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Abstract

Expression quantitative trait loci (eQTLs) have been touted as the missing piece that can bridge the gap between genetic
variants and phenotypes. Over the past decade, we have witnessed a sharp rise of effort in the identification and application
of eQTLs. The successful application of eQTLs relies heavily on their reproducibility. The current eQTL databases such as
Genotype-Tissue Expression (GTEx) were populated primarily with eQTLs deriving from germline single nucleotide
polymorphisms and normal tissue gene expression. The novel scenarios that employ eQTL models for prediction purposes
often involve disease phenotypes characterized by altered gene expressions. To evaluate eQTL reproducibility across diverse
data sources and the effect of disease-specific gene expression alteration on eQTL identification, we conducted an eQTL
study using 5178 samples from The Cancer Genome Atlas (TCGA). We found that the reproducibility of eQTLs between
normal and tumor tissues was low in terms of the number of shared eQTLs. However, among the shared eQTLs, the effect
directions were generally concordant. This suggests that the source of the gene expression (normal or tumor tissue) has a
strong effect on the detectable eQTLs and the effect direction of the eQTLs. Additional analyses demonstrated good
directional concordance of eQTLs between GTEx and TCGA. Furthermore, we found that multi-tissue eQTLs may exert
opposite effects across multiple tissue types. In summary, our results suggest that eQTL prediction models need to carefully
address tissue and disease dependency of eQTLs. Tissue–disease-specific eQTL databases can afford more accurate
prediction models for future studies.
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Introduction

Gene expression and single nucleotide polymorphisms (SNPs)
are two of the most studied genomic features. High-throughput

gene expression profiling has been commonly utilized to under-
stand the human transcriptome and its connection with disease.
As of October 2017, gene expression data from 2 234 695 samples
of 4348 studies had been deposited into the Gene Expression
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Omnibus [1]. Genotyping technology has enabled mass screen-
ing for SNPs whose allele frequencies are statistically associated
with disease susceptibility. The NHGRI-EBI Catalog of published
Genome-Wide Association Studies (GWAS catalog) in October
2017 [2] has curated 58 993 SNP disease associations from 2724
GWAS studies.

One of the major criticisms of GWAS studies is that, thus
far, the identified SNPs have yet to generate any clinical use-
ful utility for treatment or prognosis. It is difficult to establish
biological relevance for GWAS SNPs because the majority of the
SNPs do not reside in protein-coding genes. For example, in
the GWAS catalog, only ∼3.6% of the 40525 unique SNPs are
located in protein-coding regions while ∼96.4% lie in noncoding
regions (equally proportioned between the intergenic regions
and intronic regions) [3, 4]. One theory that attempts to explain
GWAS SNPs’ effect on disease risk is through long-range regula-
tion of gene expression [5], also known as expression quantita-
tive trait loci (eQTLs).

An eQTL is defined as the regulatory association between
a genomic locus (such as an SNP) and expression of a gene.
eQTLs are commonly divided into two categories according to
the distance between an SNP and the coupled gene. A ‘cis-eQTL’
denotes an eQTL where the SNP resides within the gene or the
flanking regions of the gene. ‘Trans-eQTLs’, on the other hand,
are eQTLs with the SNP lying beyond the flanking boundaries
(commonly 106 nt) of the gene.

Research on eQTLs has enjoyed increasing popularity over
the past few years, with the Genotype-Tissue Expression
(GTEx) project spearheading the efforts. GTEx collects and
analyzes multiple human tissues from donors who are also
densely genotyped to assess genome-wide genetic variations
and transcriptome-wide gene expression. As a result, GTEx
yields a comprehensive eQTL database consisting of 19 582 739
eQTLs deriving from 44 human tissue types [6]. Because of the
enormous combinatorial complexity, GTEx as well as many
genome-wide eQTL studies typically focuses on cis-eQTLs
rather than trans-eQTLs. To date, the GTEx eQTL resource
has been incorporated as the backbone of gene expression
imputation models such as PrediXcan [7], which exploit the
eQTL information to impute gene expression from SNP data and
thereby prioritize genes implicated in the disease etiology [7].
Nevertheless, certain aspects of GTEx design remain open for
discussion. For example, GTEx purposefully restricts itself to
healthy human subjects, but the applications of GTEx eQTL data
frequently extend to disease scenarios. An interesting question
emerges as to how consistently eQTLs can be inferred from
distinct tissue types, particularly, in normal samples versus in
cancer samples.

