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Abstract 
Polygenic Risk Score (PRS) analysis is a method that predicts the 
genetic risk of an individual towards targeted traits. Even when there 
are no significant markers, it gives evidence of a genetic effect beyond 
the results of Genome-Wide Association Studies (GWAS). Moreover, it 
selects  single nucleotide polymorphisms (SNPs) that  contribute to 
the disease with low effect size  making it more precise at individual 
level risk prediction. PRS  analysis addresses the shortfall of GWAS by 
taking into account the SNPs/alleles with  low effect size but play an 
indispensable role to the observed phenotypic/trait variance.  PRS 
analysis has  applications that investigate the genetic basis of several 
traits, which includes rare diseases. However, the accuracy of PRS 
analysis depends on the genomic data of the underlying population. 
For instance, several studies  show   that obtaining higher prediction 
power of PRS analysis is challenging for non-Europeans. In this 
manuscript, we review the conventional PRS methods and their 
application to sub-Saharan African communities. We conclude that 
 lack of sufficient GWAS data and tools is  the limiting factor of 
applying PRS analysis to sub-Saharan populations.   We recommend 
developing Africa-specific PRS methods and tools for estimating and 
analyzing  African population data   for clinical  evaluation of PRSs of 
interest and predicting  rare diseases.
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Introduction
Genome-Wide Association Studies (GWAS) can be used successfully to identify associations between hundreds of
genomic variations with complex genetic traits.1 In general, GWAS report single nucleotides polymorphisms (SNPs) as
statistically significant genomic variations associatedwith the trait of interest when their p-values are smaller than a cutoff
value of 5e‐09 in the African population.2 This cutoff value statistically depends on the number of SNPs analyzed.2 The
statistically significant SNPs reported by GWAS are used to understand the biomolecular mechanisms of many
phenotypic traits including various human diseases. Due to the statistical threshold, GWAS might fail to detect SNPs
that are associated with low or moderate risks.3,4 The limitation of filtering variants associated with low disease risk
increases the GWAS false-negative rate. Also, conventional GWAS can not be used to integrate the polygenic nature of
many complex traits.5 Therefore, several post-GWAS approaches have been introduced to overcome the above
mentioned pitfalls.6,7 Due to privacy issues, such as access to the individual level of GWAS data sets, most post-
GWAS approaches require only GWAS summary statistics. Some public resources for GWAS summary statistics
include: the GWAS Catalog,8 GWAS Central,9 and the dbGaP database.10,11 A distinct approach of performing a post-
GWAS analysis is known as Polygenic Risk Score (PRS) analysis. The PRS methods map genotype data from a GWAS
summary into a single variable used to estimate an individual-level risk score for the phenotypic trait. PRS analysis is used
to predict an individual heritability by incorporating all selected SNPs,12 i.e., the proportion of trait variance (phenotype)
that is associated with genetic variants (genotype).13,14 However, it is important to consider that not all existing genomics
technologies have the capabilities to capture the informative variants among trans-ethnic populations. Nevertheless,
obtaining a precise PRS value from case-control studies can be used in personalizedmedicine. Challenges still exist when
translating PRS values from clinical validity to clinical utility.15 To successfully perform conventional PRS analysis, two
distinct GWAS summaries are required. The first data set (training sample) is used to select the SNPs for PRS analysis and
the second data set (from the discovery sample) is used to evaluate the predicted value of PRS methods. The following
traditional PRS approaches are discussed in this review: (i) weighted methods that consider the effect sizes derived from
GWAS result; (ii) unweighted methods that consider the single marker analysis; (iii) shrinkage methods that consider
multivariate analysis. This review focuses on the tools and methods that perform PRS analysis and their applications in
understanding the predictive power of PRS analysis. The reviewed PRS tools are chosen based on the following criteria:

1. The approach must perform PRS analysis based on “base” (GWAS) data (summary statistics) and “target” data
set (genotypes and phenotypes in each of the target data set),

2. The approach may involve linkage disequilibrium pruning, and

3. The method or approach should be readily available as a tool or package so that it can be executed on any
data set.

Besides reviewing PRS methods, we aim to investigate the application of PRS analysis in the sub-Saharan African
population. It is worth mentioning that the term “African population” covers all those whose ancestors are Africans
(including Africans in diaspora). Nevertheless, in this manuscript, the focus is on sub-Saharan Africa. When we searched
PubMed for PRS publications inDecember 23, 2022, the query reported 4,389 hits in total (see Figure 1 and text Box 1 for
the query terms). For this review, we included articles based on their underlying PRS methods.

REVISED Amendments from Version 1

This version includesmore details and examples of PRS applications in Sub-Saharan African populations. We includedmore
details about thepredictive powerof PRS analysis andPRS transferability inAfricanpopulations. However, wenoted that PRS
might differ across sub-Saharan African populations due to differences in the contributory role of environmental and
genetic factors. We cited studies that showed PRS predictivity can be improved based on SNPs selection. However, the
process of SNPs selection depends on the genetic architecture, i.e., causal variants, and the sample size of the training
data set. Also, we cited studies that provided more details of individual heritability that the genetic variants can explain.
Furthermore, we referred to the PRS-CSx method that can be used for improving the accuracy of PRS application across
multi-ethnic populations by using a posterior inference algorithm. We added Area Under Curve (AUC) as a method for
evaluating PRS method will be helpful for readers who are not familiar with machine learning and model evaluation.

Kindly note that Judit Kumuthini, Olabode Ajayi and Gordon Wells previously worked for the Centre for Proteomic and
Genomic Research (CPGR) until 2018 and are currently affiliated with the South African National Bioinformatics Institute at
the University of the Western Cape.

Any further responses from the reviewers can be found at the end of the article
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Classification of PRS methods
The different conventional approaches under the umbrella of PRS analysis are presented in Figure 2 and Table 1.We can
categorize PRSmethods into two; Bayesian-based and non-Bayesian methods. PRSmethods can also be classified using
their usage of linkage disequilibrium (LD): PRSmethods that incorporate LD and PRSmethodswhich apply LD pruning.
To ease the understanding of their underlying algorithms, we grouped the PRS analysis approaches into four (see
Table 2). Those with;

1. Clumping with thresholding (C + T)

2. p-value thresholding

3. Penalized regression

4. Bayesian shrinkage

Figure 1. The number of PubMed hits per year (2005-2022) was obtained on December 23, 2022, using query
terms for PRS and African populations.

Box 1. Pubmed query terms.

We used the following terms for querying Pubmed for PRS:

((“Polygenic Risk score”) OR (“Polygenic score”) OR (“Genetic Risk Score”) OR ( (“Genetic Risk”) AND (“GRS”)))

• We included the terms for Genetic Risk Score as some articles used them to refer to PRS.

We used the following terms for querying Pubmed for PRS for Africans:

((“Polygenic Risk score”) OR (“Polygenic score”) OR (“Genetic Risk Score”) OR ( (“Genetic Risk”) AND (“GRS”))

AND

((African) OR (Africa) OR ((Yoruba) AND (YRI)) OR ((Luhya) AND (LWK)) OR ((Mandinka) AND (MAG)) OR ((Mende) AND
(MSL)) OR ((Esan) AND (ESN))))

• For African populations (in red color), we included terms for Africans tribes based on 1,000 genomes.

We used the following terms for querying Pubmed for PRS for Sub-Sahran Africans:

((“Polygenic Risk score”) OR (“Polygenic score”) OR (“Genetic Risk Score”) OR ( (“Genetic Risk”) AND (“GRS”))

AND

((subsahara) OR (“sub-saharan”)))

• The terms for sub-Saharan African populations are in red color.

Refer to Ref. 16, for the query syntax.
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Figure 2. A general PRS analysis workflow. This is a typical polygenic risk score analysis workflow showing base
data, target data and encapsulating different approaches. Using genotype and phenotype data,individual-level or
summary statistics, approaches such as lasso/ridge regression, clumping and p-value thresholding canbe employed
to increase the predictive accuracy of PRS analysis. Furthermore, the resultsmay be used to predict health or disease
risk as well as give information for appropriate therapeutic approaches.

Table 1. Summary of polygenic risk score tools. For more details refer to Ref. 37.

Tool Approach Computational
platform

User
friendly

Functionality

LDpred13 Bayesian Shrinkage
Prior

Python Difficult Uses a prior on effect sizes and LD
information from an external
reference panel

PRS-CS25 Bayesian regression
framework

Python Difficult Utilizes a high- dimensional Bayesian
regression framework, by placing a
continuous shrinkage (CS) prior on SNP
effect sizes

EB-PRS20 Empirical Bayes
approach

R Difficult A novel method that leverages
information for effect sizes across all
the markers

AnnoPred21 Bayesian Shrinkage
Prior

Python Difficult A framework that leverages diverse
types of genomic and epigenomic
functional annotations

PRSice38 Clumping +
thresholding (C+T)

R Difficult For calculating, applying, evaluating
and plotting the results of PRS analysis

PRSice239 Clumping +
thresholding (C+T)

C++, R Easy An efficient and scalable software
program for automating and
simplifying PRS analyses on large-scale
data
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PRS methods that incorporate LD
In practice, When the markers are LD pruned, the prediction accuracy of PRS analysis tends to improve. Thus, the
absence of LD information limits the predictive accuracy of PRS analysis.17 For instance, the method of LD pruning and
p-value thresholding (P + T) is commonly used, in the presence of LD patterns to improve the PRS prediction accuracy.13

For instance, LDPred is a Bayesian approach that applies LD information in the presence of LD patterns. From this
approach, the posterior mean effects of LD linked loci may be calculated analytically using aGaussian infinitesimal prior,
a non-infinitesimal model, in which only a portion of the markers is causative is perhaps a more realistic prior for effect
sizes. For this reason, the following Gaussian mixture prior is considered:

β� iid
N 0,

hng
Mp

� �
with probabilityp

0 with probability 1‐pð Þ
,

8<: (1)

where p refers to themarker’s probability as the proportion of causalmarker based on theGaussian distribution. Similarly,
the posterior mean in this model can be estimated using the equation below:

Table 1. Continued

Tool Approach Computational
platform

User
friendly

Functionality

LDpred240 Bayesian Shrinkage R Difficult A faster and more robust
implementation of LDpred in R
package bigsnpr

BSLMM41 Bayesian sparse
linear mixed model

R Difficult Prior specification for the hyper-
parameters and a novel Markov chain
Monte Carlo algorithm for posterior
inference

BayesR24 Hierarchical
Bayesian Mixture
Model

Fortran Difficult Bayesian mixture model that
simultaneously allows variant
discovery, estimation of genetic
variance explained by all variants.

DPR
software42

Latent Dirichlet
process regression
model

C++ Easy Dirichlet process regression to flexibly
and adaptively model the effect size
distribution.

SMTpred43 Python Difficult Combines SNP effects or individual
scores frommultiple traits according to
their sample size, SNP-heritability (h2)
and genetic correlation (rG).

Lassosum22 Penalised
Regression

R Difficult A method for constructing PGS using
summary statistics and a reference
panel in a penalized regression
framework.

Plink44 p-value thresholding
approach

C/C++ Easy Open-source C/C++ toolset for GWAS
analysis and research in population
genetics.

Table 2. Comparison of different approaches for performing PRS analyses.

Key factors Approaches

p-value
thresholding
with clumping

Penalised regression Clumping +
thresholding
(C+T)

Bayesian shrinkage
prior

Controlling for
Linkage
Disequilibrium

N/A LD matrix is integral to
algorithm

Clumping Shrink effect sizes
with respect to LD

Shrinkage of GWAS
effect size
estimates

P-value threshold LASSO, Elastic Net,
penalty parameters
Bayesian

P-value
threshold
standard

Prior distribution,
e.g. fraction of causal
SNPs
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The LDmatrix within the LD region is denoted byDi and the estimated effects within the target region are represented byeβl, which is estimated using the least-squares method. The approximation assumes that the heritability explained by the
region is small and LD with SNPs outside of the region is negligible.

