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Abstract

Precision medicine uses genetic, environmental and lifestyle factors to more accurately diagnose and treat disease in specific groups
of patients, and it is considered one of the most promising medical efforts of our time. The use of genetics is arguably the most
data-rich and complex components of precision medicine. The grand challenge today is the successful assimilation of genetics into
precision medicine that translates across different ancestries, diverse diseases and other distinct populations, which will require
clever use of artificial intelligence (AI) and machine learning (ML) methods. Our goal here was to review and compare scientific
objectives, methodologies, datasets, data sources, ethics and gaps of AI/ML approaches used in genomics and precision medicine. We
selected high-quality literature published within the last 5 years that were indexed and available through PubMed Central. Our scope
was narrowed to articles that reported application of AI/ML algorithms for statistical and predictive analyses using whole genome
and/or whole exome sequencing for gene variants, and RNA-seq and microarrays for gene expression. We did not limit our search
to specific diseases or data sources. Based on the scope of our review and comparative analysis criteria, we identified 32 different
AI/ML approaches applied in variable genomics studies and report widely adapted AI/ML algorithms for predictive diagnostics across
several diseases.
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Introduction
Genetic studies can reveal biomarkers that diagnose,
determine risk and predict treatment outcomes for
a wide variety of diseases [1]. Most genetic research
investigates biological insights, disease mechanisms
and disease risks by comparing healthy and diseased
populations, which can overlook individual and subgroup
variations [2]. DNA and RNA sequencing (RNA-seq) are
the two most used methods in genetic research. Genetic
variation, which encompasses DNA (gene) and RNA
(gene expression) differences, is a fundamental element
to understanding the genetics of diseases [3]. DNA
sequencing can identify associations between genomic
variants and diseases [4, 5], while RNA-seq can identify
associations between RNA expression variations and
diseases [6]. Combining multiple gene variants and/or

gene expression differences into polygenic biomarkers
can increase predictive power. Indeed, high and low
polygenic scores from DNA can assess the probability
of getting diseases [7]. While promising, the grand
challenge here is analyzing the huge volume of known
(and unknown) variants and using this information
to diagnose, determine risk and predict treatment
outcomes within diverse groups of humans [4].

This challenge is being met with precision medicine,
which aims to translate this vast pool of genetic data
to enhance disease outcomes accurately and safely [8].
However, the successful implementation of precision
medicine remains difficult for heterogeneous ancestry
groups and other distinct populations [8]. The conver-
gence of genomics data and staggering developments
in artificial intelligence (AI) and machine learning (ML)
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have the potential to address this issue [9]. Applied AI/ML
approaches allow learning from a continuum of dataset
sizes displaying heterogeneous levels of granularity
[10]. AI/ML offers multiple supervised and unsupervised
approaches to analyze genomics data which have been
developed into multivariate statistical tools [9]. The suc-
cessful implementation of these AI/ML approaches has
the potential to support the development of enhanced
systems-level understanding of diseases to decipher
genomic regulatory networks. AI/ML approaches offer
statistical analysis and classification of clinical genomics
data for identifying best sources of information and
predicting patients at high risk. Furthermore, AI/ML
can be applied to capture genetic sequences for chronic
diseases, phenotype categorization based on knowledge
about human diseases and potential subtypes, and
population sizing to create dimensions for common,
rare and orphan diseases, and for understanding
salutogenesis [9].

AI/ML approaches include Random Forest (RF) [11,
12]; Support Vector Machine (SVM) [13, 14]; Gradient
Boosting [15, 16]; Extreme Gradient Boosting (XGBoost)
[17, 18]; Elastic net regularized generalized linear model
[19, 20]; Logistic Regression (LR) [21, 22]; Artificial
Neural Network (ANN) [23–25]; Naïve Bayes (NB) [26, 27];
Bayesian Additive Regression Trees (BART) [28]; Bayesian
Networks [29]; Greedy Thick Thinning algorithm [30];
K-Nearest Neighbor (K-NN) [31]; Decision Tree (DT)
[32]; Linear Discriminant Analysis (LDA) [33]; Quadratic
Discriminant Analysis (QDA) [34]; Gaussian Process
Classification (GPC) [35]; AdaBoost (AB) [36]; Non-
negative Matrix Factorization (NMF) [37, 38]; C4.5 [39,
40]; Formal Concept Analysis (FCA) [41]; Clustering
[42, 43]; Multivariate Linear Regression (MLR) [44];
Genetic Algorithm (GA) [45]; Logit Boost [46]; Analysis
of Variation for Association with Disease (AVA,Dx)
[47]; OncoCast-MPM Machine-Learning Risk-Prediction
Model (OncoCast-MPM) [48]; Combined Annotation
Dependent Depletion (CADD) [49]; Very Efficient Sub-
stitution Transposition (VEST) [50]; Random Committee
Ensemble Learning [51]; Deep Learning Neural Networks
(DNNs) [52, 53]; MERGE [54]; Expectation–Maximization
(EM) [55]; Generalized linear models (GLM) [56], J48
and Hidden Markov Model [57]. AI/ML approaches
can be utilized to identify and assess genetic risk
variants among individuals, especially those who are
predisposed to having a disease. Successful imple-
mentation of AI/ML approaches has the potential to
replace homogeneity with heterogeneity, caused by
the existing genetic and statistical approaches [9].
However, the important questions here are, which
AI/ML approach is appropriate for which data analytic
problem? And, are results reproducible? During the
process of choosing and implementing AI/ML algorithms,
it is important to measure and avoid algorithmic
bias [58].

In this study, our focus was to review, compare and
report scientific objectives, methodology, development,

performance evaluation, datasets, data sources, ethics
and gaps of AI/ML approaches applied in the field
of genomics (Table 1). We defined our criteria for the
selection of high-quality literature published within the
last 5 years (2017–22) that were indexed and available
through PubMed Central. Our scope is limited and mainly
includes those articles that report the application of
AI/ML algorithms for statistical and predictive analyses
using whole genome and/or whole exome sequencing
(WGS/WES) identified gene variants, and RNA-seq and
microarray gene expression differences. However, we are
open to variable diseases among diverse populations,
open data archives and annotation databases, and
sequencing technologies used to produce raw WGS/WES
and RNA-seq data. Our scope included reviewing
and outlining the most relevant approaches to the
goals of this study. Our findings report 32 different
AI/ML algorithms [11–57] and approaches applied in
24 heterogeneous studies [47, 48, 51, 59–79] (Figure 1).
Our literature search was performed using standalone
and combinations of different keywords, including,
but not limited to, ‘artificial intelligence’, ‘machine
learning’, ‘algorithms’, ‘gene expression data’, ‘gene
variant data’, ‘whole genome’, ‘whole exome’, ‘RNA-
seq’, ‘sequence data’, ‘predictive analysis’, ‘precision
medicine’, and various disorders. Further, itemized
details are attached in Supplementary Material 1 avail-
able online at http://bib.oxfordjournals.org/, and litera-
ture selection workflow is added to Supplementary Mate-
rial 2 available online at http://bib.oxfordjournals.org/.

AI/ML approaches in genomics and
precision medicine
Classifying analytical tasks based on available predictor
variables is a key step in correctly addressing the
problem of choosing appropriate AI/ML algorithm(s)
for analysis in genomics. In this study, we report
24 different peer-reviewed and published scientific
studies, applying variable supervised/unsupervised
ML algorithms to genomic (WGS/WES- variant) and
transcriptomic (RNA-seq and Microarray- gene expres-
sion) data for bioinformatics, statistics and predic-
tive analyses (Figure 2, and Table 2). The studies cov-
ered extracted data and shared genomic data for a
wide variety of diseases [83–102], e.g. inflammatory
bowel disease (IBD) [80], systemic lupus erythemato-
sus (SLE) [81], Crohn’s disease (CD) [82], obesity [83],
colon cancer [84], breast cancer [85], acute myeloid
leukemia (AML) [86], Alzheimer’s disease (AD) [87],
major depressive disorder (MDD) [88], ulcerative colitis
(UC) [89], schizophrenia (SCZ) [90], autism spectrum
disorder (ASD) [91], premature ovarian failure (POF)
[92], hypertension [93], autism [94], sepsis [95], prostate
cancer [96], malignant pleural mesothelioma [97],
ovarian cancer [98] and other cancer disorders [99]
(Figure 1 and Supplementary Material 3 available online
at http://bib.oxfordjournals.org/).

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbac191#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbac191#supplementary-data
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Figure 1. AI/ML approaches using gene variant and gene expression data for traditional bioinformatics and predictive analysis. Figure includes 24 AI/ML
approaches, variable diseases [inflammatory bowel disease (IBD); systemic lupus erythematosus (SLE); colon cancer (CC); acute myeloid leukemia (AML);
major depressive disorder (MDD); ulcerative colitis (UC); sepsis (Sep.); prostate cancer (PC.); Alzheimer’s disease (AD); hypertension (Hyp.); ovarian cancer
(OC); Crohn’s disease (CD); obesity (Ob.); breast cancer (BC); malignant pleural mesothelioma (MPM); schizophrenia (SCZ); autism spectrum disorder
(ASD); ovarian failure (OF); premature ovarian failure (POF); risk of illness (RI); autism (Au.)] and AI/ML algorithms [Generalized linear models (GLM);
Genetic Algorithm (GA); Multivariate Linear Regression (MLR); Random Forest (RF); Bayesian Networks (BN); Support Vector Machine(SVM); Expectation–
Maximization (EM); Bioinformatics Analysis (BI); Random committee ensemble learning (RC); Elastic net regularized generalized linear model (GLMNET);
Linear discriminant analysis (LDA); Quadratic Discriminant Analysis (QDA); AdaBoost(AB); Formal Concept Analysis (FCA); Combined Annotation
Dependent Depletion (CADD); Very Efficient Substitution Transposition (VEST); Deep Learning Neural Networks (DNNs); Decision Tree (DT); LogitBoost
(LB); Gradient boosting (GB); Extreme gradient boosting (XGB); Gaussian Process Classification (GPC); Logistic Regression (LR); Artificial Neural Network
(ANN); Greedy Thick Thinning algorithm (GTT); Neural Networks(NN); K-Nearest Neighbors (K-NN); Clustering (CU); Non-negative Matrix Factorization
(NMF); Naïve Bayes (NB); MERGE (mutation, expression hubs, known regulators, genomic CNV and methylation); Bayesian Additive Regression Trees
(BART)].

XGBoost, RF, elastic net regularized linear model
and SVM-based identification of novel candidate
risk genes for IBD [59]
Isakov et al. presented a supervised ML method to study
the classification and prioritization of known genes to
detect new genes connected to IBD [59]. ML algorithms
were applied on gene expression data, mainly extracted
from Gene Expression Omnibus (GEO). Five hundred and
thirteen samples from readily available datasets were
used to train and validate this model. This was broken
down to 180 CD patients, 149 UC patients, 94 colorectal
neoplasms patients and 90 healthy individuals. The

authors also chose to focus on a single omics approach
where they studied transcriptomic data and its potential
in identifying IBD genes. Overall methodology involved
implementation of XGBoost, elastic net regularized
generalized linear model, RF and SVM with polynomial
kernel. The original data set was split into two sets
where 75% was used for training of the model and the
remaining 25% was used for validation. A 5-fold cross
validation technique was performed for 10 times to
improve the performance of the model. A combined
model was also constructed using all the above models
that resulted in area under the ROC curve (AUC) = 0.852,



Genomics data analysis with AI/ML | 9

Figure 2. Total number of machine learning algorithms applied for predictive analysis. Figure includes algorithms: Random Forest (RF), Support Vector
Machine (SVM), Gradient Boosting, Extreme gradient boosting XGBoost, Elastic net regularized generalized linear model, Logistic regression (LR), Artificial
neural network (ANN), Naïve Bayes (NB), Bayesian Additive Regression Trees, Bayesian Networks, Greedy Thick Thinning algorithm, k-nearest neighbor
(K-NN), Decision tree (DT), Linear discriminant analysis (LDA), Quadratic discriminant analysis (QDA), Gaussian process classification (GPC), Adaboost
(AB), Non-negative Matrix Factorization (NMF), C4.5, Formal concept analysis (FCA), Clustering (Unsupervised), Multivariate Linear Regression (MLR),
Genetic Algorithm (GA), Logit Boost, AVA,Dx (Analysis of Variation for Association with Disease), OncoCast-MPM machine-learning risk-prediction model,
Combined Annotation Dependent Depletion (CADD), Very Efficient Substitution Transposition (VEST), Random Committee Ensemble Learning (RCEL),
Deep Learning Neural Networks (DNNs), MERGE, and Expectation–maximization (EM).

sensitivity = 0.634, specificity = 0.914 and accuracy = 0.847
for the training data; and AUC = 0.829, sensitivity = 0.577,
specificity = 0.880 and accuracy = 0.808 for the testing
data. Every gene has 1027 features annotated and
feature selection using regularized form of logistic
regression identified terms associated with immunity
and inflammation as features that can characterize IBD.
The method effectively distinguished IBD risk genes from
non-IBD genes and recognized unknown features that
corresponded to IBD. A total of 347 genes had a high
prediction score. Furthermore, the model found 67 novel
genes (e.g. RELT, CCL18, TNFRSF10B, LILRB2, TNFRSF10D,
etc.) that were previously not studied under other IBD
publications. The main benefit of this research was the
discovery of novel gene associations in the context of IBD.
The authors recommended that these genes be studied
more as new drug targets for IBD. Additionally, they can
provide a better understanding of the pathophysiology
of IBD.