The Cancer Genome Atlas (TCGA) is a completed consortium
project that collected multiple layers of omics data from hun-
dreds to thousands of patients of various cancer types. Unlike
GTEx, which recruits exclusively healthy subjects, TCGA accrued
both normal and tumor tissues from cancer patients. Given
the availability of both SNP and gene expression data from
TCGA, we carried out a study to answer three major questions
unsolvable by GTEx. First, we thoroughly investigated the recur-
rence of eQTLs and the concordance of shared eQTLs among
diverse combinations of genotyping and expression profiling
sources. Secondly, we assessed the repeatability of GTEx eQTLs
in TCGA data. Thirdly, we studied the degree of eQTLs’ tis-
sue specificity across a dozen TCGA and 44 GTEx tissue types.
Besides, we also investigated how the quantity and consistency
of detectable eQTLs are influenced by sample size and statistical
stringency, advising on practical ways to improve robustness in

future eQTL detection. Our results help clarify important ques-
tions that preclude more confident and wider applications of
GTEx eQTL data.

Methods
Pre-computed eQTLs associated with 44 tissue types were
downloaded from the GTEx consortium. The TCGA SNP and
gene expression data of 12 cancer types [breast invasive
carcinoma (BRCA), colon adenocarcinoma (COAD), head and
neck squamous cell carcinoma (HNSC), liver hepatocellular
carcinoma (LIHC), lung adenocarcinoma (LUAD), lung squamous
cell carcinoma (LUSC), ovarian serous cystadenocarcinoma
(OV), pancreatic adenocarcinoma (PAAD), prostate adenocar-
cinoma (PRAD), rectum adenocarcinoma (READ), skin cutaneous
melanoma (SKCM) and stomach adenocarcinoma (STAD)] were
downloaded from the Genomic Data Commons. The genotyping
data went through rigorous quality control as described in our
previous publication [8]. Eight tissue types match between TCGA
and GTEx (breast, colon, liver, lung, ovary, pancreas, prostate
and stomach). TCGA sample size varies by cancer type, and
not all cancer types have normal samples paired with tumor
samples. Generally, every subject has at least one tumor sample,
while only ∼10% subjects have normal samples. Our tumor-
normal comparative analyses required strictly paired normal
and tumor samples, hence being restricted to certain subsets
of TCGA samples. In total, our study incorporated TCGA data of
5178 samples (tumor and normal) from 4761 cancer subjects. Of
the 12 cancer types, BRCA has the most samples making it the
most ideal data set for in-depth study of certain questions.

The TCGA transcriptome data were normalized in the form
of Reads Per Kilobase Million (RPKM) [9], containing 20 153
genes per sample. The TCGA SNP data were generated with the
Affymetrix Genome-Wide Human SNP Array 6.0 that contains
934 968 SNPs. Matrix eQTL [10] was employed to compute eQTLs
from TCGA data. By default, Matrix eQTL uses P < 0.01 as the
eQTL output threshold and also provides the false discovery rate
(FDR) for each outputted eQTL. In GTEx, all reported eQTLs were
selected by FDR < 0.05. Thus, we conducted our investigations
at two thresholds: P < 0.01 and FDR < 0.05. To curtail influence
from outlier SNPs, we excluded SNPs with <5% minor allele
frequency (MAF). Because GTEx data set contains cis-eQTL only,
we focused our analysis exclusively on cis-eQTLs, scrutinizing
the 106 nt upstream and downstream from the gene.

Technically, an eQTL is composed of three elements: the SNP
location, the effect allele and the affected gene. An effect allele
is the allele that was used during the computation of eQTL.
Switching the allele within an eQTL reverts the direction of
association. We took special precaution to ensure that each pair
of eQTLs in comparative analyses has the same effect allele.

Somatic mutations are thought to lie at the heart of early
tumorigenesis, whereas altered gene expression plays a func-
tional role in phenotypic presentation [11]. Both somatic muta-
tions and gene expression alterations have been extensively
observed in human cancer. We hypothesized that genotype alter-
ation and gene expression dysregulation may translate to varia-
tion of eQTLs detected in the tumor samples than in the normal
samples. This hypothesis was tested with TCGA data.

In TCGA, genomic data were collected from multiple sources
(DNA: blood, normal tissue and tumor tissue; RNA: normal tissue
and tumor tissue). This allows a number of combinations for
eQTL computation. It is expected that the genotypes could have
minor differences among these three sources due to somatic
mutations and noise [12]. The detectable difference between
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SNPs from tumor and normal tissues was limited to homozygous
versus heterozygous difference, because genotyping arrays were
limited to the detection of two predefined alleles. The majority
of the publicly available genotyping data were generated from
blood. To circumvent the noise caused by somatic mutations in
tumor tissues, we required that the pair of eQTLs in comparison
must have the same two alleles in the testing populations. For
completeness, six types of cis-eQTLs were computed from the
TCGA data:

(i) eQTL1: normal tissue SNP–normal tissue gene expression
(ii) eQTL2: normal tissue SNP–tumor tissue gene expression

(iii) eQTL3: tumor tissue SNP–tumor tissue gene expression
(vi) eQTL4: germline blood SNP–normal tissue gene expression
(v) eQTL5: germline blood SNP–tumor tissue gene expression

(vi) eQTL6: tumor tissue SNP–normal tissue gene expression.