PRS methods that apply LD pruning
These PRS methods are non-Bayesian approaches that apply informed LD pruning (LD clumping) in PRS computation
(Figure 2). Generally, they are known as pruning and thresholding (P+T) methods. We may apply p-value thresholding,
for example, with a univariate regression coefficient (r2) and a threshold of 0.2. To achieve prediction accuracy in the
validation data, we would ensure that the p-value thresholding method is optimized across a grid. LD pruning, in
which the less significant marker is pruned first, may result in more accurate predictions than random marker pruning.
For the p-value threshold selection, researchers should include only SNPs that are statistically significant in GWAS. This
technique essentially shrinks all omitted SNPs to zero estimates and does not perform shrinkage on the effect size
estimates of the included SNPs. The optimal p-value threshold is a priori unknown and the targeted phenotype is assessed
for the chosen threshold, which is why PRS is commonly computed over several thresholds. This technique can be
interpreted as a variable selection process that essentially executes the GWAS p-value forward selection based on the size
of the increment in the p-value thresholds.

Bayesian approach in PRS analysis
Bayesian techniques have been successfully applied to model pre-existing genetic architecture with a prior that accounts
for the range of effect sizes and thus increases polygenic score accuracy. The Bayesian statistical approach computes a
refined posterior distribution from prior probability distributions using available data such as functional annotations. It
shrinks marker effects by using LD information from a reference panel.18 The key benefit of Bayesian-based PRS
analysis is its ability to enhance PRS prediction accuracy from summary statistics by taking LD among markers into
consideration.19 Bayesian approaches in PRS explicitly model pre-existing genetic architecture that accounts for the
distribution of effect sizes. These approaches allow the introduction of prior probability that improves the prediction
accuracy of a polygenic score.

Empirical Bayes PRS (EB-PRS) method
The EB-PRS technique is an innovative method that relies on the Empirical Bayes theorem. It incorporates
information across markers to strengthen prediction accuracy.20 By utilizing the predicted distribution of effect sizes,
the EB-PRS technique tries to reduce prediction error. Suppose all the SNPs are independent, the optimum PRS value is
given by:

S¼ βTX¼
Xm
i¼1

βiXi, (3)

wherem denotes to the number of the all genotyped SNPs. The matrix Xi stands for the genotypic value and βi is the log-
odds ratio (OR) of the ith variant. The equation below can be used to measure the log-OR:

βi ¼ log
f i1 1� f i0ð Þ
f i0 1� f i1ð Þ

� �
, (4)

where f i0 denotes the reference allele frequencies among the control samples and f i1 denotes the reference allele
frequencies among the target. If βi ¼ 0, that means the SNP is not correlated with the phenotype.

The actual values of effect sizes are generally unknown, thus they can be estimated empirically. Song et al.20 used the
Empirical Bayes method to estimate β. The estimators can be equally derived from GWAS summary statistics. Unlike
other improved genetic risk prediction methods which utilize effect size distributions for PRS computation, the EB-PRS
does not require external panels.13,19,21,22 Also, the EB-PRS approach has theoretical superiority, resulting in a better PRS
by lowering prediction error. The EB-PRS has recorded excellent performance in comparable to the other tool from
following complex traits; Crohn’s disease, celiac disease, Parkinson’s disease, asthma, breast cancer, and type 2 diabe-
tes.20 Furthermore, a significant improvement was recorded when tested against the unadjusted PRS method, P + T,
LDpred-inf, LDpred.19 Although The EB-PRS approach has demonstrated that it can generate superior results without
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adjusting any parameters or relying on external data, studies have shown that further improvement is possible with a
reference panel. For instance, the LD information as used in LDpred. Also, to increase the prediction accuracy, Song
et al.20 suggested that other available datasets such as GWAS summary statistics focused on functional annotations and
genetically correlated traits could further improve EB-PRS accuracy.

Polygenic Risk Score-Continuous Shrinkage (PRS-CS) method
The PRS-CS is based on a Bayesian high-dimensional regression framework for polygenic modeling and prediction:

YN�1 ¼XNβM�1þ εN�1, (5)

where N refers to the sample size and M denotes the total number of the genetic markers. Y represents a vector of
phenotypes/traits andX represents the genotypematrix. β is a vector of effect sizes for the geneticmarkers and ε is a vector
of residuals. By assigning appropriate priors on the regression coefficients β to impose regularization, the additive PRS
value can be calculated using a posterior mean effect sizes. LDpred13 and the normal mixture model23,24 have
incorporated genome-wide markers with varying genetic architectures. The PRS-CS method aims to utilize a Bayesian
regression framework and places a conceptually different class of priors (the continuous shrinkage (CS) priors) on SNP
effect sizes.25 On the other hand, continuous shrinkage priors allow for marker-specific adaptive shrinkage. The amount
of shrinkage applied to each genetic marker is adaptive to the strength of its associative signal in GWAS, which
accommodates diverse underlying genetic architectures. Ge et al.25 presented the PRS-CS-auto method, a fully Bayesian
approach that enables automatic learning of a tuning parameter ϕ, from GWAS summary statistics. Although analyses
conducted from the Biobank indicate that for many disease phenotypes, the current GWAS sample sizes may not be large
enough to accurately learn ϕ and the prediction accuracy of the PRS-CS-auto method may be lower than PRS-CS and
LDpred. Nevertheless, simulation studies and quantitative trait analyses suggest that the PRS-CS-auto method can be
useful when the size of the training dataset is large or when an independent validation set is difficult to acquire. Although
the PRS-CSmethod provides a substantial improvement over the existingmethods for polygenic prediction,13 the current
prediction accuracy of the PRS value is still lower than what can be considered clinical utility. Much work is needed to
advance the predictive performance and translational value of PRSmethods. Recent studies argued that jointly modeling
multiple genetically correlated traits and functional annotations in polygenic modeling are expected to increase the
predictive performance of PRS methods.26–28

PRS methods based on shrinkage of GWAS effect size estimates
Since SNP effects are calculated with uncertainty and not all SNPs have an impact on the traits, unadjusted effect size
estimates of all SNPs can lead to a low-estimated PRS with high standards error.18 Two shrinkage methods have been
implemented to solve these problems; shrinkage of the effect estimates of all SNPs by adapted statistical techniques and
use of p-value filtering thresholds as the criterion for inclusion of SNPs.

Shrinkage of the effect estimates of all SNPs by adapted statistical techniques: Some PRS methods performs
shrinkage of all SNPs. These methods are typically apply shrinkage/regularisation techniques such as LASSO/ridge
regression29 or Bayesian approaches performing shrinkages by prior distribution specification.13 Varying degrees of
shrinkage may be accomplished under different methods or parameter settings. The most suitable shrinkages to be
implemented depends on the underlying mixture of distributions of null and true effect size. PRS estimation is usually
tailored over several (tuning) parameters since the optimum shrinkage parameters are a priori unknown. For example, it
includes a setting for a fraction of causal variant13 in the case of LDpred.

p-value filtering thresholds as the criterion for inclusion of SNPs: In this process, the PRS includes significant SNPs
with a P-value below a choosen threshold (e.g. p-value< 23e-05). This method shrinks all omitted SNPs to an estimated
effect size of zero and does not perform shrinkage on the effect size estimates of the included SNPs. Since the optimum p-
value threshold is a priori unknown, PRS is computed over a range of thresholds associated with each of the tested target
traits and optimized appropriately for the prediction. This is similar to optimizing parameters in the systematic shrinkage
approach and regarded as a parsimonious method of variable selection. It is efficient in performing the forward selection
of variables (SNPs) using GWAS and p-value with the sizes depending on the p-value threshold increment. Therefore,
this forward selection method is the chosen’optimal threshold’. Furthermore, PRS derived from another subset of the
SNPsmay bemore predictive of the target trait. Considering the fact that GWAS focuses onmillions of SNPs, the number
of subsets of SNPs for the study could be too large.

Linkage disequilibrium control
Usually, association studies in GWAS are done individually.18 The power of GWAS can be enhanced by leveraging the
results of several SNPs concurrently.30 Unfortunately, the raw data of all samples are not readily available. Researchers
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may need to take advantage of standard GWAS by considering either (i) SNPs are clumped such that the retained SNPs
are almost independent of each other or (ii) all SNPs are included and the LD between them is adjusted. In the’standard’
polygenic scoring approach, option i is usually preferred and requires p-value thresholding. Option ii is commonly used in
methods that incorporate conventional methods of shrinkage13,22 (see Table 2). As for option i without clumping, some
researchers tend to apply the methods of p-value thresholding. Although breaking this presumption can lead to marginal
losses in certain situations.22 Choi et al.18 suggested that clumping should be applied when GWAS estimates of non-
shrunk effect sizes are available. The standardmethod tends toworkwhen compared tomore advanced approaches.13,22 It
is possible that the clumping method captures conditionally independent effects. A critique of clumping for SNPs
elimination in LD is that researchers usually use an arbitrarily selected correlation threshold.31 Thus, no technique is
without arbitrary features. This could be an area for the potential development of the classical method.

PRS approach based on clustering and decomposition of genetic variants
PRS based variant decomposition focuses on decomposing or factorizing suitable genetic variants matrix into different
components. This approach is mainly based on the use of an appropriate matrix decomposition technique. Contrary to
traditional methods that compute PRS for a trait as the sum of effects from several genetic variants, this technique uses
genetic risk for a single component to approximate risk for a weighted combination of relevant traits. Although there are
many approaches to genetic variants decomposition,32–34 only truncated singular value decomposition (TSVD) and
singular value decomposition (SVD) have been used in the context of PRS.

Aguirre et al.35 and Chasman et al.36 are the first to use genetic risk decomposition to derive polygenic scores. They both
applied TSVD and SVD respectively to compute polygenic risk scores from genetic components.While it is similar to the
traditional PRS in predictive ability, it also enables an appropriate assessment of drivers of genetic risk for the phenotype.
For example, Aguirre et al.35 applied this method to body mass index and classified polygenic risk factors into overall
health indicators, including sleep duration, alcohol, water intake, fat mass, fat-free mass. Consequently, they encouraged
modeling PRS from the components of the decomposition of genetic risk association.

Let Wn�m be a sparse matrix of genetic associations with n rows and m columns, then TSVD can be performed
on W to identify different genetic components. The decomposition will lead to factors of three matrices which
approximates W :

• A singular matrix for trait Un�c,

• A singular matrix for variant Vm�c, and

• A diagonal matrix Sc�c of singular values. i.e., W .

Using the individual-level genotype vectorGm�1, component polygenic risk scores (cPRS) can be computed by applying
matrices U, S, and V , using the following formula

cPRS≈ Si∗VT∗G (6)

Finally, PRS can be defined by summing through the component PRS, using cPRS for each component, then;

PRS¼
X
i

Uij∗cPRSi (7)

PRS tools
The next section will provide examples of some PRS tools that are commonly used to perform PRS analysis.

Linkage Disequilibrium Pred (LDpred)
This method estimates the posterior mean effect size of each marker of GWAS summary data using a priori effect sizes
and LD information from an external reference panel.13 In this process, the inner products are re-weighted and the test-
sample genotypes are the posterior mean phenotype. The posterior mean phenotype is an optimum predictor under the
model assumptions and a point-normal mixed distribution is used as the effect size prior, allowing for non-infinitesimal
genetic structures. Heritability explained by the fraction of causative markers and genotypes are the two parameters of the
prior. The heritability parameter is calculated using summary statistics from GWAS and takes into account sample noise
and LD.45
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In an attempt to check the performance of LDpred in comparison to the method of pruning followed by thresholding,
using five complex traits, including breast cancer, schizophrenia, muscular dystrophy, and coronary artery disease.
GWAS summary statistics for large sample sizes ranging from 27,000 to 86,000 individuals and raw genotypes for an
independent dataset validated, LDpred outperforms the other approach19 particularly at large sample sizes. For instance,
the predicted R2 rose from 20.1 percent to 25.3% and from 9.8% to 12.0% in a large dataset of schizophrenia andmultiple
sclerosis, respectively. Although the accuracy of the predictive values were lower in absolute terms in another study to
predict schizophrenia risk in non-European validation populations of African and Asian heritage, similar observations
were made for other approaches.

LDpred is a powerful tool that can be used for performing polygenic scores using summary statistics and LD
information.13 However, one of its limitations is that its underlying algorithm assumes the existence of causal variants,
whichmay result in limited predictive performance. In addition, its Gibbs sampler is sensitive to themodel parameters for
the large sample sizes. Moreover, LDpred can not predict PRS accurately for genomic regions with long-range LD, for
instance, the human leukocyte antigen (HLA) region of Chromosome 6.