GLM, K-NN and RF-based lupus disease
prediction [60]
The scope of this article was focused on the beneficial
aspects of transcriptomic data in predicting lupus
disease [60]. Kegerreis et al. stratified subjects based
on active and inactive SLE state and identified the

best classifier/classifiers [60]. Authors filtered and
implemented conventional bioinformatics methods,
supervised and unsupervised ML techniques on three
datasets of gene expression data, extracted from GEO.
They performed and reported differential expression
(DE) analysis [102] of active and inactive patient samples
using the filtered genes. A total of 7848 genes were
investigated, and it was observed that heterogeneity
existed within the three studies (GSE39088, GSE45291
and GSE49454). Comparing these genes revealed that
5170 genes were unique to one study, 1234 occurred in
two studies and 36 genes were present in all three studies.
Unsupervised hierarchical clustering was not successful
in distinguishing the patients into active and inactive
status accurately. The absence of commonality questions
the ability to properly distinguish the differentially
expressed genes (DEGs) into active and inactive patients
from the data set. The conventional bioinformatics
methods do not bolster well enough, even though
the gene expression data can distinguish the active
SLE patients for accurate results. This signified the
importance of the requirement for better practices. Gene
set variation analysis [103] enrichment performed using
25 cell-specific gene modules on the dataset revealed
that 12 of the 25 cell-specific modules had enrichment
scores with significant Spearman correlations to SLE
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Table 2. Total number of algorithms applied for predictive
analysis

AI/ML algorithms and approaches Total count

SVM 13
RF 12
XGBoost 5
LR 5
NB 5
DT 5
ANN 4
k-nearest neighbor (K-NN) 4
AB 3
Gradient Boosting 3
LDA 2
QDA 2
GPC 2
Clustering (Unsupervised) 2
Elastic net regularized generalized linear model 1
BART 1
Bayesian Networks 1
Greedy Thick Thinning algorithm 1
NMF 1
C4.5 1
FCA 1
MLR 1
GA 1
Logit Boost 1
AVA,Dx 1
OncoCast-MPM machine-learning risk-prediction
model

1

CADD 1
Very Efficient Substitution Transposition (VEST) 1
Random committee ensemble learning 1
DNNs 1
MERGE 1
EM 1

Disease Activity Index (SLEDAI; P < 0.05). Furthermore, 14
cell-specific gene modules scored with major differences
between active and inactive patients (Welch’s t-test,
P < 0.05) [60]. This was not enough to predict the disease
status as no module managed to segregate the active
and inactive SLE patients. Three ML techniques GLM, K-
NN and RF were used as classifiers using two validation
methods: 10-fold cross-validation (CV) and study-based
CV. The validation method using the 10-fold CV along
with the use of gene expression values yielded a better
result for all three ML classifiers. Out of all the classifiers,
RF had the highest performance with 83% accuracy
and an area under the curve (AUC) value of 0.89 for
the 10-fold CV. The accuracy of the validation method
performed using study-based CV technique was close
to 50% when using expression data. When applied
on the module enrichment scores, they significantly
improved the performance of RF test to 65% and K-
NN test accuracy to about 70%. This study was limited
to a small dataset used to train the classifiers. The
authors state that although a large number of SLE
data sets are available online, they are not annotated
with SLEDAI [60, 101]. The authors predict that their
approach has the potential to design a blood test that

can predict SLE activity as well as to better understand
organ involvement in SLE.

Multi-ML algorithms to analyze interactions
among genetic and clinical factors in IBD
patients [61]
In a study involving CD, Menti et al., estimated the pre-
dictive performance of three classifiers and identified
the extra-intestinal manifestation (EIM) in this gastroin-
testinal disease using a single omics (genomic) approach
[61]. The classifiers, NB, BART and Bayesian networks
were used to perform statistical analysis. The authors
used the Greedy Thick Thinning algorithm and the EM
algorithm on the variant data retrieved from the Single
Nucleotide Polymorphism Database (dbSNP). The genetic
polymorphisms of NOD2, CD14, TNFA, IL12B and IL1RN
genes were considered as a variable along with the other
variables like disease characteristics and risk factors.
It was found that the role of CD14 is insignificant for
predicting EIM. The analysis of this study showed that
Bayesian networks performed better than NB and BART.
Bayesian networks achieved an accuracy of 82% with
clinical factors, and it went up to 89% when additional
genetic information was included. Out of 152 patients,
75 had EIM. The predicted outcome showed the presence
of IL and TNF contributed to a 10% increase in the
accuracy validated by the disease phenotype [61]. This
research highlighted the ability of Bayesian networks
to accurately predict EIM in CD patients [61]. However,
the major limitation in this study was the overfitting
bias associated with the small sample size and the lack
of external validation. The authors propose the use of
Bayesian networks in predictive clinical settings due to
its precision.

AVA, Dx–SVM pipeline for classifying CD signal
from variome analysis [47]
Wang et al. proposed a novel ML pipeline, AVA,Dx that
uses SVM to predict CD [47]. This model uses a single
omics approach by employing genomic variant data
consisting of a training dataset, testing dataset, a panel
of data extracted from European Genome-Phenome
Archive and the Genotype-Tissue Expression Project. This
study had a total of 2855 samples were used to train and
validate the different panels. Out of those samples, 2793
samples were from CD patients and 62 were from control
patients. Additionally, the authors employed an ethnicity
annotation for these samples. The functional effects of
exome SNVs were combined and presented to generate
gene scores which filtered 173 013 variants to 13 957
affected [47]. The predictive model was constructed
based on external disease genes and gene sets retrieved
from the computer feature selection. These genes were
used in SVM model and trained in the leave-one-out CV
technique. Along with the default gene score method,
four other different gene scoring methods were used.
It was observed that the default gene score performed
better, thus signifying the usage of functional effects of
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variants in assessing the genetics of the disease. When
the top Pascal-ranked CD genome-wide association study
(GWAS) [104] genes were used in the construction of SVM
model building using the training set. It was seen that
these genes had a better performance ability than the
random gene model with external genes set. The 175
Pascal top-ranked genes model attained a high ROC AUC
of 0.70. The assessment of feature and computationally
selected genes showed Disease Overfitted (DISO) sets
having more than 100 genes not associated with CD in
the training data of healthy individuals (HCs). Pascal
GWAS175 was outperformed by other feature selection
models like KS5max and DKMcost125. The feature
selected genes effectively distinguished between CD
and healthy individuals. Feature selection identified
already known genes (LRRK2 and KIAA1109) and novel
unreported genes: DKMcost125 genes NOD2, LSP1 and
CCR6, and KS5max genes IL19 and ATF4. Three cutoff
values were used in AVA,Dx for differentiating healthy
versus Crohn’s-affected (14.3, 45 and 0). It was seen
that higher scoring subjects had CD. These scores were
not estimated, and the authors thought that it should
not be further used for understanding the intensity of
the disease. The evaluation of the predictions for the
current model differentiated healthy individuals less
accurately than the diseased patients but compared
better than the baseline approach. AVA,Dx needed only
111 individuals to construct a model, which is much
less than the individuals needed in previous studies that
did not use this algorithm. The authors concluded that
a larger panel and better gene scoring methods could
improve the performance ability of this algorithm.

This research study was restricted to the AVA,Dx
model. Firstly, the model’s predictive capabilities dimin-
ished when the test panel sequences did not share
enough loci with the CD-train panel. Secondly, the
AVA,Dx model could only recognize the genetic model
of CD patients rather than healthy patients. Thus, it
is unable to label unaffected patients as healthy [47].
Nevertheless, this model has many benefits that are
not limited to the capacity to distinguish genes related
to diseases without the need for large study panels.
The strength of the AVA,Dx model lies in sequencing
methods and panel differences. Hence, the authors
recommend that this model be used for identifying
disease-relevant variants not only for Crohn’s disease
but also other complex diseases that have a genetic
factor.

Multi-ML implementation for obesity risk
evaluation [62]
A study on obesity evaluated the obesity risk aimed
to stratify the individuals into obese and non-obese
and compare the predictive performance of various
models using single-nucleotide polymorphisms (SNPs)
data retrieved from dbSNP [62]. Wang et al. used three
algorithms—SVM, K-NN, DT with Stepwise MLR, DT and
GA—as feature selection methods to the data. The ratio

of training to testing was 1:4 and 5-fold CV was per-
formed for 100 rounds. For models trained with 130 SNPs,
the SVM model had a better performance ability when
compared to both the K-NN model and the J48 model
in sensitivity and specificity with an average accuracy
of 0.67. Out of the 130 SNPs, 74 were obtained from
obese patients and 65 were obtained from non-obese
patients. Sex and age were other clinical factors that the
authors also used in this study. Comparison of the feature
selection algorithms to determine the informative SNPs
suggested that the SVM and K-NN models, when trained
with MLR, had the best performance with high accuracy.
However, the J48 model, when trained with DT, showed
the best performance. Using stepwise MLR, nine SNPs
were associated with obesity (rs10501087, rs17700144,
rs2287019, rs534870, rs660339, rs7081678, rs718314,
rs9816226 and rs984222) along with gender selected as
an informative feature. Four SNPs (rs10501087, rs534870,
rs718314 and rs984222) were significantly associated
with obesity risk (P < 0.05). The SVM model trained using
selected nine SNPs attained the highest accuracy (0.71).
All the nine SNPs were reported to have been associated
with obesity. This single omics study concludes that the
SNPs selected successfully identified obesity risk [62]. A
major benefit of this research was that SVM initiated
a predictive model that was better at analyzing genetic
factors associated with obesity when compared to other
ML algorithms.

Multi-ML algorithms for identification of
high-risk, colon cancer differential genes by
statistical tests [63]
This study involved comparing various ML algorithms
for the identification of high-risk, differential genes
in colon cancer by statistical tests [63]. In addition,
Maniruzzaman et al. predicted cancer-associated genes
using gene expression data extracted from Kent ridge
biomedical data repository, USA. Transcriptomic data
from 62 patients were utilized in the single omics
approach by the authors. Out of the 62, 40 were cancer
patients and 22 were healthy individuals. In addition to
gene expression data, age and gender were other clinical
data used in this study. This study follows a two-level
analysis. In the first step, the feature selection identified
the most important genes using four statistical methods
like Wilcoxon sign rank sum (WCSRS), t-test, Kruskal–
Wallis and F-test followed by a second step to select the
best classifier among the 10 classifiers LDA, QDA, NB,
GPC, SVM, ANN, LR, DT, AB and RF. Forty combinations
in total with 4 statistical tests and 10 classifiers were
designed. Kernel optimization was performed; Poly-2
kernel for GP-based classifier and RBF kernel for SVM
were selected. As the P values decreased, the accuracy
increased suggesting that the classifiers trained for the
important genes, which have less noise. A graph plotted
the number of significant genes against the cut-off point
of P-values suggested that WCSRS is the most efficient
test. Inter-comparison of the classifiers demonstrated



12 | S. Vadapalli et al.

that the highest classification accuracy was given by
the RF classifier and the lowest classification accuracy
was given by NB. Optimized ML system suggested that
the best combination of statistical tests and classifiers
was WCSRS test combined with RF-based classifier
with a high classification accuracy of 99.81%. [63].
Although microarray technology is not in use now, the
authors recommend using microarray gene expression
data for future work and incorporating that into their
model.

Multi-ML implementation for breast cancer
model classification [64]
Vural et al. highlighted a new breast cancer model clas-
sification system for stratifying individuals into sub-
groups [64]. The authors implemented an unsupervised
NMF clustering method, which identified the subgroups
based on single omics system [64]. Other supervised
ML algorithms like RF, SVM, C4.5, NB and K-NN were
applied for classification on the variant data (somatic
and non-synonymous SNV) downloaded from The Can-
cer Genome Atlas (TCGA). The NMF clustering grouped
the whole data with 358 genes into three groups contain-
ing 169, 121 and 68 patients, respectively. The clusters
were named as follows: Cluster 1 as early-stage-enriched
cluster, Cluster 2 as a mixed cluster and Cluster 3 as
late-stage-enriched cluster with AUC values 0.88, 0.8 and
0.95, respectively. It was observed that 358 genes had
higher mean mutation scores in the late-stage-enriched
cluster 3 than those in the early-stage-enriched cluster
1, which suggests that these genes may have amassed
deleterious mutations which led to the advancement
of the breast cancer disease condition. Out of the 358
genes, APC and BRCA2 were listed as tumor suppressor
genes and MLL was listed as an oncogene. Information
gain attribute evaluator was used as a feature selec-
tion approach. Ranker algorithms were implemented in
Weka for feature evaluation and search. Five ML algo-
rithms were used for testing to pick the best-suited algo-
rithm. The RF classification algorithm was found to be
the best as it achieved the best 10-fold CV accuracy of
70.86% whereas K-NN was the least effective [64]. An
extensive benefit associated with this research is that
somatic mutation profile data can be used to determine
breast cancer subtypes. The authors conclude that their
model can be used to predict and identify other tumor
types.