We used various combinations of these six types of eQTLs
throughput the analyses depending on the goal and sample
size requirement. eQTL6 is a scenario that is highly unlikely to
happen in practical studies. Thus, it was only used in the tumor
versus normal comparison for proof-of-concept purpose. During
our comparative analysis of shared eQTLs between two data sets,
we consider the two eQTLs to be consistent if the effects (beta)
have same direction; otherwise, we consider the two eQTLs to
be in conflict. The overlap percentage between any two eQTL
types is defined as the number of eQTL detected by both eQTL
types divided by the smaller set of eQTL detected by the these
two types of eQTLs.

Results
Number of eQTL detected

Matrix eQTL identified tens to hundreds of thousands of eQTLs
within each cancer type in TCGA (Table 1). The sample size was
clearly positively correlated to the number of eQTL detected
(Figure S1). Using P < 0.01 as the detection threshold, a Spearman
correlation of 0.78 was observed between the number of detected
eQTLs and the sample size; when using FDR < 0.05 as the thresh-
old, a Spearman correlation of 0.89 was observed. No leveling-
off effect can be observed for the number of eQTL detected.
The total possible SNP-gene pairs in TCGA data is around 18.8
billion, which indicates that further increasing the sample size
will likely continue to increase the number of eQTLs detected. To
reach saturation of detectable eQTL, substantial larger data sets
are required.

Comparative analysis: tumor versus normal

Across the 12 TCGA cancers, we identified ∼3% genotype dif-
ference between germline blood and tumor samples [8]. This
hypothesis was tested by comparing the quantity and effect
directions of distinct eQTL sets: eQTL1, eQTL2, eQTL3 and eQTL6
(see Methods for definitions). eQTL4 and eQTL5 were not used
in the comparative analysis due to limited number of paired
samples between germline blood SNP and normal tissue gene
expression. Thresholds of both P < 0.01 and FDR < 0.05 were
adopted for deriving finite eQTL sets.

The eQTL comparison results for paired tumor and normal
tissues in eight types of cancers in TCGA were summarized in
Figure 1 and Table S1. At P < 0.01 (Figure 1A), one observation
that immediately stood out was that even though similar num-
bers of eQTLs were identified for all four definitions of eQTL
using exactly the same samples, the overlap between them had a

wide range depending on the source of SNP and gene expression
used. Across the eight cancer types, between eQTL1 (normal
tissue SNP—normal tissue gene expression) and eQTL2 (normal
tissue SNP—tumor tissue gene expression), the average overlap
is 4.54% (range: 2.47–7.39%); between eQTL1 and eQTL3 (tumor
tissue SNP—tumor tissue gene expression), the average overlap
is 4.26% (range: 2.34–6.97%); between eQTL2 and eQTL3, the aver-
age overlap is 66.90% (range: 58.68–79.74%); and between eQTL1
and eQTL6 (tumor tissue SNP—normal tissue gene expression),
the average overlap is 72.63% (range: 64.33–82.21%). Clearly, the
gene expression difference between the paired tumor and nor-
mal tissues played a larger role in the observed eQTLs than the
SNP differences did. When the source of the gene expression
differs, regardless of the source of the SNPs, the overlap between
the two sets of eQTLs remained low. When the source of the
gene expression was fixed, the overlap between the two sets of
eQTLs was high, regardless of the sources of SNPs. The difference
between eQTL2 versus eQTL3 and eQTL1 versus eQTL6 should be
primarily contributed by the differences of genotypes between
normal and tumor tissues. When using a more stringent thresh-
old of FDR < 0.05 (Figure 1B), the proportion of overlap increased
substantially (Table S1), except for certain cancer types with
smaller sample size that identified no eQTLs with FDR < 0.05.