24,26 However, long-range LD regions of the
genome might contain many known disease-relevant variants.46,47 Privé et al. developed a new version of LDpred to
address these shortcomings and improve its computational efficiency.40 This new version of LDpred has been
implemented in the R package bigsnpr; see the next section.

LDpred2
LDpred2 is the improved version of LDpred tool by introducing new options to learn the effect accurately. For instance,
the option sparse can estimate the effects that are 0 while the option auto can estimate the parameters from data and
computes values for hyper-parameters p and h2. Due to these improvements, LDpred2 has been widely used to generate
polygenic models with good predictive performance.48 However, LDpred2 still has some issues regarding its stabil-
ity.24,26 These issues contributed to the discrepancies in reported prediction accuracies.39,49 For instance, in contrast to
LDpred, LDpred2 performs very well in the HLA regions but not for all traits as LDpred2 does not perform well for type
1 diabetes (T1D) and pure red cell aplasia (PRCA). LDpred2 performs poorly on T1D because T1D is mainly composed
of large effects in the HLA region, while summary statistics typically have a small sample size. However, it is unknown
why LDpred2 performs poorly, specifically for PRCA. Further studies are needed to understand why LDpred2 under-
perform in these two cases.

PRSice
PRSice, developed by Euesden et al.38 in 2015, was the first specialized PRS analysis program. PRSice is built in R and
includes wrappers for bash data management scripts as well as PLINK-1.9 to speed up computation (Table 1). Using a list
of m SNPs and n individuals from the ‘target phenotypic’ dataset, here, thegenotypes have some influence on the ‘base
phenotype’. If assessing the common genetic overlap of phenotype between samples/populations, the base and target
phenotypes may be the same. A univariate regression on the base phenotype for each SNP, such as from genome-wide
association research, can be used to estimate genotype effects (GWAS). For a SNP i, where i = 1, 2,…,m, a p-value,Pi, is
computed for the association between the SNP and genotypes,Gi,j¼ 0,1,2f g for individual jwhere j = 1, 2,…, n and the
phenotype. Under the standard additive assumption used in GWAS, a corresponding effect size for the effect of a unit
increase in genotype Gij on the phenotype is estimated by βi. The degree of estimate is used to determine which SNPs
should be included in a PRS value. SNP iwill be included in in a PRS computation if Pi is less than a threshold, PT , based
on the p-value for their association with the base phenotype in a GWAS. Typically, PRS values are calculated at distinct
PT p-value thresholds.

At threshold PT , the PRS value for individual j can be calculated as:

PRSPT ,j ¼
Xm
i¼1

βiGi,j: (8)

The PRS value is computed across all individuals, yielding n scores per PT threshold value. A suitable regression model
could be used to assess the relationship between these PRS values and the target phenotype. The PRSice tool was created
to fully automate PRS analyses, significantly enhancing PLINK-1.9’s capabilities.50 Unless the genotypes have
previously been imputed, there is generally some missing genotype data in real data. PLINK-1.9 fills in any missing
data usingmean allele frequencies. Nevertheless, it is not equipped to handle very large data sets. Hence a more memory-
efficient approach is used in its advanced version, PRSice-2.

PRSice-2
PRSice-2 is an improved version of PRSice. It works with genotyped and imputed data, gives empirical association
p-values that are free of overfitting inflation, supports numerous inheritance models, and analyzes numerous continuous
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and binary target traits at the same time.39 This technique simplifies the PRS analysis pipeline by eliminating intermediary
files and doing all of the core computations in C++, resulting in a significant decrease in execution time andmemory use.
Furthermore, while computing the PRS value, PRSice-2 can immediately handle the BGEN imputed format and convert
it to either best-guess genotypes or doseswithout producing a big intermediate file.While PRSvalues based on best-guess
genotypes are produced using genotyped input, PRS values based on dose are derived using the following formula:

PRS¼
Xm
i

βi
X2
j

ωijX j

 !
: (9)

Where ωij is the probability of observing variant j, the value of j∈ 0,1,2f g, for the ith SNP/variant; m represents the
number of SNPs/variants; and βi denotes the effect size of the i

th variant estimated from the relevant base data set. A
simulation study has been used to compare the performance of PRSice-2 to alternative polygenic score software
lassosum22 and LDpred13 in terms of run time, memory usage and predictive power on servers equipped with 286 Intel
8168 24 core processors at 2.7 GHz and 192 GB of RAM.

Based on a simulation study, PRSice-2 outperformed lassosum and LDpred in all circumstances. PRSice-2, in particular,
can do full PRS analysis on 100,000 samples in 4 minutes, 179 times quicker than lassosum, which required 10 hours for
the same task, and 241 times faster than LDpred, which took about 13 hours 27 minutes. Similarly, PRSice-2 uses
substantially less memory than lassosum and LDpred, requiring less than 500 MB for 100,000 samples against 11.2 GB
for lassosum and 45.2 GB for LDpred.

In another study to compare its predictive power for quantitative traits with a heritability of 0.2 and a base sample size of
50,000, and a target sample size of 10,000, PRSice-2 resulted in PRS values that are higher than LDpred but not as high as
lassosum. The details about how it performs, inspection and analyses can be found (here).While the PRS values obtained
by PRSice-2 do not fully optimize prediction accuracy, the straightforward technique and use of fewer SNPs allow for a
clearer understanding of the results when compared to approaches that employ all SNPs.51

Lassosum
Lassosum is an alternative method that uses summary statistical data to estimate PRS and takes LD into account by using
reference panels22 based on the commonly used LASSO and elastic net regression.52,53 Consider the linear regression
given below:

y¼Xβþ ε: (10)

For which X represents a data matrix of n-by-p, and y denotes a vector of the observed outcome. LASSO is a commonly
used method for deriving β estimates and y predictors, especially in cases where p is high and where it is rational to
conclude that many β are 0. By minimizing the objective function, LASSO also obtains estimates of β given y and X. To
test the efficiency of lassosum relative to LDpred, simulation studies were carried out using summary statistics
accounting LD and Phase 1 data from Welcome Trust Case Control Consortium (WTCCC) for seven diseases.13 The
outcome of LDpred, lassosum and simple soft-thresholding (setting s = 1 in lassosum) was compared with most of the
diseases in the WTCCC dataset, except for T1D where lassosum seem to outperform LDPred. The performance of
LDpred and lassosumwas comparable when the number of causal SNPswas 1,000 and the sample size was 11,200 for the
simulated phenotypes, and both were superior to soft thresholding. Unlike lassosum, LDpred’s performance was
considerably reduced when the sample size was halved. The lassosum was not influenced in the same way when
reducing the sample size by half. All methods performed equally when the number of causal SNPs was 25,000 and the
sample size was 11,200. The fact that summary statistics can be confounded by population stratification and population
heterogeneity makes the real-life application of PRS difficult. These problems in the lassosum design were not
considered. One possible issue with the use of meta-analytical summary statistics is that the original data produced by
the summary statistics was an amalgamation of datasets around the world with corrections for population stratification.
There is possibly no homogenous dataset suitable as a reference panel. Further research is required to explain the best
approach.

Schork et al.54 have demonstrated that different genome regions have different false discovery rates, thus have different
chances of being causally correlated with a phenotype. Genome annotation information can be used theoretically to
enhance the performance. Similarly, it is possible to utilize the fact that certain phenotypes have common genetic
determinants (pleiotropy) to improve PRS.
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PLINK SOFTWARE (Second-generation PLINK)
PLINK 1 is an open-source C/C++ toolbox for population genetics research andGWAS data analysis. The increasing rise
of data from imputation and whole-genome sequencing research necessitated the urgent need for speedier and scalable
implementations of its essential functionalities. Furthermore, genotype likelihoods, phase information, and multiallelic
variations are commonly found in GWAS and population-genetic data. However, these features cannot be handled by
PLINK 1 primary data format cannot accommodate any of these. For these reasons, Chang et al.44 developed a new
version called PLINK 1.9. This version features heavy use of bit-level parallelism, O (pn)-time/constant-space Hardy-
Weinberg equilibrium computation, Fisher’s exact testing, and a slew of other algorithmic enhancements. PLINK 1.9
speeds upmost processes by 1-4 order ofmagnitude, allowing it to handle data sets that are too huge to store in RAM. The
basic functional domains of PLINK 1.9 are identical to those of its predecessor, and it may be used as a drop-in
replacement for existing scripts in most circumstances. Features, including the import/export of VCF, Oxford-format
files, and fast cross-platform genomic relationship matrix calculators, have been included to facilitate easier interoper-
ability with newer applications. Despite its computational advantages, PLINK 1.9 may still be an unsuitable tool for
working with imputed genomic data due to the limitations of the PLINK 1 binary file format. To address this problem, the
authors have developed PLINK 2.0, which features a new core file format capable of holding the bulk of the data
generated by modern imputation systems.

PRS tools in diverse populations
Applying PRS analysis for multi-ethnic groups is still limited. Novel PRS methods have been developed to address the
applicability of PRS analysis across ethnic groups.

Multi-ethnic PRS analysis:Multi-ethnic PRS analysis is a new PRS approach that combines PRS analysis based on two
distinct populations.55 For instance, multi-ethnic PRS analysis could merge PRS analysis based on European training
data with PRS analysis based on training data from another population. The multi-ethnic PRS approach computes PRS
value given a target individual with genotypes g as follows:

PRS¼
XM
i¼1

bbigi, (11)

whereM denotes the number of individual’s genetic markers, and the term bbi is an estimate of effect sizes. For a multi-
ethnic PRS analysis, this approach uses a linear combination of the two distinct PRS values and applying mixing weights
parameters αi.

Linear unbiased predictors (BLUP): PRS analysis can be molded using the well-known approach of best linear
unbiased predictors (BLUP).56 BLUP is used to consider and linearly model both random effects and fixed effects. It is
also known as genomic best linear unbiased prediction (gBLUP).57 BLUP/gBLUP estimates PRS values using the
following formula

PRS¼Xβþgþ ε, (13)

Where β represents a vector of the fixed effects, g denotes the total genetic effects in the base/training dataset, and ε are the
normally distributed residuals. To evaluate the fixed effects, BLUP considers an individual GWAS indicator, the top
5 principal components (PCs) derived with all samples together and/or a list of the significant SNPs. The BLUP approach
is a computationally efficient algorithm. Nevertheless, the limitation of BLUP arose due to its requirement of the
Individual-level genotype data. BLUPhas been implemented inGCTA software (Genome-wide Complex Trait Analysis)
. Moreover, it has been extended to XP-BLUP to model PRS values for admixed populations.57 Also, BLUP has been
extended to MultiBLUP to include multiple random effects.58

Genetic Risk Scores Inference (GeRSI): GeRSI uses mixed models by combining fixed-effects models and random-
effects models for controlling population structure.59 GeRSI performs Gibbs sampling to estimate individuals’ genetic
risk score given the case-control study’s genotypes under a random-effects model. GeRSI proposed conditional
distributions of the genetic and environmental effect using the standard liability-threshold model. One limitation of
GeRSI is that it requires individual-level genotypes which are not available to many bioinformaticians.

Cross-population BLUP (XP-BLUP): XP-BLUP is an extension of the BLUP method that can be applied to trans-
ethnic populations.59 XP-BLUP utilizes trans-ethnic information to improve PRS value predictive accuracy in minority
populations. It combines the linear mixed-effects model (LMM) of the GeRSI method with the BLUP method.
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PRS-CSx: PRS-CSx method is expected to improve the accuracy of the application of PRS across multi-ethnic
populations by using posterior inference algorithm.60,61 PRS-CSx combines GWAS summary files from different
population to increase the accuracy of PRS. PRS-CSx estimates population-specific effect size by incorporating the
population-specific LD pattern, population-specific allele frequency information and the information of shared contin-
uous shrinkage prior across populations. For more details about the mathematical method underlying PRS-CSx, refer to
Ref. 60.