OncoCast-MPM ML-driven risk prediction for
malignant pleural mesothelioma [48]
A novel disease prediction model was built by Zauderer
et al. for stratifying individuals into high-risk and low-risk
groups [48]. A total of 194 samples were used in this single
omics study. The authors also utilized clinical data such
as age, gender, smoking history and age at diagnosis. The
OncoCast-MPM ML risk-prediction model, an ensemble
learning model was implemented on the Memorial Sloan
Kettering Cancer Center-Integrated Mutation Profiling

of Actionable Cancer Targets (MSK-IMPACT) and TCGA
cohort which generated risk scores for individuals with
malignant pleural mesothelioma [48]. The MSK-IMPACT
cohort received different ranges of the risk score than
the TCGA cohort. The ratio of training to testing data
was 2:1. Hierarchical clustering divided the patients of
MSK-IMPACT into two groups: high-risk (27%) and low-
risk (73%). It was also able to effectively stratify the
TCGA cohort into low-risk and high-risk groups. Feature
selection using univariate analysis identified CDKN2A
and CDKN2B deletions along with the mutations of
TP53, TERT, GNAS and DICER1 to be unfavorable, and
epithelioid histology along with the presence of BAP1 or
PBRM1 mutations to be favorable [48]. Feature selection
using the multi-variate analysis identified features,
including BAP1 and PBRM1 mutations, epithelioid his-
tology, a smoking or tobacco history, and reported classic
occupational asbestos exposure as favorable features,
and male gender, CDKN2A and CDKN2B deletions,
TP53 and TERT mutations, age, advanced stage disease
and biphasic histology as unfavorable features. It was
observed that the median overall survival for the low-
risk group (30·8 months) for the MSK-IMPACT was higher
than the high-risk group (13·9 months). The model
was cross-validated with the train model for every 200
iterations and attained 0.67 as cross-validated estimate.
To understand the survival in the high-risk group,
treatment patterns with active agents were studied and
these were the same for the low-risk and the high-risk
groups [48]. The high-risk group consisted of 27 early-
stage disease, 17 surgery, 29 epithelioid, 17 biphasic and
6 sarcomatoid histology. The TCGA cohort was used for
validation and the results were just like the MSK-IMPACK
cohort. The risk model found 33 high-risk individuals
and 41 low-risk individuals with median overall survival
higher in the low-risk (23·6 months) group than the high-
risk group (13·6 months). The disease stages and the
histology were same for the two cohorts. BAP1 alterations
were more frequent in MSK-IMPACT than TCGA cohort.
Comparison of genes enriched in OncoCast-MPM genes
and stage stratification showed that six genes enriched in
the former (high risk-TERT, NF2, TP53 and LATS2; and low
risk- SETD2 and BAP1) and one in the latter (advanced
stage disease—TP53 and early-stage disease—none) [48].
The model successfully classified the individuals and
was more accurate than the existing stage and histology
model. The limitation of this study was the OncoCast-
MPM model not being prospectively validated. This is
required to ensure that the analysis is not undermined
by the external variables. Due to the growing field
of molecular testing, OncoCast-MPM requires regular
updates. However, OncoCast has shown to provide an
accurate prognosis estimation for malignant pleural
mesothelioma patients. Since this predictive model is
available freely online, the authors recommend that
it can be used for clinical and real datasets. This will
allow the model to undergo prospective and independent
validation.
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Using a novel model, MERGE to identify gene
markers for the targeted treatment for AML [65]
A new model called the MERGE (mutation, expression
hubs, known regulators, genomic copy number variation
and methylation) was developed by Lee et al. that identi-
fied gene markers for precise and targeted treatment
for AML [65]. Transcriptomic data from a total of 30
AML patients were compiled for this study. Additionally,
drug concentrations and sensitivities for 53 different
drugs were utilized. Authors implemented MERGE on the
gene expression data extracted from GEO. Unlike con-
ventional statistical methods, MERGE uses the ‘MERGE’
score, which indicates gene–drug associations. Higher
the MERGE score, more the number of associations
with drugs. A graph plotting MERGE score against the
weighted combination of driver features indicated that
expression clustering is a significant feature and can be
used to study tumor driver. Methylation was found to
be the least significant feature. The results of this whole
study indicated that SMARCA4 is a potential biological
marker. High expression of SMARCA4 appeared to be
sensitive to topoisomerase II inhibitors, mitoxantrone
and etoposide in AML [65]. The main benefit of this
research was that the authors organized genes based
on their potential to drive cancer according to their
multi-dimensional information. This original model
can be further used to study the extent of gene–drug
interactions.

Unsupervised algorithm—FCA approach-based
significant genomic biomarker discovery to study
the drug response for Alzheimer’s disease
therapy [66]
In this multi-omics study, Hampel et al. presented an
unsupervised algorithm FCA integrated in the Knowledge
Extraction and Management (KEM) environment using
genomic (Variant and Gene expression), pharmacological
and clinical data, with efficacy endpoints taken from
ANAVEX2-73-002 and ANAVEX2-73-003 [66]. ANAVEX2-
73-002 was a Blarcamesine Phase 2a clinical trial with 32
individuals with mild-to-moderate AD and which further
continued as a 208-week extension study, ANAVEX2-
73-003. The discussed model recognized the predictors
of response by association and ranking them. During
the reported analysis, the authors studied 3 145 630
associations among all the features. The applied strict
filtration process significantly decreased the number
of associations, as only 15 were linked to the clinical
outcomes. These 15 associations had an average blood
concentration of Blarcamesine above 4 ng/ml and this
improved the Mini-Mental State Examination (MMSE)
outcome and Alzheimer’s Disease Cooperative Study-
Activities of Daily Living scale (ADCS-ADL) scores.

Authors identified and reported two DNA variants,
SIGMAR1 p.Gln2Pro (rs1800866) and COMT p.Leu146fs
(rs113895332/rs61143203) [66]. SIGMAR1 targeted by Blar-
camesine is a significant drug target with the functions of
maintaining cellular homeostasis, which delays or stops

neurodegeneration and enhances the synaptic compen-
satory responses. The COMT gene is linked with memory
and other neurological behavioral roles. Parameters
including ANAVEX2-73 concentration levels, baseline
MMSE score, SIGMAR1 p.Gln2Pro, and COMT p.Leu146fs
variants, age, gender, APOEε4 genotype status, and
Donepezil co-medication were used in the linear mixed
effect models with change in MMSE (88%) and ADCS-ADL
(78%). The differences are linked with a disproportion
of APOEε4 genotype status in the arms. It was noticed
from this analysis that the higher Blarcamesine mean
concentration arm refined the therapeutic responses in
the adjusted MMSE and ADCS-ADL compared to the
low or the medium arm at 148 weeks. Besides time,
APOEε4 status and Blarcamesine mean concentration
were important predictors. Other important variables in
this method were SIGMAR1 p.Gln2Pro, COMT p.Leu146fs
and APOE4ε4 status interactions with time. Unadjusted
values verified the results and individuals having
improved therapeutic response biomarkers at week 57
had improved therapeutic response in ADCS-ADL at
148 weeks when compared to the individuals without
these biomarkers or reference population given care.
The overall approach of FCA is exemplary for the
identification of biomarkers in early data. The authors
concluded that these findings will be used to determine if
patients have a better response to the drug Blarcamesine
in other clinical trials.

SVM, RF, K-NN and NB approaches to identify
potential MDD peripheral blood transcriptome
biomarkers with ML [67]
Zhao et al. identified and used potential peripheral blood
transcriptome biomarkers to develop an MDD prediction
model [67]. The authors utilized nine different datasets,
and each had a sample size of 128, 67, 18, 22, 45, 22, 12,
16 and 160 for algorithm implementation in this study.
Clinical data such as age, gender and ethnicity were
also recorded. They implemented SVM, RF, K-NN and
NB on the gene expression data from GEO, where the
RF was used to select the features. The meta-analysis
of the genes showed 137 DEGs in which 66 are upreg-
ulated and 71 of them are downregulated. The genes
that were significantly (false discovery rate <0.05) dif-
ferentially expressed were TPST1, ARG1, KLRB1, WWC3,
AKR1C3, and MAFG. These six genes were linked with
the immune process, hormonal metabolism and inflam-
matory response and played an important role in the
diagnosis of MDD by acting as a potential biomarker.
Authors observed and reported that genes had a sig-
nificant expression difference with a single-gene diag-
nostic method, which proves that single gene model is
not efficient. Authors then used the transcriptome data
from the discovery sets to perform the meta-analysis
and it was seen that 114 DEGs were identified. Feature
selection of these data resulted in feature set containing
108 genes that were implemented upon with four models.
All models produced an average AUC value, whereas the
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SVM had the highest average AUC with values of average
AUC of 0.82, an accuracy of 0.75, sensitivity of 0.78 and
specificity of 0.74 in the train dataset. SVM had a better
predictive performance when compared to the single-
gene diagnostic model [67]. This study is limited by lack
of knowledge regarding the amount of data needed to
demonstrate the model’s predictive ability. Additionally,
further independent validation is required to determine
the accuracy of the model. The authors propose that this
model could be used to discover transcriptional markers
related to other mental illnesses.

Gene-based predictive RF and ANN-based model
for the diagnosis of UC [68]
This study aimed to identify susceptibility genes using
an RF algorithm and develop a new model for the
prediction of UC using ANNs [68]. GSE109142 and
GSE92415 were used as training and validation data
sets, respectively. This model used a single omics
approach consisting of transcriptomic gene expression
data where the training dataset (GSE109142) had 781
upregulated and 127 downregulated DEGs. Two datasets
were employed for this study that have been used in
previous studies. These datasets contained both cases
and controls. RF implementation identified the top
five UC associated genes to be FAM65C, CSF3R, CSF3,
POM121L9P and FER1L4 where CSF3R was found to be
the best-characterized DEG among all the UC-associated
genes [68]. UC prediction model attained ROC-AUC score
and PR-AUC score of 0.9847 and 0.9444, respectively.
Validation using GSE92415 yielded ROC-AUC and PR-
AUC scores of 0.9506 and 0.9747, respectively. The major
limitation of this study was the environmental factors
associated with UC. This can cause the model to be
restrained in terms of predictive power. It is the authors’
recommendation to perform external validation on their
model. This model can be used in future work for early
diagnosis and newer biochemical treatments for UC.

Supervised XGBoost implementation for
depressive disorder stratification using for brain
and blood mRNA profiles [69]
Qi et al. presented a model using supervised ML algo-
rithm XGBoost implementation that effectively differ-
entiated the MDD cases and controls using the gene
expression data retrieved from GEO [69]. In this single
omics study, a sample size of 390 individuals consisting
of 314 MDD patients and 76 healthy individuals. 80% of
the data were used for training and the remaining 20%
of the data were used for testing. The model trained on
brain mRNA gene expression data using a 10 CV method
yielded an AUC value of 0.72 [69]. The use of the baseline
model (same CV approach but with randomly permuted
labels) on the same data yielded an average AUC of
0.55. Comparing these two models using the Wilcoxon
signed rank revealed that the trained model had better
performance ability than the baseline model. The final
brain mRNA model had 62 genes in total and attained

an AUC value of 0.76 on the test dataset. A model con-
sisting only of covariates had an average 10-fold CV
AUC value of 0.83, whereas a model with covariates and
gene expression attained an average 10-fold CV AUC
value of 0.71. This indicated the absence of a significant
effect on the model performance due to the inclusion of
the covariates. External validation by dorsolateral pre-
frontal cortex gene expression values attained an AUC
of 0.62. The literature review of the genes predicted
by ML (ENPEP, COX6A1) overlapped with the gene sets,
revealing the association of these genes with depression.
The model implementation on the blood mRNA data with
the CV achieved an average AUC of 0.64 whereas the
base-line model attained an AUC of 0.56 [69]. Comparison
of these two models using the Wilcoxon signed rank
revealed that the trained model had better performance
ability than the baseline model. The final model had
1376 genes and an AUC of 0.61. The covariate analysis
showed the relation between the performance and the
smoking status of an individual. Other genes that were
identified to be associated with depression are CX3CR1,
TMEM245, COL4A1, PRAMEF1, TMEM52, A2M, DDC-AS1,
GRP88, GALR3, VPS53 and CRYBA1 [69]. The main advan-
tage of this study was highlighting the importance of
implementing blood mRNA-based ML models as a tool
for precision medicine. The predictive model employed
in this research aids in early diagnosis and determining
the different subtypes of MDD. The authors recommend
that different types of data, such as transcriptome data,
be analyzed using this model.

Multi-ML-based identification of subjects with
high potential risk for SCZ [70]
WES data of 2545 subjects and 2545 unaffected subjects
from the database of Genotypes and Phenotypes (dbGaP),
study phs000473.v1.p1, were studied by Trakadis et al.
[70]. The authors aimed to identify subjects with high
potential risk for SCZ. The data were processed, and
variant data [single nucleotide variants (SNVs) and small
insertions and deletions] were annotated using ANNO-
VAR. Rare variants and DNMs of four neuropsychiatric
disorders from 3555 trios and 36 studies were collected.
Feature filtration was performed using Pearson correla-
tion (having >90% Pearson correlation), which filtered
features from 1155 to 17 138. Supervised ML algorithms
RF, Lasso regularized (L1) logistic regression, XGBoost
and SVM were applied to the data. XGBoost attained the
highest accuracy, specificity, sensitivity, precision, recall
and F1 score values of 85.7%, 86.6%, 84.9%, 86.9%, 84.9%
and 85.9%, respectively. 70% of the data were used for
training and 30% of the data were used for testing. The
high value (0.95) of AUC implies that the patients can be
differentiated from controls effectively and accurately.
The analysis using the XGBoost algorithm on top 50
genes indicated the connection of SCZ with neuropsychi-
atric diseases and few of the potentially relevant genes
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included GRP, MYCBP2, CNDP1, ARL1, CAP1, GPRIN2, RAS-
GRP3 and CHI3L1. The authors concluded that the cur-
rent model can be improved by combining different lev-
els of data like neuroimaging data, transcriptome data,
genomic data and phenotypic information like speech
during the training of the model. The limitations of this
research stems from not analyzing the clinical charac-
teristics data for patients with SCZ. This caused the data
to not be generalized to larger groups of patients. Since
SCZ has environmental aspects (in utero and neonatal),
the authors propose that their model can be trained
with different datasets, for instance transcriptome and
genomic data, to increase its predictability.