Furthermore, we computed the inconsistency rate of eQTLs
among the shared eQTLs (Table S1). The inconsistency between
two identical eQTLs was defined by the inconsistency of their
effect directions, not affected by the differences in the effect
magnitude. Across the eight TCGA cancer types, when using
P < 0.01, between eQTL1 and eQTL2, the average inconsistency
rate was 8.53% (range: 0.75–20.2%); between eQTL1 and eQTL3,
the average inconsistency is 8.71% (range: 0.79–20.37%); between
eQTL2 and eQTL3, the average inconsistency is virtually zero
for eQTL2 versus eQTL3 and eQTL1 versus eQTL6 across eight
cancers types. Again, the source of gene expression played a
more substantial role in eQTL inconsistency rate than source
of the SNPs did. When the sources of the gene expression were
the same, there was little to no inconsistency among the shared
eQTLs. By using the stringent threshold of FDR < 0.05, we can
virtually eliminate all of the inconsistent eQTLs. Although the
number of data points were limited to eight, we were still able
to observe positive correlations between the sample size and
shared proportion of eQTLs, and negative correlations between
sample size and the inconsistency rate (Figure 1C–H).

To complement the analyses resulting from only two distinct
statistical thresholds, we investigated eQTL recurrence and con-
cordance at five incremental P-value thresholds (0.01∼10−6). For
all eight cancer types, the shared portion increased and the dis-
cordance decreased as more stringent P-values threshold were
adopted (Figure S2). This informs that by imposing a sufficiently
high statistical cut-off, housekeeping eQTLs may be detected
even though gene expression was from different sources. Using
the largest cohort in TCGA (BRCA), we conducted an eQTL repro-
ducibility test by dividing the data set into five incrementing data
sets. The smallest data set contained 200 subjects; the next data
set was constructed by adding 200 subjects to the previous data
set without altering the previous data set. This was to ensure
that the smaller data set was always a subset of a larger data set.
eQTL5 was selected for this analysis due to its large sample size
and the likeliness that it mimics the potential future application
setting of eQTLs. The number of detected eQTLs increased as
the sample size increased and the percentage of shared eQTLs
increased also as the number of the shared samples increased
between any two sub-data sets in BRCA (Table 2). There were no
inconsistent eQTLs between any pair of subsets.

https://academic.oup.com/bib/advance-article/doi/10.1093/bib/bby108/5194058?preview$=$true#supplementary-data
https://academic.oup.com/bib/advance-article/doi/10.1093/bib/bby108/5194058?preview$=$true#supplementary-data
https://academic.oup.com/bib/advance-article/doi/10.1093/bib/bby108/5194058?preview$=$true#supplementary-data
https://academic.oup.com/bib/advance-article/doi/10.1093/bib/bby108/5194058?preview$=$true#supplementary-data
https://academic.oup.com/bib/advance-article/doi/10.1093/bib/bby108/5194058?preview$=$true#supplementary-data
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Table 1. The number of eQTLs identified

Cancer SNP source RNA source Sample size P < 0.01 FDR < 0.05

BRCA Blood Normal tissue 51 83 601 1206
Normal tissue Normal tissue 92 95 274 3832
Normal tissue Tumor tissue 135 126 921 2361
Blood Tumor tissue 976 492 732 210 861
Tumor tissue Tumor tissue 1093 286 117 123 880

COAD Blood Normal tissue 24 76 541 206
Normal tissue Normal tissue 39 83 472 774
Normal tissue Tumor tissue 50 76 612 286
Blood Tumor tissue 248 149 898 9245
Tumor tissue Tumor tissue 285 156 076 14 614

HNSC Blood Normal tissue 42 73 725 123
Normal tissue Normal tissue 38 74 781 152
Normal tissue Tumor tissue 74 87 819 575
Blood Tumor tissue 485 135 550 14 261
Tumor tissue Tumor tissue 518 133 927 17 046

LIHC Normal tissue Normal tissue 48 93 119 1305
Normal tissue Tumor tissue 80 81 787 448
Blood Tumor tissue 304 157 571 8219
Tumor tissue Tumor tissue 369 185 761 24 751

LUAD Blood Normal tissue 20 75 792 0
Normal tissue Normal tissue 57 89 783 2811
Normal tissue Tumor tissue 175 118 930 2718
Blood Tumor tissue 398 127 974 11 097
Tumor tissue Tumor tissue 514 154 612 18 236

LUSC Blood Normal tissue 29 80 480 525
Normal tissue Normal tissue 50 88 379 1974
Normal tissue Tumor tissue 236 104 463 4593
Blood Tumor tissue 296 107 886 5737
Tumor tissue Tumor tissue 500 121 220 13 573

OV Normal tissue Tumor tissue 59 83 720 298
Blood Tumor tissue 235 124 805 4538
Tumor tissue Tumor tissue 301 122 106 26 408

PAAD Normal tissue Tumor tissue 30 73 608 5
Blood Tumor tissue 147 103 957 4397
Tumor tissue Tumor tissue 178 112 951 5406