PRS analysis and population structure
The main cause of false-positive genotype-phenotype associations in PRS analysis is from population genetic struc-
ture.18,62 In African populations with population structure, GWAS analysis techniques provide a significant rate of false-
positive results.63 These findings are influenced by the cohort’s relatedness rather than variations that have an effect on
the trait or disease risk.63 In general, structures in mating patterns induce structures in genetic variation closely associated
with geographic location. Furthermore, risk factors due to the environmental exposure may be creating the possibility for
correlations between genetic variations. Sul et al.63 have noted some confounding issues that are unique to GWAS
research, such as 1) genetic artifacts such as errors on SNP array chips; 2) phenotypic and environmental diversity in the
participants, such as gender, ancestry, and age; and 3) strategic ignorance about disease risk.62 These confounding factors
affect the genomic composition of populations and are difficult to calculate as they are not openly evident.18,62,63 The
characteristics examined are confounded by example and location.64,65 Usually, this issue is resolved in GWAS by
modifying the PCs64 or by using mixed models.66

The population composition in the PRS study presents a possible great issue since there are a significant number of null
variants in PRS estimation. For example, allele frequencies are systematically different between the base and target data.
These can be obtained from genetic drift or genotyped variants.67 In addition, there is a danger that variations in null SNPs
may result in the correlation between the PRS and target traits if the distributions of the environmental risk factors for the
phenotype vary in base and target data or highly probable in most PRS studies. Even if the GWAS had completely
regulated its population structure, confounding is possibly reintroduced. Correlated variations between the base and
target data in allele frequencies and risk factors are not taken into consideration.

The regulation of structure in the PRS study should be adequate to prevent false-positives, if the base and target samples
are drawn from the same or genetically similar populations. Choi et al.18 advised that there are drastic variations between
populations in the distribution of PRS.67–69 Such observations do not indicate many differences between populations in
etiology. Genuine differences are likely to contribute to geographical, cultural and selection pressure variations. It
challenges the use of base and target data from different populations in PRS studies that do not tackle problems of possible
uncertainty generated by geographical stratification.68 Therefore, by exploiting large sampling sizes, the effect can be
obtained using subtle confounding. The issues of population structures are as important as the variations between
individuals in the base and target populations in genetics and the environment. In the coming years, the discussion of
generalizability of PRS methods across populations can be an active field.55,69

Population bias in available genotyping platforms
The PRS method that could be applied to diverse populations is still a challenging task.68 Many factors limit the
application of PRS across diverse populations. These factors include:

• The limitation in the current genomics technologies

• LD distribution across diverse population

• The minor allele frequencies (MAF) distribution

• The distribution of the causal variants across diverse populations.

Current sequencing technologies are based on the European reference genome. Hence, the current genomics technologies
are still not robust enough to capture genetic diversity among trans-ethnic populations. Studying LD patterns across
diverse populations showed that the distribution of LD patterns plays a critical role in the underlying PRS value.70,71

Incorporating the information of LD patterns across diverse populations would increase PRS utilities among trans-ethnic
populations.Moreover, the utility of PRS across diverse populations has limited theMAF across diverse populations.68,70

The differences in MAF variants across diverse populations will result in different variant selection,72 which will reflect
PRS in calculations. Furthermore, to improve the utility of PRS across diverse populations, researchers should investigate
the causal variants shared across multi-ethnic groups.73 Type 2 diabetes and body mass index account for 70-80% of
African ancestry. However, because of variations in LD and allele frequency, the accuracy of African-based PRS was
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lower than that of European-based PRS. Some studies showed that Europeans’ causal variants are also likely to be shared
inAfrican ancestry.74–76 Despite this, we can not generalize that the causal variants shared among trans-ethnic groups due
to the limitation of representation of non-European populations, including sub-Saharan African communities. Previous
approaches introduced to increase PRS accuracy in African populations prioritize the use of population-specific
weighting and European discovered variants. However, due to the small sample sizes in African population, only
moderate gains in accuracy are attainable. The example of a method that allows ethnic-specific weights to be included in
their model is a two-component linear mixed model. In another study, Márquez-Luna et al.55 used Latino training data
with limited sample size and publicly available large sample size European summary statistics to predict type 2 diabetes in
a Latino cohort.When compared to previousmethodologies, they achieved a relative improvement in prediction accuracy
of more than 70%. This technique was also used to predict height using European and African training data in an African
UK Bio bank.

Limitations of current PRS algorithms
Themethods for performing PRS vary based on two primary factors: (i) the list of SNPs to be used, and (ii) the weights to
be used. Given the LD structure between SNPs, depending on the the trait’s genetic architecture and GWAS discovery
sample size, the appropriate technique for determining what weights to apply and which SNPs to choose will differ
between traits. The following tools LDpred, LDpred funct, SBLUP, P+T, LDpred-Inf PRS-CS, SBayesR, and PRS-CS-
auto were employed in a comparative study to assess the PRS approaches in terms of their predictive potential.77 To
accomplish this task, data from the major depressive disorder and Psychiatric Genomics Consortium working groups on
schizophrenia were used. The results demonstrate that SBayesR outperforms the other tools in terms of speed and
predicted accuracy. SBayesR, on the other hand, cannot produce converged solutions if the GWAS summary statistics
have non-ideal features.While the benchmark P+T approach performed the least, the other tools achieved nearly the same
level of accuracy. In addition to being the best approach in this study, SBayesR has been designed to learn the genomic
architecture from the GWAS attributes. Some of these approaches, including LDpred, use tuning cohorts to specify
parameters for the target cohort. When the length of the Markov chain Monte Carlo chain increases for example in
LDpred, the prediction accuracy improves. One drawback of such strategy is that the user will have to tune the model
parameters. Substantial effort is currently ongoing to expandGWAS sample collection across demographic groups.Most
of the existing tools use only samples of European ancestry in the comparative PRS study. As a result, further study is
needed to assess the accuracy of alternative techniques in other ancestries and across ancestries, taking into account
probable differences in genomic architectures and LD.

The predictive power of PRS analysis
Most articles within the current literature consider sample size as a milestone to power the PRS analysis. In 2013,
Dudbridge estimated the predictive power of the polygenic score using results from several published studies.12

Dudbridge concluded that all published studies with a significant association of PRS values are statistically well-
powered. In addition, Dudbridge pointed out that the accuracy of the PRS analysis depends only on the size of the initial
data set (training sample). Furthermore, he provided a mathematical model to estimate the statistical power of PRS value
as a function of sample size. In 2014,Middeldorp et al.29 suggested that PRS analysis on a sample size of 2000 individuals
is good enough to obtain a statistically powered PRS value. However, Dima and Breen in 201578 demonstrated that a
sample size of 1500 is enough to increase the predictive power to a statistically significant point. They stated that the
predictive power of polygenic risk scores is not good enough for clinical utilities but it could be used as a biomarker for
traits of interest within individuals. Recently, in 2017,Krapohl et al.5 introduced amulti-polygenic score that is capable of
increasing the predictive power of PRS analysis. Regarding the relative accuracy of PRS values across ancestries, Yengo
et al.79 proposed a theoretical model to estimate them. Their method utilized the frequencies of theminor alleles (MAF) in
the two populations, the LD between the causal SNPs and the heritabilities. The authors assumed that causal variants are
shared across ancestries however, their effect sizes might vary. Based on their model, Yengo et al.79 concluded that LD
andMAF differences across ancestries explained 70-80% of the loss of relative accuracy of European-based PRS value in
African ancestry.

Zhao& Zou (2022) showed in their study that PRS predictivity can be improved based on SNPs selection. The process of
SNPs selection depends on the genetic architecture, i.e, causal variants, and the sample size of the training data set.80

To select a set of SNPs that provide the optimal PRS prediction, the sample size of the training data set should be much
larger than the number of potential causal variants. That is, performing PRS where the ratio of causal variants and
sample size is large results in poor PRS prediction due to failure in causal variants separations. Therefore, in the case of the
ratio of causal variants to the sample size is large, i.e., small sample size is the training data set, Zhao&Zou recommended
that a large number of variants should be included to get higher PRS prediction power. They further recommended the
addition of independent uncorrelated variants to improve PRS predictivity. Moreover, Zhao et al. (2022) demonstrated
that accounting for correlation between causal variants, i.e., LD will improve PRS predictivity and accuracy for
heterogeneous populations.81 Furthermore, the performance of the PRS mathematical model can be assessed by
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evaluating the model’s output using machine learning techniques including area under the curve (AUC) of the receiver
operating characteristic (ROC).82,83 The ROC can be visualized by plotting true positive rate against false positive rate for
model’s thresholds. Janssens et al. (2007) recommend using a model that provides AUC >0.75 for PRS clinical utility
which involves the screening of individuals who are at risk. In addition, Igo et al. (2019)82 has suggested using the
proportion of trait variability explained by one ormore variants as an indicator for PRS predictivity. For more details refer
to Refs. 82, 83.

PRS clinical utility
PRS analysis has been successfully applied to estimate and identify individuals with genetic risk formany biological traits
such as type 2 diabetes, breast cancer, and prostate cancer (See the extended data122). Most of these studies provide
significant evidence of the success of PRS analysis in identifying patients who are at high risk of developing disease
complications. Additionally, the primary strength of PRS analysis is its capability of stratifying individuals based on their
probability of developing a disease. The biological power of PRS analysis arose due to its capacity to identify therapeutic
and genomic pathways for type 2 diabetes, breast cancer, and prostate cancer. Moreover, applying PRS analysis on these
traits showed that the reproducibility of PRS results is in the European population.

Nonetheless, oneweakness of applying PRS analysis on these traits is its limited ability in detecting false-positive results. It is
observed thatmostPRS studies are only available forEuropean ancestries.Therefore,wecannot apply them tonon-European
communities. In addition, performing PRS analysis on sizeablemulti-ethnic data is indispensable for obtainingmore accurate
PRS values across populations. Furthermore, the possibility of applying PRS outcomes for personalized medicine requires
robust validation procedures before broad clinical applications for multi-ethnic communities.

Understanding complex diseases and their clinical manifestations can be advanced significantly using accurate models for
estimating PRS. The current PRSmodels can be used to forecast outcomes accurately.Disease subtypes andmechanisms that
underpin within-trait diversity are not accounted for in PRS models, which might be important for analysis or therapeutic
response.35,36,84,85 PRSmodels are usedmainly to estimate clinical risk prediction for certain diseases, that can be extended to
lifetime risk trajectories.86,87 Furthermore, PRS models can be implemented by clinical care authorities to decrease potential
adverse health outcomes. Public health authorities can benefit fromPRSmodels to control outbreaks of a particular disease by
providingmore efforts in high risk areas. PRSmodels can be used to define policies for administering the vaccination process.
To use PRS accurately in clinical utilities as a personalized medicine tool, factors such as family history, rare monogenic
mutations, ethnicity and ancestry, indirect genetic effects and gene-environment correlation should be considered. Refer to
Table 3 for some commercial PRS kits that can be used for clinical utilities.

PRS Analysis on sub-Saharan African populations
The PRSAnalysis on sub-SaharanAfrican populations is limited due to lack of enoughGWAS studies on traits associated
them. For instance, searches on PubMed for PRS on sub-Saharan African populations on December 23, 2022 (see
Figure 1 and Box 1) resulted in only 5 hits (4 research articles and 1 review paper). The four research articles performed
PRS analysis mainly on traits associated with cardiometabolic diseases such as heart attack, Type 2 diabetes, and stroke.
Other contributing risk factors include body mass index (BMI), waist circumference (WC), hip circumference (HC),
waist-to-hip ratio (WHR), systolic blood pressure (SBP), diastolic blood pressure (DBP), triglycerides (TG), total
cholesterol (TC), low-density lipoprotein(LDL), high-density lipoprotein (HDL), fasting plasma glucose( FPG), and
Type 2 diabetes (T2D), low-density lipoprotein cholesterol (LDL-C), high-density lipoprotein cholesterol (HDL-C),
triglycerides (TGs) and total cholesterol (TC).88–91 More so, the variance detected for sub-Saharan populations in these
studies has been summarized in Table 4.