XGBoost implementation and clustering for
comparative analysis of SCZ and ASD [71]
This single omics study focused on comparing the
genetic architecture of SCZ and ASD [71]. This study
included a sample size of 2392 families with ASD. The
criteria were not limited to age (patients had to be at
least 36 months old), as it also included for the patients
to not have extensive birth complications and not have
a known genetic disorder. Sardaar et al. analyzed the
WES data using regularized gradient boosted machines
(GBMs) for the identification of the significant genetic
features followed by a gene clustering approach for
the identification of the mutated subsets of genes.
70% of the whole data were used for training and
validation. The remaining 30% of the unseen data were
used as test data. It was delineated that supervised
algorithms are sufficient to differentiate SCZ and ASD.
Boosted regression tree models of the Gradient Boosting
algorithm showed an accuracy of 86% for the SNV-based
model and 88% for the gene-based model. A 5-fold CV
implemented for extra validation yielded 88% average
validation accuracy for both gene-based model and SNV-
based model. One hundred and fifty-one genes were
found to be overlapping from both the SNV approach and
the gene approach and the top 10 significant overlapped
genes from both the approaches include SARM1, QRICH2,
AKAP1, PCLO, TSPO2, ABCC3, KIF13A, FAN1, CCDC155
and PRPF31 using the boosted regression trees model.
Clustering of these 151 genes identified 3 and 2 clustered
gene groups in SCZ and ASD respectively 67 and 38
genes, respectively. An important benefit of this study
was illustrated with the exome-based ML analysis. This
type of analysis allowed for the investigation of distinct
diseases that have a genetic similarity. The authors
proposed focusing on common variants when it comes
to ML analysis of mental illnesses due to the presence
of this type of variant as a contributing factor for SCZ
and ASD.

Clustering and RF application for the
identification of variant profiles in ovarian
failure [72]
This study identified blood-based gene variant profiles
for the precise treatment of ovarian failure [72]. A

total sample size of 150 individuals was utilized in
this study. Out of these, 118 were patients suffering
from OF and 32 were healthy individuals. Additionally,
the authors had some other clinical criteria in place.
The subjects had to be females, under 40 years of
age and had no history of pelvic surgery, autoimmune
diseases or chemotherapy. Henarejos-Castillo et al.
used unsupervised clustering and the supervised ML
algorithm, RF, on the variant data. WES data were
collected from a study conducted between 2017 and
2019 [72]. A pipeline was used for the filtration of
the genomic variants. To build the gene-targeted and
non-targeted hypotheses, 161 209 variants were used.
A total of 2395 and 63 928 variants were identified
in the targeted approach and non-targeted approach,
respectively. The authors did not pursue the targeted
hypothesis due to a lower number of variants being
associated with ovarian physiology when compared
to the non-targeted hypothesis. The 63 928 variants
demonstrated moderate to deleterious effects, with most
changes being missense in the untranslated region or in
structural interaction and frameshifts. Out of the 63 928
variants, 116 had significant differences (P < 0.01) in the
distributions of allele frequencies between the cases
and the controls. One of the variants was a missense
variant (p.Ala301Gly) in the macrophage stimulating
1-like (MST1L) gene found in 14 controls and 4 cases.
Sixty-two genes were affected by 66 variants of uncertain
significance absent in controls with high case prevalence
in >10% of cases. Three out of 66 variants were already
known to be related to infertility (MSH3, GGT1 and
AQP8). The 66 variants were clustered together giving
rise to two subtypes of ovarian failure (A and B). Two
genomic subtypes were differentiated. RF implemented
on two models with a 10-fold CV (Model 1 and Model
2) yielded average accuracy, average sensitivity and
average specificity values of 93.3%, 93.31% and 96.57%,
respectively, in the Model 1 and yielded accuracy, average
sensitivity and average specificity values of 97.2%, 97.2%
and 99.2%, respectively, in Model 2. SPEP1 and GAB4
missense variants were responsible for the segregation
of ovarian failure patients into 14.4% and 85.6%, which
corresponds to types A and B, respectively [72]. The
authors concluded that the identified variants are
potential preventive biomarkers in fertility preservation
programs.

VEST, CADD and bioinformatics analysis-based
investigation of variants for POF [73]
Jin et al. studied the pathogenic variants responsible
for POF by implementing bioinformatics analysis for
variant filtration and ML algorithms VEST and CADD
to identify the pathogenic variants [73]. WES analysis
of 34 Korean individuals from Seoul CHA Hospital was
performed along with 10 controls. A list of POF genes
was downloaded from four public databases, DisGeNET,
Monarch, MalaCards and NCBI; gene and variants were
studied on VarSome. Nine heterozygous variants were
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identified by the screening of genes known to cause POF
that were carried by 8 of the 34 individuals (24%). In four
individuals, variants in Minichromosome maintenance-
8 (MCM8) and MCM9 were identified. MCM8 and MCM9
are associated with homologous recombination and DNA
repair [73]. In patient 15 (P15), a rare variant in the EIF2B3
gene and a variant in the PREPL gene were identified.
The EIF2B3 variant is related to vanishing white matter
(VWM) disease and leukodystrophy. Studies have proven
that ovarian failure is generally seen in women with
VWM disease. ERCC6 variant and an HFM1 variant
were detected in two patients (P5 and P23). Moreover,
SALL4 and TG variants were also detected. Seventy-
two variants in 72 genes previously not known to be
related to POF were identified. The authors also identified
and reported new variants in the genes ADAMTSL1 and
FER1L6, which may have a role in the development of
reproductive organs and folliculogenesis [73]. The main
advantage of this research was the confirmation that
the WES model can be used for studying the genetic
source of POF, which will in turn provide a better
understanding of the disease pathogenesis. The authors
recommend collecting data from a more diverse POF
population to increase the prediction ability of the WES
model.

Supervised SVM- and LR-based model
implementation for predicting hypertension [74]
Held et al. presented a supervised ML model for the
prediction of hypertension disease using gene expression
and rare variant data [74]. They implemented three
algorithms, radial SVM, linear SVM and LR on WGS
and next-generation sequencing (NGS) retrieved from
Genetic Analysis Workshop 19 (GAW19). The three
algorithms LR, linear SVM and radial SVM gave similar
AUC values of 0.771, 0.777 and 0.771, respectively, when
no genetic data but only covariates were included. The
performance of Linear SVM was slightly better than the
others. Linear SVM provided an AUC score of 54.9%, the
highest value compared to other algorithms in majority
of the cases, while radial SVM and LR had AUC scores
of 19.7% and 25.4%, respectively. The addition of the
causal and non-causal genes lowered the AUC for all the
models. High noise and a greater number of simulations
also decreased the predictive ability of the algorithms.
The follow-up analysis performed conveyed that rise in
the sensitivity of the hypertension variable increased
the AUC for three algorithms with 0.03, 0.05 and 0.01
increase in the average AUC for radial SVM, linear
SVM and LR, respectively. The predictive ability was
decreased by the inclusion of gene expression data with
the addition of genotype data at the same loci. Finally,
the authors concluded the need for the development
of better models for these kinds of studies [74]. To test
the predictive ability of this model, the authors used
gene expression data as well as genotype data at the
same loci in one analysis, and genotype data only in
the second analysis. The authors concluded that this

did not the increase predictive ability of their model.
Additionally, a small sample size was used for the AUC
model. The authors recommend that larger datasets are
used in the future to maximize the development of the
model.

Multi-ML implementation for the risk prediction
and variant analysis of bacterial illness [75]
A study on Listeria monocytogenes risk analysis was
performed by Njage et al., using supervised ML methods
on variant data obtained from 245 strains [75]. A
comparison of algorithms RF, SVM (radial and linear),
Gradient Boosting, neural networks (NN) and logic boost
was performed using the 10-fold CV [75]. This revealed
that NN, GBM and SVM (linear kernel) had the best
performance with accuracy values of 0.89, 0.88 and 0.89,
respectively. The authors used the SVM-linear kernel
model for the final model construction. For the final
model, 70% of the data were used for training and the
remaining 30% were used for testing. The confusion
matrix delineates at least 67% was predicted accurately
by the model. The final SVM-linear model implemented
using 10-fold CV, yielded an accuracy value of 89%.
The variable importance measure model identified Inlk,
Auto, GtcA, InlJ, IisY, IisD, IisX, IisH, IisB, Ami, GadA,
ActA, InlF, lmo2026, FAM002725, FAM002729, FAM002728,
FAM003296, FAM003297 and FAM003164 as the top 20
important genes. Virulence genes associated with highest
frequencies of illness were FAM002725, FAM002728,
FAM002729, InlF, InlJ, Inlk, IisY, IisD, IisX, IisH, IisB,
lmo2026, and FAM003296. The study of the occurrence
of these genes in various types of food matrices of
origin of isolates revealed that the genes InlJ, Inlk and
lmo2026 were highly present in all the sources of the
isolates whereas lmo2026 was highly associated with
ready-to-eat-food isolates. InlF highly occurred in both
clinical isolates, and the dairy and composite food origin
isolates. FAM002725, FAM002728 and FAM002729 genes
were highly prevalent in the composite food isolates.
The InlF gene appeared to be truncated in one of the
subpopulations of L. monocytogenes, which justifies the
less severity of the illness in the strains with these genes.
The authors concluded that a major advantage of this
approach is its ability to predict bacterial pathogenesis
allowing for better reaction time. This will help increase
food safety. In addition, the prediction of new strains
based on this approach will help reduce and prevent
outbreaks. The authors propose that this model be used
on other types of bacterial pathogens.

DT, RF, SVM and DNN implementation for the
classification of sepsis [76]
Gene expression data for sepsis from GEO and EMBL-EBI
Array Express were classified by Schaack et al. [76]. In
this transcriptome-focused study, a total of 1786 sam-
ples were involved in this study. Out of 1786, 1354 were
sepsis patients, 86 were systemic inflammatory response
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syndrome (SIRS) patients and 346 were healthy indi-
viduals who were used as controls. A comparison of
different algorithms, like DT, RF, SVM and DNNs, with
the conventional DE analysis was performed. DE analysis
of sepsis and non-sepsis demonstrated that 2361 genes
were differentially expressed. Agglomerative hierarchical
clustering identified three main subgroups of samples
in which one of the clusters reordered samples from
both sepsis and non-sepsis samples implying that this
method was not feasible for use on the varied dataset.
Thus, the authors performed ML-based methods for a
better and more reliable diagnosis than the conventional
differential analysis. For DNNs, 80% data were used for
training and the remaining 20% were used for testing
and validation (15%—testing, 5%—validation), whereas
for the other ML algorithms −85% of the data were
used for training and the remaining 15% data were used
for testing. The performance of RF, SVM and DNNs on
unaltered data resulted in mean values of AUC and prob-
ability of correct classification (PCC) of about 0.99 and
0.96, respectively. The DT algorithm showed poor results
yet had high diagnostic performance (mean AUC of 0.946
and mean PCC of 0.924). Resilience testing was done
in three stages, the DNN model was the least affected
and the most reliable algorithm for classification. DEGs
were removed and the residual 3571 genes (∼60%) were
processed. It was observed that DNN model results retain
the same quality of classification. Whereas the other
algorithms were affected. The study suggested that the
DNN algorithm was reliable for the subtyping of diseases
like sepsis, SIRS and trauma even using a small set of
original gene expression data for training [76].

Random committee ensemble learning for the
classification and detection of prostate cancer
[51]
Gumaei et al. proposed a supervised ML method for
the classification and detection of prostate cancer
using transcriptomic approach [51]. The correlation
feature selection (CFS) method was used as a feature
selection method. Random committee (RC) ensemble
learning algorithm using a 10-fold CV technique was
implemented on the gene expression data retrieved
from the European Nucleotide Archive. The authors
chose the CFS method as it takes the correlation among
the features in the feature selection and chose the RC
algorithm as it solves the overfitting problems. Thirty-
eight genes from 2135 genes were selected as impor-
tant features. The confusion matrix accurately classi-
fied 49/50 normal tissues and 48/52 prostate tumors.
The accuracy value and weighted average F1-score for
the approach were 95.098% and 95.1%, respectively. The
proposed approach gave the high recall metric value
for normal tissues and for prostate tumors of 0.98 and
0.923, respectively, and the weighted average result
of the recall metric was 0.951. The method received
a low false positive (FP) rate for normal tissue and
prostate tumor of 0.077 and 0.020, respectively, and the

weighted average result of the FP rate was 0.048. To
authenticate the accuracy of this proposed approach,
the authors performed an experiment with all these
features. Later, the accuracy of the result was compared
with the accuracy value from the method performed
with selected features. It was observed that higher
accuracy was achieved when selected features were used
than when all the features were used. By comparing
and visualizing the accuracy results for the proposed
approach and other related work, it was noted that the
proposed approach performed better than the related
work methods and techniques and received the highest
accuracy [51]. The authors recommended performing
further analyses using gene expression data to provide
better ML-based diagnosis for prostate cancer.

Supervised RF and SVM implementation for the
identification of ASD clusters [77]
Lin et al. presented a supervised ML algorithm for the
identification of clusters for ASD [77]. A total of 31
children diagnosed with ASD were recruited for this
single omics study. RF classification and SVM were
applied to gene expression data downloaded from GEO.
The transcriptome-wide association analysis reported
191 probes associated with SCQ scores with a P < 0.00001
in which 54 DEGs were selected with a fold-change
>2. Two clusters were identified by the RF-partitioning
around medoid (RF-PAM) analysis with a classification
accuracy of 67.7% when the top 10 PCs were used, and
a classification accuracy of 96.9% when all 191 probes
were used for the generation of proximity matrix. The
SVM approach implemented in 7:3 ratio of training data
to testing data with top 10 PC scores gave a classification
accuracy of 93.3% and a classification accuracy of 99.9%
when all 191 probes were used in the analysis. The
SVM clustering results presented that the first two
principal components might classify support vectors
with improved prediction confidence and equated with
the results predicted by the individual probes. The
authors concluded that both methods are effective and
acceptable [77]. The authors propose that this method
can be used for timely intervention of ASD which will
allow appropriate interventions.

