W (Kruskal–Wallis ANOVA P = 0.01; post-hoc
Dunn’s comparisons G/W-ALL P = 0.01, all others P > 0.05). NM—No match, R—Rest, W—Walk, G—Groom, R/W—Rest and walk, G/R—Groom and rest,
G/W—Groom and walk, ALL—All behaviors. Scale bar: 1 mm.

are both nonorthogonal and uncorrelated. Therefore, ICA is a
strong approach to identify the underlying sources in the data and
avoids nonphysiological constraints such as parcellation based on
orthogonality.

As ICA is a data-driven approach without any assumptions
about the spatial structure, ICA can adapt to most differences
across animals. This would include both local or generalized
lesions, pathology, developmental differences, and experimental
localizations. In each animal, a unique set of ICs are determined,
based on the underlying neuronal activity. The ICs are well-
defined regions, typically single cortical regions. When an IC is
composed of two noncontiguous regions, they are most often
a pair of homotopic cortical areas. This is consistent with the

activity in the two areas being tightly coupled via the corpus
callosum.

Assessing the reproducibility across timescales and behaviors
was one of the main foci of the present study. We found remark-
able reproducibility as highly similar spatial ICs were extracted
over timescales ranging from hours to 30 second subsections and
across recording sessions that spanned, on average, 19 days. While
clearly meeting the desired reproducibility, the spatial stability
observed implies that the ICs operate as functional units over
both shorter and longer duration time scales. When all of these
properties are taken together, spatial ICA provides a robust cor-
tical segmentation to investigate the network structure under a
variety of conditions.
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Fig. 8. Behavior-specific ICA segmentations generate both shared and unique ICs. Ai–Ci) Example spatial ICA domains obtained by combining data from
resting, walking, or grooming behaviors which is used as reference map for comparing between behaviors. Aii–Cii) example maps of matching (top)
and unique (bottom) ICs when comparing all behaviors. Aiii–Ciii) Scatter plots showing the percentage of ICs matching between behaviors (top) and
percentage of ICs unique from the reference behavior (bottom). Scale bars: 1 mm.

Limitations of ICA and comparison to alternative
segmentation methods
Although we have chosen to utilize spatial ICA to functionally seg-
ment our Ca2+ imaging data; other methods exist. These include
atlas-based segmentation and manual region of interest (ROI)-
based segmentation (Vanni and Murphy 2014; Busche et al. 2015;
Wang et al. 2020). Many users of atlas-based segmentation have
adopted the Allen Common Coordinate Framework (CCFv3) that
was created using multiple data types (Wang et al. 2020). The wide

adoption and acceptance of the CCF is an advantage that facil-
itates comparisons between experimental subjects and to other
work. However, solely using the CCF for segmentation assumes
no individual variability between experimental subjects and that
the segmentation remains static over time, for example with
different behaviors or with disease. Similar criticisms can apply
to ROI-based segmentation methods, with the addition that ROI
choices may be ad-hoc and not necessarily based on an accepted
methodology.



Angela K. Nietz et al. | 6555

Seed-based correlation methods have been used in conjunction
with functional atlases (such as the CCF) and stimulus-based
mapping (Mohajerani et al. 2013; Vanni and Murphy 2014; Xiao
et al. 2017). In addition, clustering algorithms can aid in the sep-
aration and grouping of Ca2+ and other types of optical imaging
data (Dombeck et al. 2009; White et al. 2011; Mölter et al. 2018;
Pinto et al. 2019; Barson et al. 2020; Lake et al. 2020; Nagayama
et al. 2022). There remain multiple ways to define and group the
clusters that make comparison between studies challenging. As
with almost all techniques, significance and threshold setting
vary considerably. Furthermore, they also often require the use
of functional atlases to aid in interpretation and can be experi-
mentally time consuming.