The general outcome of these five articles emphasize an urgent need for GWAS research studies for sub-Saharan
African populations in order to continue to perform PRS analysis that would add more benefits to the use of PRS in
precision medicine as well as an improved representation of multiple ethnic populations in GWAS to better reflect risk
stratification, variabilities in genetic equitable and translation of GRS in clinical setting. For instance, Ekoru et al.
(2021)88 demonstrated that several traits such as cardiometabolic have less predictive power of genetics risk score in sub-
Saharan Africans compared to others populations such as African Americans and European Americans. The less
predictive power of cardiometabolic traits was as a result of underrepresented African populations based on GWAS
data in the current reference genomes. However, Kamiza et al. (2022)89 studies showed an increase in PRS performance
on lipid traits (such as, LDL-C) with dataset from sub-Saharan populations, European and multi-ancestry. Other lipid
traits includeHDL-C, TGs and TC. Kamiza et al. reported that PRS performance varies significantly even among the sub-
Saharan African populations. This variation on PRS performance occurs due to variations on Africa population-specific
genetic structure such as minor allele frequencies and the population-specific associated environmental factors.
Moreover, Choudhury et al. (2022)90 reported that the PRS model for sub-Saharan African populations provided higher
predictivity power for the LDL-C trait compared to multi-ancestry and European populations.
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Table 3. Examples of PRS kits for clinical utilities.

Company PRS Kit Disease/Usage Variants/Genes Link

Illumina Infinium
Global
Screening
Array v3.0

Autoimmune disorders,
childhood diseases, drug
responses.

654,027 https://www.
illumina.com/

Infinium
Global
Screening
Array with
Multi-disease
drop

Span of diseases: psychiatric,
neurological, cancer,
cardiometabolic,
autoimmune,
anthropometric.

≈ 50K variants

Neuro Array Extensive neurodegenerative
disease.

180K

Oncoarray Disease markers for a wide
range of tumor types.

499,170

DrugDev
Consortium
Array

Drugable targets. 485,000

H3Africa
Consortium
Array

Epidemiological research:
Somatic mutations in cancer,
Disease defense, transplant
rejection, and autoimmune
disorder, drug responses.

10,000

PsychArray Common psychiatric
disorders such as
schizophrenia, attention
deficit hyperactivity disorder,
bipolar disorder, major
depressive disorder, autism-
spectrum disorders,
obsessive-compulsive
disorder, anorexia nervosa
and Tourette’s syndrome.

≈ 30K

23andMe 1- Health +
Ancestry
Service
2-23andMe +
Membership

Several diseases, including
breast cancer, diabetes,
MUTYH-Associated Polyposis,
Late-Onset Alzheimer’s
Disease, Parkinson’s Disease,
lung and liver disease,
Chronic Kidney Disease,
Familial
Hypercholesterolemia,
anemia, nerve and heart
damage, and iron overload.

7,400-45,000 markers
per chromosome

https://
www.23andme.
com/

Allelica SCT-I Chronic diseases, including
coronary artery disease.

1920136 https://www.
allelica.com/

Ambry
Genetics

AmbryScore Breast cancer. 100 https://www.
ambrygen.com

Genetic
Technologies

COVID-19
Severity Risk
Test

COVID-19 Not Provided https://www.
globenewswire.
com

GeneType for
Breast Cancer

Breast cancer. 77 loci for Caucasian
women, 74 for African
American women and
71 for Hispanic women.

GeneType for
Colorectal
Cancer

Colorectal cancer. 45
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It is worth reporting that there are several PRS studies that have been done using African populations. However, they are
not restricted to sub-Saharan Africa’s populations because the 1,000 genomes reference panel data include samples from
Africa populations.

In 2020, Hayat and her colleagues investigated the genetic associations between serum low LDL-cholesterol levels and
selected genetics variants in sub-Saharan African of four countries; Kenya, South Africa, Ghana and Burkina Faso.93

Using 1,000 genomes data from the African populations, they selected four genes for their investigation (LDLR, APOB,
PCSK9, and LDLRAP1). They performed genotyping of 19 SNPs using 1,000 participants in the Human Heredity and
Health in Africa (H3Africa) AWI-Gen Collaborative Center (Africa, Wits-IN-DEPTH Partnership for GENomic
studies). Although they used a limited number of variants, the outcome showed a significant association of these SNPs
with lower LDL-cholesterol levels in sub-Saharan Africans.

In 2020, Cavazos and Witte proposed the inclusion of variants discovered from various populations to improve PRS
transferability to diverse populations.94 They used both simulated data for the Yoruba group of the sub-Saharan African
and European populations. They tested their findings on real data consisting of diabetes-free training samples of
European ancestry (n = 123,665) and African descent (n = 7,564). They evaluated the performance of PRS analysis
using genotype and phenotype data for a test (predictive) data set of European ancestry (n = 394,472) individuals of
African origin from the UK Biobank (n = 5,886). Based on their findings, they concluded that incorporating variants
selected from the European population will limit the accuracy of PRS values in non-Europeans populations including
African communities. Also, they commented on the need for diverse GWAS data to improve PRS accuracy across
populations.

In 2017, Márquez-Luna et al.55 proposed a multi-ethnic PRS analysis to improve risk prediction in diverse populations
including African communities. To overcome the lack of enough training data for the African populations, the authors
combined the training data from European samples and training data from the target population. We did not include their
study because they did not state whether they used sub-Saharan African communities. This further highlights the
challenge of performing PRS analysis in sub-Saharan African populations as a result of insufficient training data.

In 2017, Vassos et al. examined PRS values in a group of individuals with first-episode psychosis.95 For the control data
set, they combined African-European (n = 70) and a sample of sub-Saharan African ancestries (n = 828). Their finding
showed that PRS value was more potent in Europeans, i.e. 9.4% discriminative ability, than in Africans, i.e. only 1.1%
discriminative ability in Africans.

PRS analysis is applied to investigate the risk score for prostate cancer. Prostate cancer is considered a complex genetic
disease with high heritability which disproportionately affects men of African descent.96 A 1,000 Genomes Project
research that included seven African study sites and European males projected the risks of prostate cancer in urban
African men. It was determined that the risks of prostate cancer are much more significant in African genomes than
European genomes (p-value < 2.2 � 10e-16, Wilcoxon rank-sum test). This continental level pattern is consistent with
public health data.97 A further investigation was done by the team of MADCaP (Men of African Descent and Carcinoma
of the Prostate Consortium) to study sites that portrayed a substantial amount of overlap in the PRS distributions of

Table 3. Continued

Company PRS Kit Disease/Usage Variants/Genes Link

Color Hereditary
Cancer Test

Cancers: uterine, pancreatic,
ovarian, colon, melanoma,
breast, stomach, and
prostate cancers.

30 genes https://www.
color.com

Hereditary
Heart Health
Test

Heart disease. 30 genes

AnteBC AnteBC –
Breast Cancer
Polygenic
Risk Score
Test

Breast cancer. 2803 https://
antegenes.
com/

Applied
Biosystems

UK Biobank
Axiom Array

Cancer common variants,
Lung function phenotypes,
Alzheimer’s disease.

246,055 https://www.
thermofisher.
com/
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different African populations. Based on their findings, the investigators of MADCaP observed within-continent
heterogeneity for the predicted risk of prostate cancer. Their findings showed that individuals from Dakar, Senegal have
the lowest predicted risks of prostate cancer than other African study sites while individuals fromAbuja, Nigeria have the
highest predicted risks. The MADCaP team concluded that allele frequency differences at common disease-associated
loci can contribute to population-level differences in prostate cancer risk.

Transferability of PRS on sub-Saharan African populations
Previous studies suggested that PRS derived from individuals of African ancestry performed significantly better in
sub-Saharan Africans than PRS derived from individuals of African-Americans and Europeans and multi-ances-
try.69,94,99,100 However, PRS might differ across sub-Saharan Africans populations due to differences in contributory
role of environmental and genetic factors. For instance, Kamiza et al. reported that the differences in environmental
and genetic factors play critical roles in transferability of PRS between the South African Zulu and individuals from
Ugandan cohort (Table 5).89 Finding from Kamiza et al. noted that the poor performance of PRS across populations has
implementation impact in preventative healthcare. Therefore, applying PRS to different ethnic groups even within sub-
Saharan Africa may lead to inaccurate result. This further suggests the need for more efforts to optimize polygenic
prediction in Africa. For instance, Choudhury et al.90 demonstrated that PRS transferability among African can be
improved by sample size of the African cohort studies.

Challenges of PRS analysis for the African populations
Many PRSmethods have been developed and applied to test the risk score of individuals. Nevertheless, PRS analysis has
not been used in the clinical field for the African population. There are still many limitations and challenges regarding the
application of PRS analysis in the African population. One of these challenges is lack of sufficient data to perform PRS
analysis. For instance, querying the term “sub-Saharan” in the GWAS Catalog repository, the search resulted in only
70 publications out of 4,628 papers. Considering that several publications might use the sameGWAS data, we affirm that
more GWAS experiments need to be done in sub-Saharan African populations. Lack of African population genetic data
might be due to the following reasons: (i) African populations are not well presented in the reference genomes for variant
calling and genotype calling; (ii) There is insufficient genetic diversity to capture the African specific variations in the
average observable African population, i.e. sample sizes and the number of sub-population representations; (iii) there is
lack of infrastructure and funding to perform GWAS experiments in many countries in Africa. Infectious diseases like
malaria, tuberculosis, and HIV might still be prioritized by African scientists due to their public health importance and
funding opportunities. Providing funding priority for infectious diseases is necessary for African communities as they
account for a higher mortality rate in the continent.

Due to a lack of training and test data sets, some scientists choose to use training data fromEuropean samples that result in
decreased PRS prediction accuracy. Therefore, PRS analysis is not widely applied for clinical utilities in Africa. The

Table 5. Shows the variability in transferability of PRS on sub-Saharan African populations and the
contributory role of environmental factors.

Population Genetics factors Environmental
factors

Effect of
PRS

Transferability

South Africa Zulu,
University of KwaZulu
Natal

High genetic diversity,
which may affect the
performance and
transferability of PRS
within Africa

Urban and rural
environmental
differences might also
be playing a part in the
poor transferability of
the African American-
derived PRS between
the Ugandan and
South & African Zulu
cohorts.

PRS
predicted
better in
the South
African
Zulu
cohort

minor allele
frequencies to
the poor
transferability
of the PRS

Ugandan Uganda
Genome Resource
(UGR), and the
phenotypic resource
generated from the
Uganda General
Population Cohort (GPC)

Differences in age,
body mass index and
allele frequencies.
These differences in
the performance of
PRS in the Ugandan
cohort

Urban and rural
environmental
differences might also
be playing a part in the
poor transferability of
the African American-
derived PRS between
the Ugandan and
South African Zulu
cohorts.

Lower in
Ugandan
cohort

Minor allele
frequencies to
the poor
transferability
of the PRS
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theory of genetics stated that when the genetic divergence in the target population and the original GWAS sample
increases, the precision of the genetic risk prediction would decline. Several statistical discoveries are linked to this
pattern: (i) The discovery of dominant genetic variations in the study population is favored by GWAS; (ii) even when
the causative variants are the same, LD yields varied estimates of the marginal effect size for polygenic traits across
populations; (iii) population-specific environmental and demographic differences. As a result, given the variety of the
African population, the model developed elsewhere for PRS analysis does not fit for African sub-populations. Recent
efforts to increase PRS accuracy in non-Europeans have prioritized the European discovered variants and population-
specific weighting. Due to a limitation of GWAS studies in African populations, this technique might be utilized to
construct an African-specific PRS method that incorporates diverse sources of information. While the African-specific
PRS approach aims to improve PRS accuracy, the shortage of long-term funds for GWAS research is another major
obstacle in conducting and applying PRS research in the African context. Understudied populations, particularly in
Africa provide possibility for genetic research. The common variants in these populations but uncommon or lacking in the
European population could not be discovered using European sample sizes. SLC116A11 andHNF1A genes, for example
are linked to type 2 diabetes, whereas APOL1 is linked to prostate cancer and end-stage kidney disease in African-
Americans. These issues are intractable with statistical techniques alone. Therefore, significant investment is required in
African populations to yield similar-sized GWAS of biological traits.