Gradient Boosting strategy for the identification
of tumor tissue of origin [78]
In this study, Li et al. proposed a method to identify tumor
tissue of origin in 20 types of solid tumors using the
Gradient Boosting Decision Tree (GBDT) [78]. Expression
data from GEO was used for this analysis. 20 501 genes
in a total of 7713 samples from the TCGA data set were
considered. Feature selection using GBDT determined the
top 400 gene features. A 10-fold CV was implemented.
GBDT was compared with other algorithms like K-NN, DT,
AB and SVM. It was concluded that GBDT had the most
accuracy of 96.1% for 20 cancer types and 83.5% for inde-
pendent datasets. It was detected that the genes HOXB13,
C19orf33, CRYAB, ACTG2, ACTA2, IGFBP2, CSRP1, RAB34,
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SMS, MAGOH, C21orf33, IDI1, TRIM27, ACTL6A and ILVBL
had higher expression whereas the genes OR14A16, CRP
and INS had lower expression [78]. The limitation of this
research is limited to the small sample size as it can lead
to incorrect predictions due to similar gene expression in
the samples. The authors propose increasing the sample
size to address this problem.

RF, Gradient Boosting and XGBoost for the
identification of cancer-selective combinatorial
therapies in ovarian cancer [79]
He et al. worked on combinational therapies for ovarian
cancer. Supervised ML algorithms were implemented:
RF, Gradient Boosting and XGBoost [79]. Binary variables
were used as algorithm inputs for the prediction of 423
drug targets and 110 point mutations. WGS data from
4 HGSOC patients along with the expression levels of
698 cancer genes were studied. The genes consisted of
ovarian and pan-cancer markers. The ovarian cancer
markers were taken from the overexpressed genes
seen in the differential gene expression of 76 HGSOC
samples from the HERCULES study [79]. The pan-cancer
markers were collected from AstraZeneca-Sanger Drug
Combination Prediction DREAM Challenge. The pan-
cancer genes are linked with cancer development, tumor
suppressors and drug sensitivity or resistance. The
whole data were split into two parts, training data
(90%) and testing data (10%), and a 10-fold CV was
used with a leave-drug-out CV setup. The study of
the effect of using scRNA-seq from the EOC0939_pAsc
sample on prediction indicated improvement in the
prediction power of EOC0939 responses. There was no
effect seen when scRNA-seq was considered for all
samples, which suggests that scRNA-seq has impor-
tance. Model comparison identified that in four patient
subpopulations [EOC0939_pAsc PAX8-, EOC1103_pOme1
PAX8+, EOC1103_pOme PAX8-, EOC1107_pAsc PAX8-],
a single multi-patient model performed better than
the patient-specific models. This indicated that using
information from other patients enhanced predictions
[79]. It was observed that patient-specific predictions
were performed by the multi-patient models. The GB
algorithm along with scRNA-seq yielded high accurate
prediction. The model performed better with the low
efficacy drugs. The drug combination predictions ranked
the top combinations and one of the combinations
was selected considering the robustness of the drug
response, translational potential of the combination,
previous success of the single agents of the combination
in clinical trials and the known mechanistic interactions
of the drug targets. Visualization by patientNet R/Shiny
web application was done to understand the patient-
customized co-vulnerability networks. A combination
of Vistusertib (mTOR inhibitor) and A1155463 (BCL2L1
inhibitor) was selected for the sample EOC0939_pAsc,
whereas for EOC1103pOme1 a combination of between
Cobimetinib (MAP2K2 inhibitor) and BMS777607 (DDR1,
MET and MERTK inhibitor) was selected. A combination

of Verdinexor (XPO1 inhibitor) and AZD-8186 (PIK3C
inhibitor) for EOC1103_pPer1 and for EOC1107_pAsc
combination between AZD-5363 (AKT1/2 inhibitor) and
Panobinostat (HDAC9 inhibitor) was selected [79]. A
crucial benefit of this research is the predictive model
that was created to consider the molecular diversity of
cancer cells as well as the possible non-selectivity of drug
interactions with target cells.

Discussion
To advance precision medicine, we need to apply
intelligent prediction methods for finding disease-causal
genetic variants with interactive AI/ML-based analysis,
deep phenotyping and effective visualization [105]. We
can accelerate our ability by using AI/ML algorithms to
leverage and extend the information contained within
the original data, and modelling patient-specific data
(e.g. genomics, clinical and phenotypic) against publicly
available annotation data (e.g. genes, variants, drugs and
diseases) for understanding how coding and non-coding
genomic variations connect to disease mechanisms. This
will help us comprehend a wide variety of problems that
we currently have trouble understanding and will have
enormous impact in both basic and medical sciences.
The current constraints in the implementation of AI/ML
include, but are not limited to, recruitment of patients for
research studies; translational integration of genomics
and diversified public datasets; and development of
AI/ML systems for data-intensive computational mod-
elling to assist clinical decision-making. To enable a more
widespread acceptance of AI/ML in clinical practice,
the following grand challenges must be addressed:
(i) handling inherent error rates in genome-wide and
clinical data; (ii) generation, assessment and dissem-
ination of continuous, longitudinal and AI/ML-ready
datasets; (iii) dealing with the class imbalance problem
[120, 121] and (iv) incorporating data standards, tools,
and ethical and trustworthy AI/ML principles. Accurate
and right evaluation methods are needed to assess the
performance of ML models. We observed that small
datasets often yield a greater classification accuracy,
and this could be because of bias that is produced
[122].

Some common limitations in using AI/ML algorithms
involved small sample size of the disease datasets, which
leads to uncertainty of a model’s predictive ability [60, 74,
78]. The model’s predictive capabilities are reduced with-
out a strong training dataset. Small sample size can lead
to incorrect predictions due to similar gene expression
in the samples. Larger datasets are needed to maximize
the development of the mature model. Another con-
straint that was observed as a direct cause of a smaller
dataset and lack of external validation was the overfit-
ting bias that needs to be addressed in future work [61].
Other limitations focus on the individual models when
compared to one another. The strength of the AVA,Dx
model lies in sequencing methods and panel differences.
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The AVA,Dx model’s predictive capabilities diminished
when the test panel sequences did not share enough loci
with the disease-training panel. In addition, the AVA,Dx
model could only recognize the genetic model of disease
patients rather than healthy patients. Thus, it is unable
to label unaffected patients as healthy [47]. OncoCast-
MPM model requires regular updates [48]. The predictive
ability of SVM was decreased by the inclusion of gene
expression data with the addition of genotype data at
the same loci. The DNN algorithm was reliable for the
subtyping of diseases. The major benefits of utilizing
an AI/ML model are the identification of novel gene–
disease associations giving a better understanding of
disease biology and providing early diagnosis or even
preventing ailments altogether. They could be used to
accurately diagnose a disease and present an initial prog-
nosis that can aid medical personnel [47, 48, 61–71].
Other findings could include gene sets associated with
chronic disorders that could be used as biomarkers for
drug targets [47, 48, 59–71]. Some models accurately
predicted drug responses to a disease. Feature selection
also impacted the outcome of the model and can result
in clustering. Clinical characteristics and environmental
factors can also restrain the predictive power of the
model.

The most widely used AI/ML algorithms are RF and
SVM. The DNN algorithm was found to be reliable for
subtyping of diseases even using a small set of origi-
nal gene expression data for training. AVA,Dx could be
used to construct a model even with a small sample
size. Classifying tasks based on available predictor vari-
ables is a key step to correctly address the problem of
choosing a suitable AI/ML algorithm. List of variables
used in different AI/ML algorithms include abundances
with transcripts per million, mean expressed transcript
length, quantified gene, quality metrics, fragments per
kilobase million, mapping quality, individual with vari-
ant, allele count, genetic loci-reference position, list of
variants, high/moderate impact variants, genotype and
filters (Table 3). It was also noted that these AI/ML algo-
rithms, depending on the disease, may give variable pre-
diction for disease diagnosis. Some beneficial factors
were limited to the scope of the papers. For instance,
authors identified the variants that can be used as a
selective biomarker when it comes to fertility preserva-
tion programs as a substitute for other invasive proce-
dures and tests [72]. While others were able to use their
algorithms to diagnosis cancers of unknown primary
origins using gradient boosting classifiers [78]. A major
suggestion cited by the authors was that their models be
validated in further studies in larger and diverse datasets
such as transcriptome and microarray gene expression
data [48, 51, 63, 69, 70, 73, 74] to allow for increased
accuracy.

To efficiently implement AI/ML in genomics, it is
important to properly construct the prediction model.
Critical steps involve (i) data collection, quality inspec-
tion, cleansing and AI/ML-ready generation; (ii) data

modelling with the establishment of correct associa-
tions between predictive input variables and expected
outcomes and (iii) training and validation of the model
to evaluate the predictive performance [106]. During
cases, when gene variant and gene expression data are
high volume, it is significant to ensure the right balance
between training and actual datasets to avoid overfit-
ting. Knowledgebase of phenotypes and biomarkers is
required to perform longitudinal population study for
analyzing the effects of treatments and establishment
of relevant scientific research [105]. We need to generate
AI/ML-ready datasets, and create training data models
to apply ML algorithms for predictive analysis. Currently,
processed and analyzed gene expression and gene
variant data through available genomic pipelines are not
available in AI/ML-ready formats. With its availability
as AI/ML input, it can be directly used for predictive
analysis and deep phenotyping. There is an unmet need
to develop cross-platform, user/researcher/physician-
friendly and AI/ML-driven scientific software applica-
tions to facilitate automated, reproducible, and timely
heterogeneous and high-volume gene variant and gene
expression predictive data analysis in clinical settings.

The clinical interpretation of the significance of
specific gene variants can be unique to a patient [105].
Therefore, it critical to understand how diseases are
related to each other and the genetic basis of common
diseases, which genes predispose one to a medical
condition, and how rare genetic variants contribute
to diseases [106]. We need to integrate clinical and
genomics data for deep phenotyping and to reveal cases
where absence of genotype–phenotype associations
likely resulted in uncertainty in patient care. This will
be established by assimilating past and current personal
medical history with whole genome and transcriptome
sequences to tailor therapy with the best response by
analyzing an individuals’ genetic makeup. However, a key
challenge in this realm is NGS interpretation with clinical
relevance. Variability in interpretation for sequence
variants is due, in part, to the lack of standard curated
information to support clinical decision-making. With
the rightful application of AI/ML approaches, we need to
support researchers in identifying biomarkers for health
assessment and supporting the process of genetic testing
with the classification of susceptibility genes to detect
changes of clinical significance necessary for customized
therapy and personalized treatment.

In this study, our focus was primarily on WGS/WES-
based gene variant and RNA-seq-driven gene expres-
sion data. However, genomics is not limited to these but
include other NGS data types. Recently, scientists have
carried out and reported research implementing differ-
ent AI/ML approaches using single-cell RNA sequencing
(scRNA-seq) [107–116] (e.g. clustering single-cell RNA-
sequencing data [107]; discovery of minimum marker
gene combinations for cell type [108]; valuating distribu-
tion and prognostic value of new tumor-infiltrating lym-
phocytes [109]; modelling cellular complex systems in
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Table 3. List of variables used in AI/ML algorithms using gene-expression and gene variant data

Algorithm name Variables: Gene expression Variables: Gene variant

SVM TPM; METL; QG; QM; FPKM MQ; I/V; AC; GL; filters
RF TPM; METL; QM; FPKM MQ; GL; L/V; M/IV; filters
DT METL; TPM; QG; FPKM GL
LR TPM; METL; QG AC; genotype
ANN TPM; METL; QG Genotype
K-nearest neighbor (k-NN) QG; METL AC
Gradient Boosting (GB) FPKM; METL AC
NB QG I/V
AB TPM; METL N/A
XGBoost TPM; METL M/IV; filters
Elastic net regularized generalized linear
model

TPM N/A

BART N/A I/V
Bayesian networks N/A I/V
Greedy Thick Thinning algorithm N/A I/V
LDA METL; QG N/A
QDA METL; QG N/A
GPC METL; QG N/A
NMF N/A AC
C4.5 N/A AC
FCA N/A Genotype
Clustering (Unsupervised) N/A Filters; GL
MLR N/A I/V
GA N/A I/V
Logit Boost N/A GL
AVA,Dx N/A MQ
OncoCast-MPM machine-learning
risk-prediction model

N/A M/IV

CADD N/A M/IV; filters
Very Efficient Substitution Transposition
(VEST)

N/A M/IV; filters

Random committee ensemble learning QG N/A
DNNs QM N/A
MERGE QG N/A
EM N/A I/V

Table includes following variables: abundances with transcripts per million (TPM); mean expressed transcript length (METL); quantified gene (QG); quality
metrics (QM); fragments per kilobase million (FPKM); mapping quality (MQ); individual with variant (I/V); allele count (AC); genetic loci reference position (GL);
list of variants (L/V); high/moderate impact variants (MI/V); genotype; and filters. N/A stands for not applicable.

Alzheimer’s disease [110]; systematic experiments on ab
initio knowledge discovery with ML methods on single-
cell RNA-seq data of early embryonic development [111];
investigating functionally significant interactions within
and between cancer cells and T cells [112]; implementing
ML for spatially resolved transcriptomics (SRT) data anal-
ysis [113]; Deconvolute gene expression data with deep
learning [114]; functional classification of regulatory ele-
ments from single-cell and bulk ATAC-seq data with deep
learning [115]; and predict regulatory networks and key
regulatory genes with ML [116]) and Single-Cell ATAC-
Seq (scATAC-Seq) [117–119] (e.g. BABEL generated single-
cell expression for fine-grained classification of complex
cell states [117]; using SCATE to estimate activities of
individual CREs [118] and using deep learning to identify
the islet cell type of action across genetic signals of
type 2 diabetes predisposition [119]). Going forward, it is
important to implement and investigate the potential of
different AI approaches and ML algorithms at heteroge-
neous NGS data types for effective, predictive, genomics
and personalized medicine.