PRAD Blood Normal tissue 43 88 715 601
Normal tissue Normal tissue 50 90 019 850
Normal tissue Tumor tissue 113 111 779 3267
Blood Tumor tissue 422 163 626 28 547
Tumor tissue Tumor tissue 494 189 650 38 982

READ Normal tissue Normal tissue 10 52 087 0
Blood Tumor tissue 86 87 203 1043
Tumor tissue Tumor tissue 94 99 735 1969

SKCM Blood Tumor tissue 103 80 831 948
Tumor tissue Tumor tissue 103 94 434 1636

STAD Blood Normal tissue 23 128 906 22
Normal tissue Normal tissue 33 206 675 188
Normal tissue Tumor tissue 86 114 554 358
Blood Tumor tissue 348 143 044 8428
Tumor tissue Tumor tissue 415 139 381 10 758

Furthermore, we attempted to find the causes behind the
eQTL difference between tumor and normal tissues. We hypoth-
esized that eQTLs that are unique to tumor or normal tissues
may be enriched in differentially expressed genes. We tested this
by conducting an enrichment analysis on eQTL’s distribution.
Using BRCA, the cohort with largest sample size as example,
we found no significant enrichment of unique eQTLs in dif-
ferentially expressed genes by Fisher’s exact tests (Figure S3,

normal unique eQTL P = 0.28; tumor unique eQTL P = 0.12).
eQTLs are computed based on linear relationship between SNP
and gene expression. When tumor dysregulates gene expression,
the alteration of the expression may happen in both directions,
which might not be entirely reflected by differential expression
analysis. However, such alterations can substantially affect the
correlation between SNP and gene expression, thus resulting
difference in eQTL detected.

https://academic.oup.com/bib/advance-article/doi/10.1093/bib/bby108/5194058?preview$=$true#supplementary-data
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Figure 1. Results from eQTL analysis using paired normal and tumor samples from TCGA. A. Barplot that denotes the eQTLs detected in TCGA using paired normal and

tumor samples using threshold P < 0.01. B. Barplot that denotes the eQTLs detected in TCGA using paired normal and tumor samples using threshold FDR < 0.05. The

bar plots show that after applying a more stringent detection threshold, the proportion of shared eQTLs between normal and tumor tissues increased substantially.

C and D. Scatter plots show positive Spearman correlation coefficients between sample size and number of shared eQTLs between eQTL pairs when using P < 0.01

as the eQTL detection threshold. E and F. Scatter plots show negative Spearman correlation coefficients between sample size and inconsistency rate between eQTL

pairs when using P < 0.05 as the eQTL detection threshold. G and H. Scatter plots show positive Spearman correlation coefficients between sample size and number of

shared eQTLs between eQTL pairs when using FDR < 0.01 as the eQTL detection threshold. The correlation became more significant after adopting a more stringent

eQTL detection threshold. No scatter plots for sample size versus inconsistency rate under FDR < 005 were produced because all of the inconsistency rates were zeros.

Comparative analysis: TCGA versus GTEx

Except the impractical eQTL6, eQTLs 1–5 defined in TCGA were
compared to GTEx in the eight matched tissue types. The com-
plete results were summarized in Table S2. The numbers of
shared eQTL were low. This may be partially due to the dif-
ference in SNP sets. When using P < 0.01, the average direc-
tional inconsistency rate between TCGA and GTEx in the shared
eQTLs was 1.87% (range: 0.19–6.99%); when using the stringent
threshold of FDR < 0.05, the average inconsistency rate dropped
to 0.65% (range: 0.00–2.28%). These results suggest that repro-
ducibility of eQTLs is high between independent data sets. Some

of the inconsistencies were contributed by errors from genotyp-
ing or sequencing. The effect of these errors can be abated by
imposing a stricter P-value threshold, which can result in higher
reproducibility.

The inconsistency rate was compared (t-test) among tis-
sue types, eQTL types and between the sources of RNA for
the eQTLs with FDR < 0.05 (Figure 2). The type of cancer did
not make significant difference in the consistency compari-
son between TCGA and GTEx (Figure 2A; Table S3). We found
that inconsistency rates for eQTL1 and eQTL4 (Figure 2B), two
types characterized with normal RNA source, were significantly
lower than other types of eQTLs (eQTL1 P = 0.0027, eQTL4

https://academic.oup.com/bib/advance-article/doi/10.1093/bib/bby108/5194058?preview$=$true#supplementary-data
https://academic.oup.com/bib/advance-article/doi/10.1093/bib/bby108/5194058?preview$=$true#supplementary-data
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Table 2. eQTL reproducibility test using BRCA subsets