As more data about genetic variation becomes available, the task of increasing the representation of African populations
in the GWAS database has become increasingly essential.99,101 The inclusion of African multi-ethnic groups in GWAS
analysis research is crucial for a more thorough, careful genetic variation and interpretation of the underpinnings of
complex PRS analysis.99,101 In comparison to other under-represented populations, the average sample size of GWAS
among Europeans continues to expand. PRS analysis in European populations has repeatedly failed to perform in African
populations due to LD, confounding of environmental factors across populations and differences in allelic architec-
ture.95,99,101–103 The frequency of causative, risk allele, correlated variants, and disease prevalence all show substantial-
frequency variation between populations.13,101 The magnitude and frequency of disease-causing genetic variants differ
greatly among different populations includingAfrican ancestry.104 Overcoming these obstacles might lead to an effective
clinical management, and specialized therapy for individuals and populations impacted by these complex disease and risk
factors all of which would improve the health of those affected.99,104,105 Moreover, it could help in decreasing genotype
imputation error, increase levels of tag-SNP portability, GWAS design, and effectively addressed GWAS analysis and
interpretation in Africa populations.101,104

Therefore, African state authorities should be made aware of the challenges to make more funds available for genomic
research. The funds should not be limited to the research institutes and principal investigators alone but they should
equally provide scholarships (postgraduate programs like PhD) and financial aids for young African researchers. We
have some promising African research consortiums like The Pan-African Bioinformatics Network for the Human
Heredity and Health in Africa (H3ABioNet, h3abionet.org) and the Human Heredity and Health in Africa (H3Africa,
h3africa.org) that are contributing in this regard. However, their funds come from outside Africa. There are new regional
Africa efforts like theWorld Bank-funded Africa Center of Excellence (ACE). It is important to state that these initiatives
consist of few genomic research projects. A follow-up project to the H3Africa, dedicated to data science health research,
entitled Harnessing Data Science for Health Discovery and Innovation in Africa (DS-I Africa) will soon commence.

Moreover, the lack of a pan-African genomic advisory board remains another challenge for genomic research in Africa.
The existence of a research advisory board will help with transparency and establish ethical guidelines. These could open
thewindow to get more grants from funding agencies such as theNational Center for Biotechnology Information (NCBI).
It is clear that without a rigorous ethical guide and transparency policies, it is hard to get long-term funds.

Onemore challenge of performing PRS for African populations is humanmigration. Environmental and social factors are
the most critical drivers of disease risk than genetics in many cases so theymust be effectively addressed. Benton et al.106

highlighted that early human migration out of Africa resulted in a higher genetic mutation rate, including disease-
associated variants. Therefore, African populations do not carry the variants associated with disease at a higher frequency
compared to non-African ancestries. As a result, given the genetic variation resulting from the diverse demographic
history of the human populations, PRS prediction accuracy is still insufficient to generalize adequately across different
populations, particularly for Africans.99,107 Furthermore, a lack of diversity in PRS development may contribute to
existing health disparities among Africans.108,109 Therefore, consideration of environmental exposures and evolutionary
histories must be key factors when performing PRS analysis.

Application of PRS analysis on type 2 diabetes in African populations
Diabetesmellitus prevalencewas projected in 2019 to be 463million globally, 4%ofwhich are inAfrican populations.110

In addition, Africa will witness the world’s highest increase in diabetes prevalence by 2045.110,111 Currently, Africa has
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the most significant percentage of undiagnosed diabetics (59.7%) in the world. As a result, immediate policies and
resources for developing surveillance and an early detection approach to help Africa combat this pandemic has been
initiated.112 The use of PRS for the early detection of people who are genetically predisposed to type 2 diabetes could
significantly reduce the diabetes burden. According to data from European nations, individuals in the top 90% of the
population had a 5.21-fold higher likelihood of developing diabetes than those in the lowest 10%.113 Evidence has shown
(coupled with a low GWAS study) that the transferability of polygenic scores developed in Europe decreases accuracy
across diverse populations.99 Multi-ethnic PRS could be an alternative. However, the predictive performance of the
AfricanAmericans and that ofmulti-ethnic PRS (who has about 80%African admixture) in continental Africans are yet to
be examined.55,114 To ascertain this, Chikowore et al. aimed to see how well multi-ethnic, African-Americans, and
European PRS would predict type 2 diabetes in Africans.112 For PRS development, the PRSice-2 software was used and
the PRS with best result was chosen using area under the curve, i.e AUC and Nagelkerke R2. Finally, the results
demonstrated that PRS derived fromAfrican Americans outperformed bothmulti-ethnic and European PRS in predicting
type 2 diabetes. An earlier study of type 2 diabetes based on genetic risk score in Black South Africans used weight from
Europeans (OR=1.21, 95%CI).2 However, due toweights obtained fromEuropean-only studies, limited sample size, and
use of only genotyped SNPs, this researchwas less predictive of Type 2 diabetes. Unlike previouswork, this current study
(Fatumo et al.112) took advantage of a larger sample size (1,690), improved genome coverage and a multi-ethnic
discovery dataset GWAS. All of these factors worked together to improve the PRS predictive ability.2

PRS analysis on breast and prostate cancers in the continent of Africa
Africa reportedly has the highest age-standardized death rate of breast cancer globally with sub-Saharan Africa having the
highest prevalence rates. Although the occurrence in Africa was lower than in other continents, except for Asia, themortality
rate in Africa’s sub-Saharan region (for example in Nigeria) was the highest in the world.115 Men of African origin have a
greater prevalence and mortality rate from prostate cancer than men of other ethnic groups. Uganda has one of the highest
prostate cancer incidence rates of all African nations.116 Genetic contributions to this difference are supported by evidence of
genetic heterogeneity across populations. Breast and prostate cancer research in African populations can contribute to the
elevated disease burden within this population by genetic risk factors. As a result, policymakers, academics and the general
publicmust become aware of the rising threat that breast and prostate cancer can pose to Africa’s growth. Early detection and
stratification of women and men based on their risk of breast and prostate cancer using PRS could enhance screening and
prevention strategies. Early detection of high disease risk individuals could also reduce the burden and threat to Africa’s
development. The application of PRS for breast and prostate cancer allows for early detection and risk stratification for
recommendations and monitoring.117 To date, most of the GWAS SNPs were found almost entirely in European ancestry
populations. They also demonstrate distinct patterns of relationship among the African populace.17,117 In addition, variants
found in one community often do not apply to other populations of African ancestry.118 These contradictory findingsmay be
attributed to various factors, including variations in allele frequencies and LD and differences in population characteristics
within one ethnicity. As a result, there is a risk of PRS transferring PRS across populations.119 Some studies investigate PRS
developed usingGWASdata from various ancestry groups.120,121 For example, Belsky et al.120 constructed an obesity-based
PRS relying on GWAS from European ancestry and discovered that it performed poorly in African Americans but worked
well in European ancestry.120On the other hand, Fritsche et al.118 concluded that, to somedegree, cancer based PRS obtained
from large Europeans ancestry GWAS may still be employed for disease risk stratification in populations if the limitations
listed below are properly addressed:

• To accurately put an individual’s PRS within their reference PRS distributions, a matched ancestry cohort with
large control sample sizes is required.

• Non-European ancestry-derived PRS will be particularly useful for breast and prostate cancers because they
have certain advantages over other traits: the high heritability is relatively high, normal in all ancestry groups,
and publicity of summary statistics.

• Unlike individuals of diverse ancestries from different populations, the participants in the UK Biobank are
mostly from the same country and healthcare accessibility and other risk factors are similar.

If summary statistics and large GWAS are available, Fritsche et al.116 argued that PRS development based on the same
ancestral groupmight increase its predictive ability if summary statistics and large GWAS are available. Several methods
are now being investigated to increase PRS predictive accuracy in African populations. If a large-scale GWAS for
non-European populations are unavailable, these methods might be employed to improve PRS. On the other hand, these
methods may incorporate the fact that SNP selection based on European based GWAS is applicable when employing
European based GWAS effect sizes in ethnically mismatched populations.74,116

Page 22 of 40

F1000Research 2023, 11:175 Last updated: 31 MAY 2023



Conclusion and future research
There are several approaches under the umbrella of PRS analysis. GWAS are conducted on finite samples extracted from
particular subsets of the human population. Moreover, the SNP effect size estimates are some combination of true effect
and stochastic variation, thus producing’winner’s curse’ among the top-ranking associations and the estimated effects
may not be well generalized to different populations. Furthermore, the correlation complicates the aggregation of SNP
effects across the genome. Therefore, linkage disequilibrium holds the key to apply PRS analysis across ethnic groups.
Thus, critical factors in the development of methods for calculating PRS values are

• The potential adjustment of GWAS estimated effect sizes e.g. via shrinkage and incorporation of their
uncertainty.

• The tailoring of PRS values to target populations.

• The task of dealing with LD.

As members of the H3Africa consortium and the Associated Bioinformatics Consortium, H3ABioNet, (see h3abionet.
org and https://sysbiolpgwas.waslitbre.org), we are working to extend existing methods to be applicable to African
populations. Also, one future direction will be to develop an African-specific PRS method that combines the different
sources of information. The information that we would consider to improve the current PRS methods include:
(i) individual’s ancestry information to include the diversity within sub-Saharan populations; (ii) environmental risk
factors to include the environmental diversity in Africa. Due to the variation in genetic architecture among trans-ethnic
groups, we will consider incorporating information at the transcriptome level in the sub-Saharan populations. Thus,
providing a new PRS method that performs individual ancestry estimation and transcriptome risk score would improve
the predictive value of the PRS besides providing insights into the molecular determinants of phenotypic traits, including
rare diseases.
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Extended data
Dryad: Polygenic Risk Score in Africa Populations: Progress and challenges, https://doi.org/10.5061/dryad.hdr7sqvk8.122

This project contains the following extended data:

• README file which provides information about the contents of the other file.

• A table contains selected studies in 2020 that demonstrate the PRS methods applied to diabetes type II, prostate
cancer, and breast cancer.

Data are available under the terms of the Creative Commons Zero “No rights reserved” data waiver (CC0 1.0 Public
domain dedication).
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General: 
 
Adam et al. provide an extensive review of the important topic of PRS methods, and their 
applications in African ancestry populations. The paper summarises the various approaches to 
calculating PRS and provides a fair assessment of the advantages and disadvantages of each 
method. It also describes the challenges associated with calculating PRS in African populations 
and the approaches currently being undertaken to address these. The paper is comprehensive 
and a useful addition to the literature, pulling together a large amount of information across 
methods for calculating polygenic scores, and their applications in African populations. 
 
Major comments: 
 
To make the application of polygenic scores more accessible the authors could summarise the 
findings from studies conducted in Sub-Saharan African populations. For example, a table that 
orders studies by outcome/disease type and summarises key study parameters: methods 
(cohort/populations, LD reference panel, method) and results (variance explained) would be useful 
to readers. 
 
When referring to predictive power being limited in African populations, additional detail as to 
what the AUC or equivalents are would be useful to contextualize the scores and provide 
comparisons to scores in non-African populations e.g. scores in EUR and AFR for a similar trait. 
 
We suggest that the authors could also address the variability in transferability of scores not only 
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between super-populations (eg. AFR and EUR) but also between SSA populations and the potential 
contributory role of environmental factors. Potential paper to do this includes Kamiza, A.B. et al. 
Transferability of genetic risk scores in African populations.1 
 
One of the most recent useful advances in PRS development for ancestrally diverse populations is 
the PRS-CSx method.2 Although this new method was published after the date cut-off for the 
manuscript, a comment could be added in the Discussion.  
 
Minor comments: 
 
Introduction:

Table 1 is a comprehensive summary of PRS tools. How are these ordered? Given the 
authors have previously classified the methods into four groups (p3), it might be useful to 
use this information in structuring the table. In addition, what parameters/factors were 
used to determine whether an approach was user-friendly? 
 

○

P3 “PRS analysis is used to predict an individual heritability by incorporating all selected 
SNPs.” What do the authors mean here by the phrase ‘individual heritability’? PRS methods 
that incorporate LD. In practice, when the markers are LD pruned…

○

PRS analysis on African populations:
This number represents about 4.553483% of total hits that - this number represents about 
4.55% or 4.6% of total hits that 
 

○

They observed that the predictive power of genetic risk scores was higher among African 
Americans (n=9139) and European Americans (n=9594) relative to the sub-Saharan African 
populations (n=5200).  
- Consistency in number formatting: They observed that the predictive power of genetic risk 
scores was higher among African Americans (n=9139) and European Americans (n=9594) 
relative to the sub-Saharan African populations (n=5200).