Conclusion
SVM and RF are the most applied AI/ML algorithms,
and GB, LR, ANN, NB, K-NN, dDT and AB are among the
commonly used AI/ML algorithms in genomics for bioin-
formatics, statistics and predictive analyses of a wide
variety of diseases. While SVM provides high accuracy for
both regression and classification tasks, its computing
ability is limited to smaller datasets. Additionally, SVM
hyperparameters need to be adjusted to prevent over-
fitting and underfitting. It also tends to underperform
when the target classes overlap or when the number
of properties for each data point is greater than the
number of training data specimens. Deep neural net-
work algorithms like k-NN and ANN are usually pre-
ferred over SVM when it comes to larger datasets. RF is
a type of ensemble learning model that employs deci-
sion trees to predict an outcome to solve regression
and classification problems. RF is preferred over SVM
when it comes to small datasets as it can provide pre-
dictions without the need for hyperparameter tuning.
However, the drawbacks of RF are not limited to its slow



Genomics data analysis with AI/ML | 21

computing ability with larger datasets. In addition to
its being time-consuming to create so many trees for
prediction, instances of covariate shift do not allow for
the extrapolation of data. Thus, reducing the inerrability
of the decision trees. XGBoost and deep neural network
are two algorithms that are usually preferred to RF due
to their high computing capability and accuracy. Fur-
thermore, to support efficient implementation of AI/ML
approaches, our intensive search showed that no prior
research has been reported for the AI/ML-ready gene
expression and variant data generation.

Key Points

• The convergence of genomics and transcriptomics data,
along with staggering developments in AI/ML, has the
potential to elevate diagnostic and predictive analyses
of major causes of mortality, modifiable risk factors and
other clinically actionable information.

• AI/ML approaches can utilize broad dataset sizes with
heterogeneous levels of granularity and offer multi-
ple supervised and unsupervised approaches to analyze
gene variant and gene expression data with the potential
for development of multivariate statistical tools.

• To practice genetic and AI/ML-driven personalized
medicine, we need to develop pipelines to generate
and disseminate AI/ML-ready data, and address ethical
issues, which involve protected health information asso-
ciated with genomic datasets.

Author contributions
Z.A. proposed and led the study. S.V., H.A. and Z.A.
conducted review and comparative research. S.Z. and
Z.A. evaluated reported findings. Z.A. drafted the
manuscript, and all authors participated in writing,
revision and review and have approved it for publication.

Supplementary Data
Supplementary data are available online at https://bib.
oxfordjournals.org/.

Acknowledgements
We appreciate great support by the Rutgers Institute
for Health, Health Care Policy and Aging Research (IFH);
Department of Medicine, Rutgers Robert Wood Johnson
Medical School (RWJMS); and Rutgers Biomedical and
Health Sciences (RBHS), at the Rutgers, The State Univer-
sity of New Jersey. We thank members and collaborators
of Ahmed Lab at the Rutgers (IFH, RWJMS, RBHS) for their
support, participation and contribution to this study. We
would like to give special thanks to Dr Christopher Bonin
and Dr Geneva Hargis for stylistic and native speaker
corrections.

Funding
Institute for Health, Health Care Policy and Aging
Research (IFH); Rutgers Robert Wood Johnson Medical
School, Rutgers Biomedical and Health Sciences at the
Rutgers, The State University of New Jersey.

References
1. Zeeshan S, Xiong R, Liang BT, et al. 100 Years of evolving gene-

disease complexities and scientific debutants. Brief Bioinform
2020;21(3):885–905. https://doi.org/10.1093/bib/bbz038.

2. Ahmed Z, Zeeshan S, Mendhe D, et al. Human gene
and disease associations for clinical-genomics and preci-
sion medicine research. Clin Transl Med 2020;10(1):297–318.
https://doi.org/10.1002/ctm2.28.

3. Martin AR, Kanai M, Kamatani Y, et al. Publisher
correction: clinical use of current polygenic risk scores
may exacerbate health disparities. Nat Genet 2021;53(5):763.
https://doi.org/10.1038/s41588-021-00797-z.

4. Ahmed Z, Renart EG, Zeeshan S. Genomics pipelines to inves-
tigate susceptibility in whole genome and exome sequenced
data for variant discovery, annotation, prediction and genotyp-
ing. PeerJ 2021;9:e11724. https://doi.org/10.7717/peerj.11724.

5. Ahmed Z, Renart EG, Mishra D, et al. JWES: a new pipeline
for whole genome/exome sequence data processing, man-
agement, and gene-variant discovery, annotation, predic-
tion, and genotyping. FEBS Open Bio 2021;11(9):2441–52.
https://doi.org/10.1002/2211-5463.13261.

6. Ahmed Z, Renart EG, Zeeshan S, et al. Advancing clinical
genomics and precision medicine with GVViZ: FAIR bioinfor-
matics platform for variable gene-disease annotation, visual-
ization, and expression analysis. Hum Genomics 2021;15(1):37.
https://doi.org/10.1186/s40246-021-00336-1.

7. Lewis CM, Vassos E. Polygenic risk scores: from research
tools to clinical instruments. Genome Med 2020;12(1):44.
https://doi.org/10.1186/s13073-020-00742-5.

8. Ahmed Z. Practicing precision medicine with intelligently inte-
grative clinical and multi-omics data analysis. Hum Genomics
2020;14(1):35. https://doi.org/10.1186/s40246-020-00287-z.

9. Ahmed Z, Mohamed K, Zeeshan S, et al. Artificial intelligence
with multi-functional machine learning platform development
for better healthcare and precision medicine. Database (Oxford)
2020;2020:baaa010. https://doi.org/10.1093/database/baaa010.

10. Ahmed Z. Intelligent health system for the investigation of
consenting COVID-19 patients and precision medicine. Pers Med
2021;18(6):573–82. https://doi.org/10.2217/pme-2021-0068.

11. Rigatti SJ. Random Forest. J Insur Med 2017;47(1):31–9.
https://doi.org/10.17849/insm-47-01-31-39.1.

12. Chen X, Ishwaran H. Random forests for
genomic data analysis. Genomics 2012;99(6):323–9.
https://doi.org/10.1016/j.ygeno.2012.04.003.

13. Byvatov E, Schneider G. Support vector machine applications
in bioinformatics. Appl Bioinforma 2003;2(2):67–77.

14. Huang S, Cai N, Pacheco PP, et al. Applications of
support vector machine (SVM) learning in cancer
genomics. Cancer Genomics Proteomics 2018;15(1):41–51.
https://doi.org/10.21873/cgp.20063.

15. González-Recio O, Jiménez-Montero JA, Alenda R. The gradient
boosting algorithm and random boosting for genome-assisted
evaluation in large data sets. J Dairy Sci 2013;96(1):614–24.
https://doi.org/10.3168/jds.2012-5630.

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbac191#supplementary-data
https://bib.oxfordjournals.org/
https://bib.oxfordjournals.org/
https://doi.org/https://doi.org/10.1093/bib/bbz038
https://doi.org/https://doi.org/10.1002/ctm2.28
https://doi.org/https://doi.org/10.1038/s41588-021-00797-z
https://doi.org/https://doi.org/10.7717/peerj.11724
https://doi.org/https://doi.org/10.1002/2211-5463.13261
https://doi.org/https://doi.org/10.1186/s40246-021-00336-1
https://doi.org/https://doi.org/10.1186/s13073-020-00742-5
https://doi.org/https://doi.org/10.1186/s40246-020-00287-z
https://doi.org/https://doi.org/10.1093/database/baaa010
https://doi.org/https://doi.org/10.2217/pme-2021-0068
https://doi.org/https://doi.org/10.17849/insm-47-01-31-39.1
https://doi.org/https://doi.org/10.1016/j.ygeno.2012.04.003
https://doi.org/https://doi.org/10.21873/cgp.20063
https://doi.org/https://doi.org/10.3168/jds.2012-5630


22 | S. Vadapalli et al.

16. Ying J, Wang Q, Xu T, et al. Diagnostic potential of a gradient
boosting-based model for detecting pediatric sepsis.
Genomics 2021;113(1 Pt 2):874–83. https://doi.org/10.1016
/j.ygeno.2020.10.018.

17. Liu K, Chen W, Lin H. XG-PseU: an eXtreme
Gradient Boosting based method for identifying
pseudouridine sites. Mol Gen Genom 2020;295(1):13–21.
https://doi.org/10.1007/s00438-019-01600-9.

18. Parente DJ. PolyBoost: an enhanced genomic variant classifier
using extreme gradient boosting. Proteomics Clin Appl 2021;15(2–
3):e1900124. https://doi.org/10.1002/prca.201900124.

19. Ogutu JO, Schulz-Streeck T, Piepho HP. Genomic selection using
regularized linear regression models: ridge regression, lasso,
elastic net and their extensions. BMC Proc 2012;6(Suppl 2):S10.
https://doi.org/10.1186/1753-6561-6-S2-S10.

20. Candia J, Tsang JS. eNetXplorer: an R package for the
quantitative exploration of elastic net families for gen-
eralized linear models. BMC Bioinformatics 2019;20(1):189.
https://doi.org/10.1186/s12859-019-2778-5.

21. Nick TG, Campbell KM. Logistic regression. Methods
Mol Biol 2007;404:273–301. https://doi.org/10.1007/978-1-59745
-530-5_14.

22. Sperandei S. Understanding logistic regres-
sion analysis. Biochem Med 2014;24(1):12–8.
https://doi.org/10.11613/BM.2014.003.

23. Zou J, Han Y, So SS. Overview of artificial neu-
ral networks. Methods Mol Biol 2008;458:15–23.
https://doi.org/10.1007/978-1-60327-101-1_2.

24. Zhang Z. A gentle introduction to artificial
neural networks. Ann Transl Med 2016;4(19):370.
https://doi.org/10.21037/atm.2016.06.20.

25. Schmidhuber J. Deep learning in neural net-
works: an overview. Neural Netw 2015;61:85–117.
https://doi.org/10.1016/j.neunet.2014.09.003.

26. Langarizadeh M, Moghbeli F. Applying naive Bayesian
networks to disease prediction: a systematic
review. Acta Informatica Medica 2016;24(5):364–9.
https://doi.org/10.5455/aim.2016.24.364-369.

27. Malovini A, Barbarini N, Bellazzi R, et al. Hierar-
chical naive Bayes for genetic association studies.
BMC Bioinformatics 2012;13 Suppl 14(Suppl 14):S6.
https://doi.org/10.1186/1471-2105-13-S14-S6.

28. Tan YV, Roy J. Bayesian additive regression trees and
the general BART model. Stat Med 2019;38(25):5048–69.
https://doi.org/10.1002/sim.8347.

29. Friedman N, Linial M, Nachman I, et al. Using Bayesian net-
works to analyze expression data. J Comput Biol 2000;7(3–4):
601–20. https://doi.org/10.1089/106652700750050961.

30. Liu Z, Malone B, Yuan C. Empirical evaluation
of scoring functions for Bayesian network model
selection. BMC Bioinformatics 2012;13(Suppl 15):S14.
https://doi.org/10.1186/1471-2105-13-S15-S14.

31. Zhang Z. Introduction to machine learning: k-
nearest neighbors. Ann Transl Med 2016;4(11):218.
https://doi.org/10.21037/atm.2016.03.37.

32. Kingsford C, Salzberg SL. What are decision trees? Nat Biotechnol
2008;26(9):1011–3. https://doi.org/10.1038/nbt0908-1011.

33. Ricciardi C, Valente AS, Edmund K, et al. Linear discriminant
analysis and principal component analysis to predict coro-
nary artery disease. Health Informatics J 2020;26(3):2181–92.
https://doi.org/10.1177/1460458219899210.

34. Ryback RS, Eckardt MJ, Rawlings RR, et al. Quadratic
discriminant analysis as an aid to interpretive reporting

of clinical laboratory tests. JAMA 1982;248(18):2342–5.
10.1001/jama.1982.03330180088048.

35. Liu H, Ong YS, Yu Z, et al. Scalable Gaussian process classifica-
tion with additive noise for non-Gaussian likelihoods. IEEE Trans
Cybern 2021;1–13. https://doi.org/10.1109/TCYB.2020.3043355.

36. Chen S, Shen B, Wang X, et al. A strong machine learning
classifier and decision stumps based hybrid AdaBoost classifi-
cation algorithm for cognitive radios. Sensors (Basel, Switzerland)
2019;19(23):5077. https://doi.org/10.3390/s19235077.

37. Yang Z, Michailidis G. A non-negative matrix factorization
method for detecting modules in heterogeneous omics multi-
modal data. Bioinformatics (Oxford, England) 2016;32(1):btv544–8.
https://doi.org/10.1093/bioinformatics/btv544.

38. Frigyesi A, Höglund M. Non-negative matrix factorization for
the analysis of complex gene expression data: identification
of clinically relevant tumor subtypes. Cancer Informat 2008;6:
275–92. https://doi.org/10.4137/cin.s606.

39. Lamy JB, Ellini A, Ebrahiminia V, et al. Use of the C4.5
machine learning algorithm to test a clinical guideline-based
decision support system. Stud Health Technol Inform 2008;136:
223–8.

40. Wiharto W, Kusnanto H, Herianto H. Interpretation of clin-
ical data based on C4.5 algorithm for the diagnosis of
coronary heart disease. Healthc Inform Res 2016;22(3):186–95.
https://doi.org/10.4258/hir.2016.22.3.186.