Principal component analysis (PCA) and singular value decom-
position (SVD) are blind-source separation (BSS) methods that
are easy to use and provide a linear decomposition into the
major components in the data (Musall et al. 2019; Kondo and
Matsuzaki 2021; Peters et al. 2021). However, these methods gener-
ate orthogonal components and the components may span mul-
tiple brain areas. Although some studies suggest that the brain
encodes some types of information in an orthogonal manner, it
is unclear how generalizable are these findings (Chang and Tsao
2017; Gennari et al. 2021). As such, orthogonal components may
produce nonphysiological results. In addition, SVD/PCA compo-
nents often span multiple brain regions that leads to difficulty
with interpretation. Both spatial ICA and nonnegative matrix
factorization (NMF) are two additional BSS methods that do not
assume orthogonality and can be used to decompose Ca2+ imag-
ing data. One type of NMF, Localized semi-Nonnegative Matrix
Factorization (LocaNMF; Saxena et al. 2020) is a form of multino-
mial principal component analysis that does not require orthog-
onality and constrains the components to the CCF, which as
discussed above has some disadvantages. Furthermore, both ICA
and NMF make minimal a priori assumptions about the data. ICA
makes the assumption of maximal independence between com-
ponents and NMF assumes the data are nonnegative. Although all
functional segmentation methods have unique advantages and
disadvantages, we chose to use spatial ICA due to individualized
segmentations and the ability to look at reproducibility of seg-
mentations over time.

Several authors have pointed out some of the limitations of ICA.
Although we, and others, have emphasized that the functional
segmentation derived from ICA is data-driven, one concern was
that the approach is not hypothesis driven or well-suited for
statistical modeling (Friston 1998). However, the ICs can certainly
be used to test hypotheses of interest (McKeown and Sejnowski
1998).

Each IC has a value across the entire space and, therefore, a
threshold must be set to define the spatial boundaries (Sui et al.
2009; West et al. 2022). This typically is done on the z-score of the
ICs. Here we used a z-score threshold of greater than or less than
2.5 SD, and the Jaccard index shows this yields spatial ICs with
almost no overlap. Using a conservative threshold may be prob-
lematic, yielding a segmentation into components that does not
capture the functional integration among brain regions (Friston
1998). Relaxing the z-score threshold, would produce larger ICs,
with more spatial overlap. However, as we observed previously
using JADE, and as shown in Supplementary Fig. S2B (see online
supplementary material for a color version of this figure), the
spatial profile of cortical ICs are characterized by either one or
two, very steep maxima (West et al. 2022). A widely accepted
approach to setting the threshold remains to be determined.

The spatial ICA segmentation is unique for each animal and
the ICs vary in location across the cortex, as would be expected for
an activity-based methodology. This poses challenges to averaging
results across animals. Analysis across animals is easier when
using a fixed segmentation. In human imaging, this has been
addressed by using group-ICA methods like temporal concate-
nation group-ICA and probabilistic ICA. However, these group-
wise techniques have not been used for wide-field Ca2+ imaging
(Calhoun et al. 2001; Hui et al. 2011; Cramer et al. 2019). As
many ICA algorithms are agnostic to data type, group-ICA of wide-
field Ca2+ imaging data is a potential solution to comparing ICs
across mice.

Implications for cerebral cortical processing and
network dynamics
As we show using ICA for wide-field Ca2+ imaging, the cerebral
cortex has the capacity for both stable and dynamic segmen-
tation. This finding carries major implications for network ana-
lytics like functional connectivity (FC), as generating functional
networks on large datasets (e.g. using template ICs) would not
capture either the temporal or behavior-specific connectivity. Fur-
thermore, changing functional segmentation in time and with
behavior may reveal unique functional networks engaging in cor-
tical processing, as temporal variability of template and unique
ICs suggests that the network is reconfigured on an as-needed
basis. The ability to selectively utilize brain regions may allow for
more efficient information processing.

The finding that template ICs vary with time and that new seg-
mentations emerge and dissolve with different behaviors allows
for a larger dynamic range of neural network possibilities than
what would be dictated by anatomy alone. Furthermore, this
spatial diversification of information coding would make cortical
networks both stable and resistant to failure by creating redun-
dant pathways for processing (Huber et al. 2012; Clopath et al.
2017). This temporal and structural variability shows similarity
to computational neural networks that are most optimal when
operating on a semi-stable basis (Rössert et al. 2015; Hochstetter
et al. 2021). Similar properties have also been observed at the
single cell level in neural ensembles (Huber et al. 2012; Lütcke
et al. 2013; Pérez-Ortega et al. 2021). Together, these findings
suggest that this property of microscale flexibility, coupled with
macroscale stability, exists across multiple levels of processing.
This dynamic stability allows the brain to distinguish environ-
mental or behavioral differences while still retaining information
as learned behaviors or contexts. Our timescale- and behavior-
specific ICA reveals that while the cortex possesses a remarkable
stability in functional organization, it is also capable of a high
level of flexibility in functional organization, depending on the
task at hand.
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