○
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populations.Nat Genet. 2022; 54 (5): 573-580 PubMed Abstract | Publisher Full Text  
 
Is the topic of the review discussed comprehensively in the context of the current 
literature?
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Are all factual statements correct and adequately supported by citations?
Yes

Is the review written in accessible language?
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Are the conclusions drawn appropriate in the context of the current research literature?
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Competing Interests: Cathryn M. Lewis is a member of the SAB at Myriad Neuroscience

Reviewer Expertise: Statistical Genetics, Genetic epidemiology

I confirm that I have read this submission and believe that I have an appropriate level of 
expertise to confirm that it is of an acceptable scientific standard, however I have 
significant reservations, as outlined above.

Author Response 17 Jan 2023
Ezekiel Adebiyi 

Answers from the authors to the reviewer’s comments 
Authors would like to thank the reviewer for valuable comments and suggestions. Below 
are the answers for each reviewer’s comments: 
 
Major comments responses 
 
1. To make the application of polygenic scores more accessible the authors could 
summarise the findings from studies conducted in Sub-Saharan African populations. 
For example, a table that orders studies by outcome/disease type and summarises key 
study parameters: methods (cohort/populations, LD reference panel, method) and 
results (variance explained) would be useful to readers. 
 
Authors thank the reviewer for his suggestions. Authors think that this point is quite similar 
to a comment raised by reviewer 1. Therefore, we address these two comments together by 
adding Table (4), pages 17-19. 
 
2. When referring to predictive power being limited in African populations, additional 
detail as to what the AUC or equivalents are would be useful to contextualize the 
scores and provide comparisons to scores in non-African populations e.g. scores in EUR 
and AFR for a similar trait. 
 
Authors thank the reviewer for his suggestions, and we agree that adding AUC as a method 
for evaluating PRS method will be useful for readers who are not familiar with machine 
learning and model evaluation. Therefore, we addressed this point by adding a text about 
AUC in the main manuscript. 
 
3. We suggest that the authors could also address the variability in transferability of 
scores not only between super-populations (eg. AFR and EUR) but also between SSA 
populations and the potential contributory role of environmental factors. Potential 
paper to do this includes Kamiza, A.B. et al. Transferability of genetic risk scores in 
African populations 
 
Authors accepted the reviewer's comment, we added the text below on page 19 of the 
revised version. We also added table 5 to give a summary of  Transferability of PRS.  in 
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African populations. 
 
"Previous studies suggested that PRS derived from individuals of African ancestry 
performed significantly better in sub-Saharan Africans than PRS derived from individuals of 
African Americans and Europeans and multiancestry (Duncan et al., 2019; Cavazos & Witte, 
20210; Martin et al., 2019; Johnson et al., 2015). However, PRS might differ across sub-
Saharan Africans populations due to differences in contributory role of environmental and 
genetic factors. For instance, Kamiza et al} reported that the differences in environmental 
and genetic factors play critical roles in transferability of PRS between the South African 
Zulu and individuals from Ugandan cohort Kamiza et al (2022), Table 5.. Finding from 
Kamiza et al} noted that the poor performance of PRS across populations has 
implementation impact in preventative healthcare. Therefore, applying PPRS to different 
ethnic groups, even within within sub-Saharan Africa, may lead to inaccurate result. This 
further suggests the need for more efforts to optimize polygenic prediction in Africa. For 
instance, Choudhury et al (2022) demonstrated that PRS transferability among African can 
be improved by sample size of the African cohort studies." 
 
 
References 
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performance in diverse human populations. Nat Commun 10, 3328 (2019). 
https://doi.org/10.1038/s41467-019-11112-0 
 
Cavazos, T. B., & Witte, J. S. (2021). Inclusion of variants discovered from diverse populations 
improves polygenic risk score transferability. HGG advances, 2(1), 100017. 
https://doi.org/10.1016/j.xhgg.2020.100017 
 
Martin, A. R., Kanai, M., Kamatani, Y., Okada, Y., Neale, B. M., & Daly, M. J. (2019). Clinical use 
of current polygenic risk scores may exacerbate health disparities. Nature genetics, 51(4), 
584–591. https://doi.org/10.1038/s41588-019-0379-x 
 
Johnson, L., Zhu, J., Scott, E. R., & Wineinger, N. E. (2015). An Examination of the Relationship 
between Lipid Levels and Associated Genetic Markers across Racial/Ethnic Populations in 
the Multi-Ethnic Study of Atherosclerosis. PloS one, 10(5), e0126361. 
https://doi.org/10.1371/journal.pone.0126361 
 
Kamiza AB, Toure SM, Vujkovic M, Machipisa T, Soremekun OS, Kintu C, Corpas M, Pirie F, 
Young E, Gill D, Sandhu MS, Kaleebu P, Nyirenda M, Motala AA, Chikowore T, Fatumo S. 
Transferability of genetic risk scores in African populations. Nat Med. 2022 Jun;28(6):1163-
1166. doi: 10.1038/s41591-022-01835-x. Epub 2022 Jun 2. PMID: 35654908; PMCID: 
PMC9205766. 
 
 
4. One of the most recent useful advances in PRS development for ancestrally diverse 
populations is the PRS-CSx method.2 Although this new method was published after 
the date cut-off for the manuscript, a comment could be added in the Discussion. 
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Authors thank the reviewer for the comment and we agree that PRS-CSx method is on the 
key method that can be used for the application of PRS across multi-ethnic group. We did 
not include because we submitted our review before publishing PRS-CSx method. However, 
we have include an overview of the PRS-CSx method in our reviewed manuscript, page 11. 
We also cited the article for those are interested to know more about its underlying 
algorithm. 
 
PRS-CSx method 
PRS-CSx method is proposed to improve the accuracy of the application of PRS across multi-
ethnic populations by using posterior inference algorithm (Ruan et al., 2022; Ge et al., 2022). 
PRS-CSx combines GWAS summary files from different population to increase the accuracy 
of PRS. PRS-CSx estimates population-specific effect size by incorporating the population-
specific LD pattern, population-specific allele frequency information, and the information of 
shared continuous shrinkage prior across populations. For more details about the 
mathematical method underlying PRS-CSx, refer to Ruan et al., 2022). 
 
References 
Ruan, Y., Lin, YF., Feng, YC.A. et al. Improving polygenic prediction in ancestrally diverse 
populations. Nat Genet 54, 573–580 (2022). https://doi.org/10.1038/s41588-022-01054-7 
 
Ge, T., Irvin, M. R., Patki, A., Srinivasasainagendra, V., Lin, Y. F., Tiwari, H. K., Armstrong, N. 
D., Benoit, B., Chen, C. Y., Choi, K. W., Cimino, J. J., Davis, B. H., Dikilitas, O., Etheridge, B., 
Feng, Y. A., Gainer, V., Huang, H., Jarvik, G. P., Kachulis, C., Kenny, E. E., … Karlson, E. W. 
(2022). Development and validation of a trans-ancestry polygenic risk score for type 2 
diabetes in diverse populations. Genome medicine, 14(1), 70. https://doi.org/10.1186/s13073-
022-01074-2 
 
 
 
Minor comments:

Table 1 is a comprehensive summary of PRS tools. How are these ordered? Given 
the authors have previously classified the methods into four groups (p3), it 
might be useful to use this information in structuring the table. In addition, 
what parameters/factors were used to determine whether an approach was 
user-friendly?

○

The authors thank the reviewer for the comments. We determined whether an approach is 
user-friendly based on the installation process, the popularity of the methods among the 
users, the availability of an application manual (tutorial), the application user interface, and 
the number of options that should be considered and tuned by users. However, we have 
removed a column in the table (no.) that classifies the methods from the revised version 
based on four different approaches, such as (p3): clumping with thresholding (C+T), p-value 
thresholding, penalized regression, and Bayesian shrinkage, because some tools perform 
PRS analysis using more than one method. For instance, LDpred can perform PRS analysis 
either using clumping and thresholding (C+T) or the p-value thresholding method. 
We also cited et al . (2022), which performed a recent a comparison on some of these tools. 
 
References 
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Wang Y, Tsuo K, Kanai M, Neale BM, Martin AR. Challenges and Opportunities for 
Developing More Generalizable Polygenic Risk Scores. Annu Rev Biomed Data Sci. 2022 Aug 
10;5:293-320. doi: 10.1146/annurev-biodatasci-111721-074830. Epub 2022 May 16. PMID: 
35576555. 
 
 

P3 “PRS analysis is used to predict an individual heritability by incorporating all 
selected SNPs.” What do the authors mean here by the phrase ‘individual 
heritability’? PRS methods that incorporate LD. In practice, when the markers 
are LD pruned…

○

 
We mean by individual heritability here by the proportion of trait variance (phenotype) that 
is associated with genetic variants (genotype). We cited Privé et al (2020) & Vilhjálmsson et 
al (2015) that provided more details of individual heritability that can be explained by the 
genetic variants. 
 
References 
 
Florian Privé, Julyan Arbel, Bjarni J Vilhjálmsson, LDpred2: better, faster, stronger, 
Bioinformatics, Volume 36, Issue 22-23, 1 December 2020, Pages 5424–5431, 
https://doi.org/10.1093/bioinformatics/btaa1029 
 
Vilhjálmsson BJ, Yang J, Finucane HK, Gusev A, Lindström S, Ripke S, Genovese G, Loh PR, 
Bhatia G, Do R, Hayeck T, Won HH; Schizophrenia Working Group of the Psychiatric 
Genomics Consortium, Discovery, Biology, and Risk of Inherited Variants in Breast Cancer 
(DRIVE) study, Kathiresan S, Pato M, Pato C, Tamimi R, Stahl E, Zaitlen N, Pasaniuc B, Belbin 
G, Kenny EE, Schierup MH, De Jager P, Patsopoulos NA, McCarroll S, Daly M, Purcell S, 
Chasman D, Neale B, Goddard M, Visscher PM, Kraft P, Patterson N, Price AL. Modeling 
Linkage Disequilibrium Increases Accuracy of Polygenic Risk Scores. Am J Hum Genet. 2015 
Oct 1;97(4):576-92. doi: 10.1016/j.ajhg.2015.09.001. PMID: 26430803; PMCID: PMC4596916.

PRS analysis on African populations: This number represents about 4.553483% of 
total hits that - this number represents about 4.55% or 4.6% of total hits that

○

Authors thank the reviewer for this comment. We updated the Pubmed search terms that 
we used and formatted all numbers accordingly.

They observed that the predictive power of genetic risk scores was higher 
among African Americans (n=9139) and European Americans (n=9594) relative to 
the sub-Saharan African populations (n=5200). - Consistency in number 
formatting: They observed that the predictive power of genetic risk scores was 
higher among African Americans (n=9139) and European Americans (n=9594) 
relative to the sub-Saharan African populations (n=5200).

○

Authors thank the reviewer for this comment. We formatted the style of all numbers 
accordingly.  

Competing Interests: Authors declare no conflict of interest.
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Reviewer Report 10 March 2022
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© 2022 Zhao B. This is an open access peer review report distributed under the terms of the Creative Commons 
Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the 
original work is properly cited.

Bingxin Zhao  
Department of Statistics and Data Science, University of Pennsylvania, Philadelphia, Pennsylvania, 
USA 

This is an interesting paper on the review of PRS, with a focus on African populations. The 
research question is interesting and the writing is knowledgeable. I have the following 
suggestions that might improve the quality of this paper.  
 
Major:

Although the title states that this paper focuses on African populations, I feel the current 
version of this paper is a bit too focused on general PRS research in all populations. I 
encourage the authors to include more details and examples of PRS applications in African 
populations, especially sub-Saharan African communities. Then, the paper may be more 
balanced.  
 
For example, in Section "PRS analysis on African populations": The traits studied using PRS 
analysis in African populations include types 1 & 2 diabetes mellitus, depression, ischemic stroke, 
schizophrenia, sarcoidosis, Alzheimer’s disease, obesity, insomnia disorder, post-traumatic stress 
and cancer. Undermentioned are some selected PRS studies in sub-Saharan African populations. 
 
The citations of these studies could be provided in the paper or a supplemental table. Then, 
the authors could provide a general overview of all the findings of these papers in the main 
text or supplemental note. 
 