41. Keller BJ, Eichinger F, Kretzler M. Formal concept analysis of
disease similarity. AMIA Joint Summits on Translational Sci-
ence proceedings. AMIA Jt Summits Transl Sci 2012;2012:42–51.

42. Frades I, Matthiesen R. Overview on techniques in
cluster analysis. Methods Mol Biol 2010;593:81–107.
https://doi.org/10.1007/978-1-60327-194-3_5.

43. Rodriguez MZ, Comin CH, Casanova D, et al. Clustering algo-
rithms: a comparative approach. PLoS One 2019;14(1):e0210236.
https://doi.org/10.1371/journal.pone.0210236.

44. Eberly LE. Multiple linear regression. Methods Mol Biol 2007;404:
165–87. https://doi.org/10.1007/978-1-59745-530-5_9.

45. Katoch S, Chauhan SS, Kumar V. A review on genetic algo-
rithm: past, present, and future. Multimed Tools Appl 2020;80(5):
8091–126. https://doi.org/10.1007/s11042-020-10139-6.

46. Kim K, Seo M, Kang H, et al. Application
of LogitBoost classifier for traceability using
SNP Chip data. PLoS One 2015;10(10):e0139685.
https://doi.org/10.1371/journal.pone.0139685.

47. Wang Y, Miller M, Astrakhan Y, et al. Identifying Crohn’s dis-
ease signal from variome analysis. Genome Med 2019;11(1):59.
https://doi.org/10.1186/s13073-019-0670-6.

48. Zauderer MG, Martin A, Egger J, et al. The use
of a next-generation sequencing-derived machine-
learning risk-prediction model (OncoCast-MPM)
for malignant pleural mesothelioma: a retrospec-
tive study. Lancet Digital Health 2021;3(9):e565–76.
https://doi.org/10.1016/S2589-7500(21)00104-7.

49. Rentzsch P, Witten D, Cooper GM, et al. CADD:
predicting the deleteriousness of variants throughout the
human genome. Nucleic Acids Res 2019;47(D1):D886–94.
https://doi.org/10.1093/nar/gky1016.

50. Douville C, Masica DL, Stenson PD, et al. Assessing the
pathogenicity of insertion and deletion variants with the Vari-
ant Effect Scoring Tool (VEST-Indel). Hum Mutat 2016;37(1):
28–35. https://doi.org/10.1002/humu.22911.

51. Gumaei A, Sammouda R, Al-Rakhami M, et al.
Feature selection with ensemble learning for prostate
cancer diagnosis from microarray gene expression.

https://doi.org/https://doi.org/10.1016
https://doi.org//j.ygeno.2020.10.018
https://doi.org/https://doi.org/10.1007/s00438-019-01600-9
https://doi.org/https://doi.org/10.1002/prca.201900124
https://doi.org/https://doi.org/10.1186/1753-6561-6-S2-S10
https://doi.org/https://doi.org/10.1186/s12859-019-2778-5
https://doi.org/https://doi.org/10.1007/978-1-59745
https://doi.org/-530-5_14
https://doi.org/https://doi.org/10.11613/BM.2014.003
https://doi.org/https://doi.org/10.1007/978-1-60327-101-1_2
https://doi.org/https://doi.org/10.21037/atm.2016.06.20
https://doi.org/https://doi.org/10.1016/j.neunet.2014.09.003
https://doi.org/https://doi.org/10.5455/aim.2016.24.364-369
https://doi.org/https://doi.org/10.1186/1471-2105-13-S14-S6
https://doi.org/https://doi.org/10.1002/sim.8347
https://doi.org/https://doi.org/10.1089/106652700750050961
https://doi.org/https://doi.org/10.1186/1471-2105-13-S15-S14
https://doi.org/https://doi.org/10.21037/atm.2016.03.37
https://doi.org/https://doi.org/10.1038/nbt0908-1011
https://doi.org/https://doi.org/10.1177/1460458219899210
https://doi.org/10.1001/jama.1982.03330180088048
https://doi.org/https://doi.org/10.1109/TCYB.2020.3043355
https://doi.org/https://doi.org/10.3390/s19235077
https://doi.org/https://doi.org/10.1093/bioinformatics/btv544
https://doi.org/https://doi.org/10.4137/cin.s606
https://doi.org/https://doi.org/10.4258/hir.2016.22.3.186
https://doi.org/https://doi.org/10.1007/978-1-60327-194-3_5
https://doi.org/https://doi.org/10.1371/journal.pone.0210236
https://doi.org/https://doi.org/10.1007/978-1-59745-530-5_9
https://doi.org/https://doi.org/10.1007/s11042-020-10139-6
https://doi.org/https://doi.org/10.1371/journal.pone.0139685
https://doi.org/https://doi.org/10.1186/s13073-019-0670-6
https://doi.org/https://doi.org/10.1016/S2589-7500(21)00104-7
https://doi.org/https://doi.org/10.1093/nar/gky1016
https://doi.org/https://doi.org/10.1002/humu.22911


Genomics data analysis with AI/ML | 23

Health Informatics J 2021;27(1):1460458221989402.
https://doi.org/10.1177/1460458221989402.

52. Choi RY, Coyner AS, Kalpathy-Cramer J, et al. Introduction to
machine learning, neural networks, and deep learning. Transl
Vis Sci Technol 2020;9(2):14. https://doi.org/10.1167/tvst.9.2.14.

53. Georgevici AI, Terblanche M. Neural networks and deep learn-
ing: a brief introduction. Intensive Care Med 2019;45(5):712–4.
https://doi.org/10.1007/s00134-019-05537-w.

54. Attimonelli M, Lanave C, Liuni S, et al. MERGE: a software
package for generating a single data-base starting from EMBL
and GenBank collections. Nucleic Acids Res 1988;16(5):1681–2.
https://doi.org/10.1093/nar/16.5.1681.

55. Do CB, Batzoglou S. What is the expectation max-
imization algorithm? Nat Biotechnol 2008;26(8):897–9.
https://doi.org/10.1038/nbt1406.

56. Zheng B, Agresti A. Summarizing the predictive power of a
generalized linear model. Stat Med 2000;19(13):1771–81.

57. Eddy SR. Hidden Markov models. Curr Opin Struct Biol 1996;6(3):
361–5. https://doi.org/10.1016/s0959-440x(96)80056-x.

58. de Hond A, Leeuwenberg AM, Hooft L, et al. Guidelines and
quality criteria for artificial intelligence-based prediction mod-
els in healthcare: a scoping review. NPJ Digital Med 2022;5(1):2.
https://doi.org/10.1038/s41746-021-00549-7.

59. Isakov O, Dotan I, Ben-Shachar S. Machine learning-based gene
prioritization identifies novel candidate risk genes for inflam-
matory bowel disease. Inf lamm Bowel Dis 2017;23(9):1516–23.
https://doi.org/10.1097/MIB.0000000000001222.

60. Kegerreis B, Catalina MD, Bachali P, et al. Machine
learning approaches to predict lupus disease activity
from gene expression data. Sci Rep 2019;9(1):9617.
https://doi.org/10.1038/s41598-019-45989-0.

61. Menti E, Lanera C, Lorenzoni G, et al. Bayesian machine learning
techniques for revealing complex interactions among genetic
and clinical factors in association with extra-intestinal man-
ifestations in IBD patients. AMIA Annu Symp Proc 2017;2016:
884–93.

62. Wang HY, Chang SC, Lin WY, et al. Machine learning-
based method for obesity risk evaluation using
single-nucleotide polymorphisms derived from next-
generation sequencing. J Comput Biol 2018;25(12):1347–60.
https://doi.org/10.1089/cmb.2018.0002.

63. Maniruzzaman M, Jahanur Rahman M, Ahammed B, et al.
Statistical characterization and classification of colon microar-
ray gene expression data using multiple machine learn-
ing paradigms. Comput Methods Prog Biomed 2019;176:173–93.
https://doi.org/10.1016/j.cmpb.2019.04.008.

64. Vural S, Wang X, Guda C. Classification of breast can-
cer patients using somatic mutation profiles and machine
learning approaches. BMC Syst Biol 2016;10(Suppl 3):62.
https://doi.org/10.1186/s12918-016-0306-z.

65. Lee SI, Celik S, Logsdon BA, et al. A machine learning
approach to integrate big data for precision medicine
in acute myeloid leukemia. Nat Commun 2018;9(1):42.
https://doi.org/10.1038/s41467-017-02465-5.

66. Hampel H, Williams C, Etcheto A, et al. A precision medicine
framework using artificial intelligence for the identification
and confirmation of genomic biomarkers of response to
an Alzheimer’s disease therapy: analysis of the Blarcame-
sine (ANAVEX2-73) phase 2a clinical study. Alzheimers Dement
2020;6(1):e12013. https://doi.org/10.1002/trc2.12013.

67. Zhao S, Bao Z, Zhao X, et al. Identification of diagnostic
markers for major depressive disorder using machine

learning methods. Front Neurosci 2021;15:645998.
https://doi.org/10.3389/fnins.2021.645998.

68. Li H, Lai L, Shen J. Development of a susceptibility gene
based novel predictive model for the diagnosis of
ulcerative colitis using random forest and artifi-
cial neural network. Aging 2020;12(20):20471–82.
https://doi.org/10.18632/aging.103861.

69. Qi B, Ramamurthy J, Bennani I, et al. Machine learning
and bioinformatic analysis of brain and blood mRNA pro-
files in major depressive disorder: a case-control study. Am
J Med Genetics B Neuropsychiatr Genetics 2021;186(2):101–12.
https://doi.org/10.1002/ajmg.b.32839.

70. Trakadis YJ, Sardaar S, Chen A, et al. Machine learning
in schizophrenia genomics, a case-control study using
5,090 exomes. Am J Med Genet B Neuropsychiatr
Genet 2019;180(2):103–12. https://doi.org/10.1002/ajmg.
b.32638.

71. Sardaar S, Qi B, Dionne-Laporte A, et al. Machine learning
analysis of exome trios to contrast the genomic architecture
of autism and schizophrenia. BMC Psychiatry 2020;20(1):92.
https://doi.org/10.1186/s12888-020-02503-5.

72. Henarejos-Castillo I, Aleman A, Martinez-Montoro
B, et al. Machine learning-based approach highlights
the use of a genomic variant profile for precision
medicine in ovarian failure. J Pers Med 2021;11(7):609.
https://doi.org/10.3390/jpm11070609.

73. Jin H, Ahn J, Park Y, et al. Identification of potential
causal variants for premature ovarian failure by whole
exome sequencing. BMC Med Genet 2020;13(1):159.
https://doi.org/10.1186/s12920-020-00813-x.

74. Held E, Cape J, Tintle N. Comparing machine learning
and logistic regression methods for predicting hyperten-
sion using a combination of gene expression and next-
generation sequencing data. BMC Proc 2016;10(Suppl 7):141–5.
https://doi.org/10.1186/s12919-016-0020-2.

75. Njage P, Henri C, Leekitcharoenphon P, et al. Machine learning
methods as a tool for predicting risk of illness applying next-
generation sequencing data. Risk Anal 2019;39(6):1397–413.
https://doi.org/10.1111/risa.13239.

76. Schaack D, Weigand MA, Uhle F. Comparison of machine-
learning methodologies for accurate diagnosis of
sepsis using microarray gene expression data. PLoS
One 2021;16(5):e0251800. https://doi.org/10.1371/
journal.pone.0251800.

77. Lin PI, Moni MA, Gau SS, et al. Identifying subgroups of
patients with autism by gene expression profiles using
machine learning algorithms. Front Psychol 2021;12:637022.
https://doi.org/10.3389/fpsyt.2021.637022.

78. Li R, Liao B, Wang B, et al. Identification of tumor
tissue of origin with RNA-Seq data and using gradient
boosting strategy. Biomed Res Int 2021;2021:6653793.
https://doi.org/10.1155/2021/6653793.

79. He L, Bulanova D, Oikkonen J, et al. Network-guided
identification of cancer-selective combinatorial therapies
in ovarian cancer. Brief Bioinform 2021;22(6):bbab272.
https://doi.org/10.1093/bib/bbab272.

80. Khor B, Gardet A, Xavier RJ. Genetics and pathogenesis of
inflammatory bowel disease. Nature 2011;474(7351):307–17.
https://doi.org/10.1038/nature10209.

81. Kaul A, Gordon C, Crow MK, et al. Systemic lupus
erythematosus. Nat Rev Dis Primers 2016;2(1):16039.
https://doi.org/10.1038/nrdp.2016.39.

https://doi.org/https://doi.org/10.1177/1460458221989402
https://doi.org/https://doi.org/10.1167/tvst.9.2.14
https://doi.org/https://doi.org/10.1007/s00134-019-05537-w
https://doi.org/https://doi.org/10.1093/nar/16.5.1681
https://doi.org/https://doi.org/10.1038/nbt1406
https://doi.org/https://doi.org/10.1016/s0959-440x(96)80056-x
https://doi.org/https://doi.org/10.1038/s41746-021-00549-7
https://doi.org/https://doi.org/10.1097/MIB.0000000000001222
https://doi.org/https://doi.org/10.1038/s41598-019-45989-0
https://doi.org/https://doi.org/10.1089/cmb.2018.0002
https://doi.org/https://doi.org/10.1016/j.cmpb.2019.04.008
https://doi.org/https://doi.org/10.1186/s12918-016-0306-z
https://doi.org/https://doi.org/10.1038/s41467-017-02465-5
https://doi.org/https://doi.org/10.1002/trc2.12013
https://doi.org/https://doi.org/10.3389/fnins.2021.645998
https://doi.org/https://doi.org/10.18632/aging.103861
https://doi.org/https://doi.org/10.1002/ajmg.b.32839
https://doi.org/https://doi.org/10.1002/ajmg.
https://doi.org/b.32638
https://doi.org/https://doi.org/10.1186/s12888-020-02503-5
https://doi.org/https://doi.org/10.3390/jpm11070609
https://doi.org/https://doi.org/10.1186/s12920-020-00813-x
https://doi.org/https://doi.org/10.1186/s12919-016-0020-2
https://doi.org/https://doi.org/10.1111/risa.13239
https://doi.org/https://doi.org/10.1371/
https://doi.org/journal.pone.0251800
https://doi.org/https://doi.org/10.3389/fpsyt.2021.637022
https://doi.org/https://doi.org/10.1155/2021/6653793
https://doi.org/https://doi.org/10.1093/bib/bbab272
https://doi.org/https://doi.org/10.1038/nature10209
https://doi.org/https://doi.org/10.1038/nrdp.2016.39


24 | S. Vadapalli et al.