Set 1 sample size Set 2 sample size Set 1 eQTL Set 2 eQTL Set 1 versus set 2 overlap Inconsistency rate

C200 C400 3899 16 614 3350 0.0%
C200 C600 3899 60 063 3460 0.0%
C200 C800 3899 89 187 3445 0.0%
C400 C600 16 614 60 063 15 002 0.0%
C400 C800 16 614 89 187 14 655 0.0%
C600 C800 60 063 89 187 47 673 0.0%

Figure 2. This figure presents the directional inconsistency rates among the shared eQTLs for TCGA versus GTEx. The detection threshold for eQTL in TCGA was

FDR < 0.05. A. Directional inconsistency rate by cancer type in TCGA versus GTEx. No significantly different directional inconsistency rate was observed among tissue

types. B. Directional inconsistency rate by eQTL type in TCGA versus GTEx. eQTL1 and eQTL4 were found to have significantly less directional inconsistency compared to

other eQTL types. eQTL3 was found to have a significantly higher directional inconsistency rate compared to other eQTL types. These results reflect the fact that when

the source of gene expression is the same as GTEx (normal tissue), the eQTLs are more likely to be concordant. When the source of gene expression was dramatically

different (normal versus tumor tissues), the eQTLs are more likely to be in directional conflict. C. Directional inconsistency rate by source of the gene expression in

TCGA versus GTEx. eQTLs produced from tumor tissues clearly had higher inconsistency rates than eQTLs produced from normal tissues compared to GTEx. This

reiterates the point that the source of gene expression has more impact than the source of SNP for eQTLs.

P < 0.0001) (Figure 2C). The smaller inconsistency rate can be
explained by the fact that eQTL1, eQTL4 and GTEx eQTLs are
all derived from normal samples. Another related observation
was that eQTL sets based on tumor RNA source (eQTL2, eQTL3
and eQTL5) had a greater inconsistency rate compared to the
rest eQTL types based on normal RNA source (eQTL1 and eQTL4)
(P < 0.0001). To further illustrate the confliction, we selected four
example eQTLs that have strong (P < 10−8) but opposite effects
between GTEx and TCGA (Figure S4). These four examples clearly
demonstrated the existence of conflicting findings from inde-
pendent data sets. Fortunately, such paradoxical cases account
for only a minor portion of the shared eQTLs between TCGA and
GTEx.

Tissue specificity and inter-tissue concordance

It is commonly assumed that a portion of the eQTLs is tis-
sue specific, while some might be more ubiquitous. To focus
on the ubiquitous portion of the eQTLs, we performed multi-
tissue analyses at significant thresholds using both P < 0.01 and
FDR < 0.05 for TCGA data (Table 3). In GTEx, 18 593 eQTLs were
observed in all 44 tissue types at FDR < 0.05. In TCGA, eQTL3
and eQTL5 were selected for this analysis due to their large
sample size. When using P < 0.01, we found that 356 and 1098
eQTLs were presented in the 12 cancer types downloaded for
eQTL3 and eQTL5, respectively; when using FDR < 0.05, we found
that 79 and 204 eQTLs were presented in the 12 cancer types

https://academic.oup.com/bib/advance-article/doi/10.1093/bib/bby108/5194058?preview$=$true#supplementary-data
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Table 3. Shared multi-tissue eQTLs between GTEx and TCGA

Number of tissues Multi-tissue eQTLs in GTEx and TCGA Shared multi-tissue eQTLs

GTEx TCGA GTEx eQTLs TCGA eQTL3 TCGA eQTL5 GTEx eQTL3 GTEx eQTL5 eQTL3 eQTL5 GTEx eQTL3 eQTL5

4 2 1 218 661 36 693 23 354 14 581 13 931 18 408 11 924
8 3 673 314 18 081 11 982 8128 7400 10 180 6679
12 4 449 072 10 884 7897 5242 4904 6767 4418
16 5 315 284 7189 5703 3605 3566 4824 3134
20 6 233 277 4864 4183 2521 2605 3339 2133
24 7 174 470 3234 3082 1675 1918 2298 1422
28 8 127 329 2003 2320 1057 1438 1479 887
32 9 91 346 1224 1798 550 1032 919 474
36 10 67 229 683 1015 264 502 478 218
40 11 45 594 289 599 88 340 193 80
44 12 18 593 79 204 19 63 60 19