This is just one example, the authors could consider improve other sections of the paper to 
extend the discussions of African populations.  
 

1. 

In the "The predictive power of PRS analysis" section, the authors could discuss and include 
a few more recent studies on the mathematical properties of PRS, such 
as https://onlinelibrary.wiley.com/doi/10.1111/biom.13466 
and https://arxiv.org/abs/1911.10142. Particularly, https://arxiv.org/abs/1911.10142 studies 
the cross-population accuracy, which may fit the topic and discussion paper well. 

2. 

Minor:
In the beginning of the "PRS methods that incorporate LD" section, the "W" in "When" 
should be lower case? 
 

1. 

In the sentence "Feng & Smoller 24presented the PRS-CS-auto method, a fully Bayesian 
approach that enables automatic learning of..." The citation (24) of Feng and Smoller is wrong? 
 

2. 
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"For instance, searching PubMed for PRS in African populations on August 21, 2021 (see Figure 1 
and Box 1), only gave 8,843 hits." What is the result for sub-Saharan African? 
 

3. 

"This number represents about 4.553483% of total hits that" 4.55% could be enough here. 4. 
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Reviewer Expertise: genetics and statistics

I confirm that I have read this submission and believe that I have an appropriate level of 
expertise to confirm that it is of an acceptable scientific standard, however I have 
significant reservations, as outlined above.

Author Response 17 Jan 2023
Ezekiel Adebiyi 

Answers from the authors to the reviewer’s comments 
Authors would like to thank the reviewer for valuable comments and suggestions. Below 
are the answers for each reviewer’s comments: 
 
Our Response to the Major Comments  
 
1. Although the title states that this paper focuses on African populations, I feel the 
current version of this paper is a bit too focused on general PRS research in all 
populations. I encourage the authors to include more details and examples of PRS 
applications in African populations, especially sub-Saharan African communities. 
Then, the paper may be more balanced. 
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For example, in Section "PRS analysis on African populations": The traits studied using 
PRS analysis in African populations include types 1 & 2 diabetes mellitus, depression, 
ischemic stroke, schizophrenia, sarcoidosis, Alzheimer’s disease, obesity, insomnia 
disorder, post-traumatic stress and cancer. Undermentioned are some selected PRS 
studies in sub-Saharan African populations. 
 
The citations of these studies could be provided in the paper or a supplemental table. 
Then, the authors could provide a general overview of all the findings of these papers 
in the main text or supplemental note. 
 
This is just one example, the authors could consider improve other sections of the 
paper to extend the discussions of African populations.  
 
 
The Authors thank the reviewer for this major comment and we agree totally with the 
reviewer’s point of view. Therefore, we have reviewed the content and also changed the 
title-heading “PRS Analysis on African Populations” to more specific title-header “PRS 
Analysis on Sub-Saharan African Populations”, page 15. More so, we have cited the key 
articles and summarized the findings in the main text of the manuscript while we included 
additional table content, pages 17-19. The following text is provided for the revised version 
of  the manuscript. 
 
PRS Analysis on Sub-Saharan African Populations 
The PRS Analysis on Sub-Saharan African populations is limited due to lack of enough GWAS 
studies on traits associated with Sub-Saharan African populations. For instance, searches on 
PubMed for PRS on Sub-Saharan African populations on December 23, 2022 (see Figure 1 
and Box 1) results in only 5 hits (4 research articles and 1 review paper). These four research 
articles performed PRS analysis mainly on traits associated with cardiometabolic disease 
such as heart attack, type 2 diabetes, and stroke. Other contributing risk factors including 
body mass index (BMI), waist circumference (WC), hip circumference (HC), waist-to-hip ratio 
(WHR), systolic blood pressure (SBP), diastolic blood pressure (DBP), triglycerides (TG), total 
cholesterol (TC), low-density lipoprotein(LDL), high-density lipoprotein (HDL), fasting plasma 
glucose( FPG), and type 2 diabetes (T2D), low-density lipoprotein cholesterol (LDL-C), high-
density lipoprotein cholesterol (HDL-C), triglycerides (TGs) and total cholesterol (TC) (Ekoru 
et al., 2021; Kamiza et al., 2022; Choudhury et al., 2022; Meeks et al., 2022). More so, the 
variance detected for Sub-Saharan populations in these studies has been summarized in 
Table 4. 
The general outcome of these five articles emphasize an urgent needs of GWAS research 
studies for Sub-Saharan African populations in order to continue to perform PRS analysis 
that would add more benefit to the use of PRS in precision medicine as well as an improved 
representation of multiple ethnic populations in GWAS to better reflect risk stratification, 
variabilities in genetic equitable, and translation of GRS in clinical setting . For instance, 
Ekoru et al (2021) demonstrated that several traits such as cardiometabolic have less 
predictive power of genetics risk score in Sub-Saharan Africans compared to others 
populations such as African Americans and European Americans. The less predictive power 
of cardiometabolic traits were as a result of underrepresented African populations based on 
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GWAS data in the current reference genomes. However, Kamiza et al. (2022) studies showed 
an increase in PRS performance on lipid traits (such as, LDL-C) with dataset from Sub-
Saharan populations, European, and multi-ancestry. Other lipid traits include HDL-C, TGs 
and TC. PRSs performance varies significantly even among the sub-Saharan African 
populations. This variation on PRS performance occurs due to variations on Africa 
population-specific genetic structure, such as minor allele frequencies and the population-
specific associated environmental factors. 
It is worth reporting that there are several PRS studies that have been done using African 
populations. However, these studies are not restricted to sub-Saharan Africa's populations 
because the 1000 genomes reference panel data include samples from Africa populations. 
In 2020, Hayat and her colleagues investigated the genetic associations between serum low 
LDL-cholesterol levels and selected genetic variants (Hayat et al., 2020). Using 1000 
genomes data from the African populations, they selected four genes for their investigation 
(LDLR, APOB, PCSK, and LDLRAP1). They performed genotyping of 19 SNPs using 1000 
participants in the Human Heredity and Health in Africa (H3Africa) AWI-Gen Collaborative 
Center (Africa, Wits-IN-DEPTH Partnership for GENomic studies). Although they used a 
limited number of variants, the outcome showed a significant association of these SNPs 
with lower LDL-C levels in sub-Saharan Africans. 
 
In 2020, Cavazos and Witte proposed the inclusion of variants discovered from various 
populations to improve PRS transferability to diverse populations (Cavazos and Witte, 2020). 
They used both simulated data for the Yoruba group of the sub-Saharan African and 
European populations. They tested their findings on real data consisting of diabetes-free 
training samples of European ancestry (n = 123,665) and African descent (n = 7564).They 
evaluated the performance of PRS analysis using genotype and phenotype data for a test 
(predictive) data set of European ancestry (n = 394472) individuals of African origin from the 
UK Biobank (n = 5886). Based on their findings, they concluded that incorporating variants 
selected from the European population will limit the accuracy of PRS values in non-
Europeans populations including African communities. Also, they commented on the need 
for diverse GWAS data to improve PRS accuracy across populations. 
 
In 2017, Marquez-Luna et al. (2017) proposed a multi-ethnic PRS analysis to improve risk 
prediction in diverse populations including African communities. To overcome the lack of 
enough training data for the African populations, the authors combined the training data 
from European samples and training data from the target population. We did not include 
their study because they did not state whether they used sub-Saharan African communities. 
This further highlights the challenge of performing PRS analysis in sub-Saharan African 
populations as a result of insufficient training data. 
 
In 2017, Vassos et al. (2017) examined PRS values in a group of individuals with first-episode 
psychosis (Vassos et al., 2017). For the control data set, they combined African-European (n= 
70) and a sample of sub-Saharan African ancestries (n=828). Their finding showed that PRS 
value was more potent in Europeans, i.e. 9.4% discriminative ability, than in Africans, i.e. 
only 1.1% discriminative ability in Africans. 
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2.  In the "The predictive power of PRS analysis" section, the authors could discuss and 
include a few more recent studies on the mathematical properties of PRS, such as 
https://onlinelibrary.wiley.com/doi/10.1111/biom.13466 and 
https://arxiv.org/abs/1911.10142. Particularly, https://arxiv.org/abs/1911.10142 
studies the cross-population accuracy, which may fit the topic and discussion paper 
well.  
 
Authors thank the reviewer for his valuable suggestion. We added the text below to the 
manuscript, page 13, to improve it. 
 
“Zhao & Zou (2022) showed in their study that PRS predictivity can be improved based on 
SNPs selection. The process of SNPs selection depends on the genetic architecture, i.e, 
causal variants, and the sample size of the training data set. To select a set of SNPs that 
provide the optimal PRS prediction, the sample size of the training data set should be much 
larger than the number of potential causal variants. That is, performing PRS where the ratio 
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of causal variants and sample size is large results in poor PRS prediction due failure in 
causal variants separations. Therfores, in the case of the ratio of causal variants to the 
sample size is large, i.e, small sample size is the training data set, Zhao & Zou 
recommended to include a large number of variants to get higher PRS prediction power. 
Moreover, Zhao & Zou recommended to include independent uncorrelated variants to 
improve PRS predictivity. Moverover, Zhao et al. (2022) demonstrated that accounting for 
correlation between causal variants, i.e, LD, will improve PRS predictivity and accuracy for 
heterogeneous populations. 
Furthermore, the performance of the PRS mathematical model can be assessed by 
evaluating the model's output using machine learning techniques, including area under the 
curve (AUC) of the receiver operating characteristic (ROC) (Janssens et al., 2007; Igo et al., 
2019). The ROC can be visualized by plotting true positive rate against false positive rate for 
model’s thresholds. Janssens et al. (2007) recommend using a model that provides AUC 
>0.75 for PRS clinical utility, ie, screening of individuals who are at risk. Igo et al. (2019) has 
suggested using the proportion of trait variability explained by one or more variants as an 
indicator for PRS predictivity, for more details refer to Janssens et al. (2007). 
 
Igo, R. P., Jr, Kinzy, T. G., & Cooke Bailey, J. N. (2019). Genetic Risk Scores. Current protocols in 
human genetics, 104(1), e95. https://doi.org/10.1002/cphg.95 
 
Janssens, A. C., Moonesinghe, R., Yang, Q., Steyerberg, E. W., van Duijn, C. M., & Khoury, M. J. 
(2007). The impact of genotype frequencies on the clinical validity of genomic profiling for 
predicting common chronic diseases. Genetics in Medicine, 9, 528–535. doi: 
10.1097/GIM.0b013e31812eece0. 
 
Zhao, B., & Zou, F. (2022). On polygenic risk scores for complex traits prediction. Biometrics, 
78(2), 499–511. https://doi.org/10.1111/biom.13466 
 
Zhao, B., Zou, F., & Zhu, H. (2022). Cross-trait prediction accuracy of summary statistics in 
genome-wide association studies. Biometrics, 10.1111/biom.13661. Advance online 
publication. https://doi.org/10.1111/biom.13661 
 
Authors responses to the Minor comment 
1. In the beginning of the "PRS methods that incorporate LD" section, the "W" in 
"When" should be lower case? 
Authors thank the reviewers for the suggestions, and we applied the correction accordingly. 
 
2. In the sentence "Feng & Smoller 24presented the PRS-CS-auto method, a fully 
Bayesian approach that enables automatic learning of..." The citation (24) of Feng and 
Smoller is wrong? 
Authors thank the reviewers for the suggestions, and we applied the correction accordingly. 
We cited it as Ge et a as given is the correct citation below 
 
Ge T, Chen C-Y, Ni Y, Feng Y-CA, Smoller JW. Polygenic prediction via Bayesian regression 
and continuous shrinkage priors. Nat Commun. 2019;10(1):1776. 
 
3. "For instance, searching PubMed for PRS in African populations on August 21, 2021 
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(see Figure 1 and Box 1), only gave 8,843 hits." What is the result for sub-Saharan 
African? 
Authors thank the reviewers for the suggestions, we updated our search terms and we have 
added the recent results, including PubMed hits for sub-Saharan African in Figure 1. 
 
4. "This number represents about 4.553483% of total hits that" 4.55% could be enough 
here.  
We thank the reviewer, such small number demonstrate the lack of enough PRS studies on 
African populations.  
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