82. Baumgart DC, Sandborn WJ. Crohn’s disease.
Lancet (London, England) 2012;380(9853):1590–605.
https://doi.org/10.1016/S0140-6736(12)60026-9.

83. Oussaada SM, van Galen KA, Cooiman MI, et al. The
pathogenesis of obesity. Metab Clin Exp 2019;92:26–36.
https://doi.org/10.1016/j.metabol.2018.12.012.

84. Cappell MS. Pathophysiology, clinical presentation, and man-
agement of colon cancer. Gastroenterol Clin N Am 2008;37(1):
1–24. https://doi.org/10.1016/j.gtc.2007.12.002.

85. Pearce L. Breast cancer. Nurs Stand 2016;30(51):15.
https://doi.org/10.7748/ns.30.51.15.s16.

86. Khwaja A, Bjorkholm M, et al. Acute myeloid
leukaemia. Nat Rev Dis Primers 2016;2(1):16010.
https://doi.org/10.1038/nrdp.2016.10.

87. Eratne D, Loi SM, Farrand S, et al. Alzheimer’s disease:
clinical update on epidemiology, pathophysiology
and diagnosis. Australas Psychiatry 2018;26(4):347–57.
https://doi.org/10.1177/1039856218762308.

88. Verduijn J, Milaneschi Y, Schoevers RA, et al. Pathophysiology
of major depressive disorder: mechanisms involved in etiology
are not associated with clinical progression. Transl Psychiatry
2015;5(9):e649. https://doi.org/10.1038/tp.2015.137.

89. Feuerstein JD, Moss AC, Farraye FA. Ulcera-
tive colitis. Mayo Clin Proc 2019;94(7):1357–73.
https://doi.org/10.1016/j.mayocp.2019.01.018.

90. Stevens JR. Pathophysiology of schizophrenia. Clin Neurophar-
macol 1983;6(2):77–90. https://doi.org/10.1097/00002826-
198306000-00002.

91. Anderson G. Autism spectrum disorder: pathophysiology and
treatment implications. Curr Pharm Des 2019;25(41):4319–20.
https://doi.org/10.2174/138161282541191230102715.

92. Shelling AN. Premature ovarian failure. Repro-
duction (Cambridge, England) 2010;140(5):633–41.
https://doi.org/10.1530/REP-09-0567.

93. Folkow B. Pathophysiology of hypertension: differences
between young and elderly. J Hypertens 1993;11(4):S21–4.

94. Hodges H, Fealko C, Soares N. Autism spectrum
disorder: definition, epidemiology, causes, and clinical
evaluation. Transl Pediatr 2020;9(Suppl 1):S55–65.
https://doi.org/10.21037/tp.2019.09.09.

95. Gotts JE, Matthay MA. Sepsis: pathophysiology and
clinical management. BMJ (Clin Res ed) 2016;353:i1585.
https://doi.org/10.1136/bmj.i1585.

96. Repetto L, Granetto C, Hall RR. Prostate cancer. Crit Rev
Oncol Hematol 1998;27(2):145–6. https://doi.org/10.1016/s1040
8428(97)10024-5.

97. Van Marck E. Pathology of malignant mesothelioma. Lung
Cancer (Amsterdam, Netherlands) 2004;45(Suppl 1):S35–6.
https://doi.org/10.1016/j.lungcan.2004.04.006.

98. Kroeger PT, Jr, Drapkin R. Pathogenesis and heterogeneity
of ovarian cancer. Curr Opin Obstet Gynecol 2017;29(1):26–34.
https://doi.org/10.1097/GCO.0000000000000340.

99. Tsimberidou AM, Fountzilas E, Nikanjam M, et al.
Review of precision cancer medicine: evolution of the
treatment paradigm. Cancer Treat Rev 2020;86:102019.
https://doi.org/10.1016/j.ctrv.2020.102019.

100. Langfelder P, Horvath S. WGCNA: an R package for weighted
correlation network analysis. BMC Bioinformatics 2008;9(1):559.
https://doi.org/10.1186/1471-2105-9-559.

101. Uribe AG, Vilá LM, McGwin G, Jr, et al. The systemic lupus
activity measure-revised, the Mexican Systemic Lupus Ery-
thematosus Disease Activity Index (SLEDAI), and a modified

SLEDAI-2K are adequate instruments to measure disease activ-
ity in systemic lupus erythematosus. J Rheumatol 2004;31(10):
1934–40.

102. Costa-Silva J, Domingues D, Lopes FM. RNA-Seq
differential expression analysis: an extended review
and a software tool. PLoS One 2017;12(12):e0190152.
10.1371/journal.pone.0190152.

103. Hänzelmann S, Castelo R, Guinney J. GSVA: gene set variation
analysis for microarray and RNA-seq data. BMC Bioinformatics
2013;14(1):1–15. 10.1186/1471-2105-14-7.

104. Schaid DJ, Chen W, Larson NB. From genome-wide
associations to candidate causal variants by statistical
fine-mapping. Nat Rev Genet 2018;19(8):491–504.
https://doi.org/10.1038/s41576-018-0016-z.

105. Ahmed Z. Precision medicine with multi-omics strategies, deep
phenotyping, and predictive analysis. Prog Mol Biol Transl Sci
2022. https://doi.org/10.1016/bs.pmbts.2022.02.002.

106. Ahmed Z. Multi-omics strategies for personalized and
predictive medicine: past, current, and future translational
opportunities. Emerg Topics Life Sci 2022;ETLS20210244.
https://doi.org/10.1042/ETLS20210244.

107. Petegrosso R, Li Z, Kuang R. Machine learning and
statistical methods for clustering single-cell RNA-
sequencing data. Brief Bioinform 2020;21(4):1209–23.
https://doi.org/10.1093/bib/bbz063.

108. Aevermann B, Zhang Y, Novotny M, et al. A machine
learning method for the discovery of minimum marker
gene combinations for cell type identification from single-
cell RNA sequencing. Genome Res 2021;31(10):1767–80.
https://doi.org/10.1101/gr.275569.121.

109. Li L, Shen L, Ma J, et al. Evaluating distribution and prognostic
value of new tumor-infiltrating lymphocytes in HCC based on
a scRNA-Seq study with CIBERSORTx. Front Med 2020;7:451.
10.3389/fmed.2020.00451.

110. Vrahatis AG, Vlamos P, Avramouli A, et al. Emerging machine
learning techniques for modelling cellular complex systems
in Alzheimer’s disease. Adv Exp Med Biol 2021;1338:199–208.
https://doi.org/10.1007/978-3-030-78775-2_24.

111. Shah N, Li J, Li F, et al. An experiment on ab initio dis-
covery of biological knowledge from scRNA-Seq data using
machine learning. Patterns (New York, NY) 2020;1(5):100071.
https://doi.org/10.1016/j.patter.2020.100071.

112. Chen Z, Yang X, Bi G, et al. Ligand-receptor interaction
atlas within and between tumor cells and T cells in
lung adenocarcinoma. Int J Biol Sci 2020;16(12):2205–19.
https://doi.org/10.7150/ijbs.42080.

113. Hu J, Schroeder A, Coleman K, et al. Statistical and machine
learning methods for spatially resolved transcriptomics
with histology. Comput Struct Biotechnol J 2021;19:3829–41.
https://doi.org/10.1016/j.csbj.2021.06.052.

114. Torroja C, Sanchez-Cabo F. Digitaldlsorter: deep-learning on
scRNA-Seq to deconvolute gene expression data. Front Genet
2019;10:978. https://doi.org/10.3389/fgene.2019.00978.

115. Thibodeau A, Khetan S, Eroglu A, et al. CoRE-ATAC: a
deep learning model for the functional classification
of regulatory elements from single cell and bulk
ATAC-seq data. PLoS Comput Biol 2021;17(12):e1009670.
https://doi.org/10.1371/journal.pcbi.1009670.

116. Li S, Yan H, Lee J. Identification of gene regulatory net-
works from single-cell expression data. Methods Mol Biol
(Clifton, NJ) 2021;2328:153–70. https://doi.org/10.1007/978-1-
0716-1534-8_9.

https://doi.org/https://doi.org/10.1016/S0140-6736(12)60026-9
https://doi.org/https://doi.org/10.1016/j.metabol.2018.12.012
https://doi.org/https://doi.org/10.1016/j.gtc.2007.12.002
https://doi.org/https://doi.org/10.7748/ns.30.51.15.s16
https://doi.org/https://doi.org/10.1038/nrdp.2016.10
https://doi.org/https://doi.org/10.1177/1039856218762308
https://doi.org/https://doi.org/10.1038/tp.2015.137
https://doi.org/https://doi.org/10.1016/j.mayocp.2019.01.018
https://doi.org/https://doi.org/10.1097/00002826-
https://doi.org/198306000-00002
https://doi.org/https://doi.org/10.2174/138161282541191230102715
https://doi.org/https://doi.org/10.1530/REP-09-0567
https://doi.org/https://doi.org/10.21037/tp.2019.09.09
https://doi.org/https://doi.org/10.1136/bmj.i1585
https://doi.org/https://doi.org/10.1016/s1040
https://doi.org/8428(97)10024-5
https://doi.org/https://doi.org/10.1016/j.lungcan.2004.04.006
https://doi.org/https://doi.org/10.1097/GCO.0000000000000340
https://doi.org/https://doi.org/10.1016/j.ctrv.2020.102019
https://doi.org/https://doi.org/10.1186/1471-2105-9-559
https://doi.org/10.1371/journal.pone.0190152
https://doi.org/10.1186/1471-2105-14-7
https://doi.org/https://doi.org/10.1038/s41576-018-0016-z
https://doi.org/https://doi.org/10.1016/bs.pmbts.2022.02.002
https://doi.org/https://doi.org/10.1042/ETLS20210244
https://doi.org/https://doi.org/10.1093/bib/bbz063
https://doi.org/https://doi.org/10.1101/gr.275569.121
https://doi.org/10.3389/fmed.2020.00451
https://doi.org/https://doi.org/10.1007/978-3-030-78775-2_24
https://doi.org/https://doi.org/10.1016/j.patter.2020.100071
https://doi.org/https://doi.org/10.7150/ijbs.42080
https://doi.org/https://doi.org/10.1016/j.csbj.2021.06.052
https://doi.org/https://doi.org/10.3389/fgene.2019.00978
https://doi.org/https://doi.org/10.1371/journal.pcbi.1009670
https://doi.org/https://doi.org/10.1007/978-1-
https://doi.org/0716-1534-8_9


Genomics data analysis with AI/ML | 25

117. Wu KE, Yost KE, Chang HY, et al. BABEL enables cross-modality
translation between multiomic profiles at single-cell reso-
lution. Proc Natl Acad Sci U S A 2021;118(15):e2023070118.
https://doi.org/10.1073/pnas.2023070118.

118. Ji Z, Zhou W, Hou W, et al. Single-cell ATAC-seq signal extrac-
tion and enhancement with SCATE. Genome Biol 2020;21(1):161.
https://doi.org/10.1186/s13059-020-02075-3.

119. Rai V, Quang DX, Erdos MR, et al. Single-cell ATAC-
Seq in human pancreatic islets and deep learning
upscaling of rare cells reveals cell-specific type 2
diabetes regulatory signatures. Mol Metab 2020;32:109–21.
https://doi.org/10.1016/j.molmet.2019.12.006.

120. Schubach M, Re M, Robinson PN, et al. Imbalance-aware
machine learning for predicting rare and common disease-
associated non-coding variants. Sci Rep 2017;7(1):2959.
https://doi.org/10.1038/s41598-017-03011-5.

121. Bugnon LA, Yones C, Milone DH, et al. Deep neural
architectures for highly imbalanced data in bioinformatics.
IEEE Trans Neural Netw Learn Systems 2020;31(8):2857–67.
https://doi.org/10.1109/TNNLS.2019.2914471.

122. Vabalas A, Gowen E, Poliakoff E, et al. Machine
learning algorithm validation with a limited
sample size. PLoS One 2019;14(11):e0224365.
https://doi.org/10.1371/journal.pone.0224365.

https://doi.org/https://doi.org/10.1073/pnas.2023070118
https://doi.org/https://doi.org/10.1186/s13059-020-02075-3
https://doi.org/https://doi.org/10.1016/j.molmet.2019.12.006
https://doi.org/https://doi.org/10.1038/s41598-017-03011-5
https://doi.org/https://doi.org/10.1109/TNNLS.2019.2914471
https://doi.org/https://doi.org/10.1371/journal.pone.0224365

	 Artificial intelligence and machine learning   approaches using gene expression and   variant data for personalized medicine
	 Introduction
	 AI/ML approaches in genomics and precision medicine
	 Discussion
	 Conclusion
	 Key Points
	 Author contributions
	 Supplementary Data
	 Acknowledgements
	 Funding