Figure 3. Analysis results for multi-tissue eQTLs in TCGA and GTEx. eQTL3 and eQTL5 from BRCA in TCGA were selected for this analysis due to their large sample

size. Two eQTL detection thresholds were used (P < 0.01 and FDR < 0.05). A. Histograms display the distribution of multi-tissue eQTLs. The top panel of the histograms

shows that the majority of the eQTLs are tissue specific or were associated in a low number of tissues. The lower panel of the histograms magnifies the right end tails

of distributions in the upper panel. A smoother declining tails can be observed in TCGA data than in GTEx. This might be due to the fact that TCGA has much smaller

number of tissue types. The GTEx also had smooth declining patterns until the right end of the tails. B. This figure depicts the negative relationship between shared

multi-tissue eQTLs and percentage of all available tissue types. The analysis contains 44 tissue types from GTEx and 12 cancer types from TCGA. We roughly split the

number of tissue and cancer types by ∼8–9% interval and computed the shared multi-tissue eQTLs.

downloaded for eQTL3 and eQTL5, respectively. The majority of
the eQTLs are tissue specific for both GTEx and TCGA. The overall
distribution of multi-tissue eQTL can be observed in Figure 3A.
Another trend we observed with this data is that the number
of shared multi-tissue eQTLs is negatively associated with the
number of tissues (Figure 3B).

Next we scrutinized the directional inconsistency for
the multi-tissue eQTLs among tissue types (Figure 4A–F).
The inconsistency rate was measured as the number of
inconsistent tissue divided by the number of tissues that have
found this eQTL. For example, if an eQTL was identified in
10 tissue types with eight positive effects and two negative
effects, then the inconsistency rate would be 20%. We limited
the minimum number of tissues required to define a multi-

tissue eQTL to four. The results showed that multi-tissue eQTLs
that are tissue specific tend to have a higher inconsistency rate,
while eQTLs that are tissue independent tend to have a lower
inconsistency rate. This observation is evidence that tissue-
specific eQTLs are more likely to influence gene expression
more specifically toward that tissue type, while the tissue-
independent eQTLs exert similar directional effect on all tissue
types.

Furthermore, we compared the beta distributions between
TCGA and GTEx (Figure S5), attempting to determine if there is
any directional bias of eQTLs. No substantial directional bias was
detected. We observed 19 highly ubiquitous multi-tissue eQTLs
that were found in all 44 tissue types in GTEx and all 12 cancer
types in TCGA (Table S4).

https://academic.oup.com/bib/advance-article/doi/10.1093/bib/bby108/5194058?preview$=$true#supplementary-data
https://academic.oup.com/bib/advance-article/doi/10.1093/bib/bby108/5194058?preview$=$true#supplementary-data


Cancer-specific expression quantitative loci 345

Figure 4. A multi-tissue eQTL may exert discordant effects across tissues. The inter-tissue discordance was measured as the number of tissues with the minority

effect divided by the number of tissues that have captured this eQTL. For example, if an eQTL was identified in 10 tissue types with eight positive effects and two

negative effects, the inter-tissue discordance would be 2/10 = 20%. A. C. E. Negative relationships between the number in multi-tissue and the inconsistency rate can

be observed. This suggests that tissue-independent eQTLs are likely to have the same effect on all tissue types, and tissue-specific leaning eQTLs are more likely to

exert a contrary effect based on tissue type. The number of dots drawn on the figure issignificantly higher than the number of dots visible due to overlapping of data

points. B. D. F. These histograms depict the inconsistency rates for multi-tissue eQTLs. Multi-tissue eQTLs with zero inconsistency rates were not plotted.

Discussion

The concept of eQTL was first introduced and tested in yeast
in 2002 [13]. Accredited to the maturity of high-throughput
sequencing technology, the past few years have seen a large
effort in the curation and utilization of eQTLs in humans.
The GTEx consortium project undoubtedly became the best-
known resource for multi-tissue human eQTL resources. The
application of eQTLs to predict gene expression in additional
diseases rests heavily on the reproducibility of eQTLs. Further,
potential limitations of the GTEx data include the use of
postmortem tissue and the fact that all tissues in GTEx were

considered normal. The magnitude of gene expression change
in a diseased tissue is often ignored in the eQTL prediction
model.

To survey the reproducibility between data sets of the same
tissue type and between normal and diseased tissues, we car-
ried out a thorough eQTL study using TCGA SNP and gene
expression data. The comparisons between TCGA and GTEx
were constrained by differences of SNP data collected. To make
them comparable, we only examined the common portion of the
eQTLs when comparing eQTL directional consistency between
the two data sets. We found that sample size and MAF play the
most pivotal roles in the power of eQTL detection [6]. Although
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TCGA contains large numbers of subjects, portion of our analy-
ses was still limited by sample size due to requirement of pair-
ing normal and tumor samples. Our analyses using TCGA data
further validated the positive influence of sample size on eQTL
detection. Moreover, the results suggest that increasing sample
size or detection threshold likely leads to higher detection rate
and more robust eQTLs.

The comparative analyses of eQTLs between paired normal
and tumor in TCGA provided several important clues regarding
eQTL robustness. The number and effect direction of eQTLs were
much more sensitive to gene expression alteration than to geno-
type changes. Considering that the analyses were performed
using the exact same set of SNPs and genes, the variation in
the eQTLs can be almost entirely attributed to the difference
in the source material (blood, normal tissue and tumor tissue).
The shared proportion between normal and tumor eQTLs was
low (∼5%), which suggests that eQTL sets inferred from tumor
transcriptome are largely distinct from those inferred from nor-
mal transcriptome. For three cancer types (COAD, HNSC and
STAD), the directional inconsistency was greater than 10% when
P < 0.01 was used as eQTL detection threshold. These results
cast some doubts on whether eQTLs computed from normal
transcriptomes can be used to accurately predict gene expres-
sion in diseased tissues. The minor portion of shared eQTLs may
concern genes less relevant to the studied phenotypes. Cancers
are extreme, abnormal phenotypes that are subjected to more
severe gene expression dysregulation. Diseases with etiology
unrelated or marginally related with expression dysregulation
may be more suitable application cases for eQTL models defined
from normal tissue data. The effect direction discordance of
eQTLs attenuated after applying FDR < 0.05. However, using
more stringent threshold led to a drastic decline in the number
of detected eQTLs, in some cases (e.g. COAD and STAD) resulting
in null output, which also limits the application of eQTL models.
In our study, the consistent eQTLs may be the result of genes not
affected by cancer or genes whose expression scaled proportion-
ally in the tumor tissues.

Current mainstream eQTL projects still have inferior sample
size compared to traditional GWAS studies. One commonly pro-
posed approach to increase power is to combine tissue types.
Our multi-tissue analyses in GTEx and TCGA confirm that the
majority of the eQTLs are tissue specific. The power of pooled-
tissue eQTL analysis can be nullified by the multi-tissue eQTLs
with contrary effects depending on tissue type. Pooled-tissue
eQTL analysis may increase power only if directionally consis-
tent effects were observed in all of the proposed tissue types
independently.

Our analysis was limited by the paired sample size in TCGA
and by the difference in the SNP sets between TCGA and GTEx.
Furthermore, there have been arguments that cancer eQTL
analysis needs to adjust for other possible confounding factors
such as somatic copy number variation or methylation, etc.
[14]. eQTLs are defined as ‘genomic regions that carry one or
more DNA sequence variants that influence the expression level
(typically mRNA abundance) of a given gene’ [15–17]. According
to the definition, variation in expression levels of mRNAs is the
final expected consequence, regardless the intermediate effects
of other factors such as epigenetic variations. It is very common
to only adjust factors that influence global gene expression of
a sample, such as population structure, age, etc. but did not
adjust epigenetic variations or other somatic alterations for each
individual gene [18–27]. Many studies with both gene expression
and DNA methylation data did not adjust methylation for eQTL
identification [28–31]. Several studies using TCGA data to identify

eQTLs did not adjust methylation nor somatic copy number
alterations [32–35]. The latest publication of TCGA pan-cancer
eQTL database [36] in 2018 also did not adjust for either copy
number or methylation. Therefore, we used a perfectly accepted
approach to identify eQTLs across different cancer types without
adjusting methylation and somatic copy number alterations.
Previous studies demonstrated the complicated mechanisms
for regulating gene expression by eQTLs, including altering RNA
sequence, RNA structure, transcription factor binding, miRNA
binding, methylation and histone modification [17, 37]. However,
this is beyond the scope for identification of eQTLs.

Based on the trends summarized from all of the presented
analyses, we are confident to conclude that increasing sample
size should increase the shared portion and reduce the direc-
tional inconsistency rate for eQTLs derived from distinct RNA
sources or compiled from different projects (e.g. TCGA versus
GTEx). Highly significant eQTLs were reproducible between nor-
mal and tumor tissues or across data sources, although they
accounted for a small portion of detected eQTLs. Our results
point out that it is challenging to predict the entire transcrip-
tome of diseased phenotype with eQTL prediction model based
purely on normal tissue. To correctly harvest the full potential of
eQTLs, disease-specific eQTL databases should be assembled to
provide more accurate prediction for future eQTL studies.

Key Points
• eQTLs are not only tissue specific, they are also disease

specific.
• Expression dysregulation can substantially affect the

number and direction of eQTLs.
• Multi-tissue eQTLs may exert inconsistent directional

effect dependent on tissue type.
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Supplementary data are available online at https://academic.
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